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1 Introduction
Nonlinear problems are ubiquitous in a variety of areas, including fluid dynamics,
biomechanics, viscoelasticity and finance, to name a few. A number of computa-
tional methods exist already for solving such problems, with the general approach
being Newton-Krylov type methods coupled with an appropriate preconditioner.
However, it is known that the strongest nonlinearity in a domain can directly impact
the convergence of Newton-type algorithms. Therefore, local nonlinearities may
have a direct impact on the global convergence of Newton’s method, as illustrated
in both [3] and [5]. Consequently, Newton-Krylov approaches can be expected to
struggle when faced with domains containing local nonlinearities.

An attempt to resolve this issue was considered in [4] by Cai and Li. Here, a
method based on an overlapping decomposition of the domain was proposed, which
involved the development of a nonlinear restrictive additive Schwarz preconditioner
for the treatment of high nonlinearities. Effectively, their proposed method ensured
that the distribution of nonlinearities was balanced throughout their system, building
on earlier work in [9]. While positive results were obtained, it is noted that their nu-
merical experiments display a logarithmic dependence with regard to the mesh size.
Additionally, in the situation of the unavailability of sufficient processors, it was
found that subdomain problems could become computationally demanding, due in
part to the need for a region of overlap. An alternative approach would be to in-
stead consider applying a nonoverlapping decomposition of the domain directly to
the nonlinear problem, avoiding the linearisation on a global scale. Methods have
been proposed to this effect by both Pebrel et. al. [12] and by Sassi [14]. In [12],
the resulting algorithm involved the solution to local nonlinear subproblems, as well
as a global interface problem solved by a Newton-type algorithm. As a result, local
nonlinearities could be dealt with much more effectively without having a major
impact on the solution across the whole domain. While the paper reported speed
up in the CPU time when compared directly to a Newton-Krylov approach, the
method proposed involves the solution of a global interface problem, which can be
both expensive and time consuming to compute. In comparison, [14] considered a
preconditioned modified Newton algorithm, which was found to converge indepen-
dently of the mesh size. However, the diameter of each subdomain was found to
have a direct influence on the condition number of the involved operator, and as a
result the proposed algorithm struggled with an increasing number of subdomains.
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We propose a splitting of a class of nonlinear problems into a three step proce-
dure wrapped around a fixed point iteration. Section 2 will provide a description of
the model problem, before the application of domain decomposition to the nonlin-
ear problem in Section 3. A three step procedure can then be devised by applying an
appropriate Picard linearisation (Section 4), which will be wrapped inside a global
fixed point iteration. The corresponding weak formulation and finite element dis-
cretisation of the problem are given in Section 5, with results from the proposed
method illustrated in Section 6.

2 Model Problem
We begin by considering the following problem posed on a two dimensional open
and simply connected domain Ω :{

N (u) ..=−∆u+ c(u) = f in Ω

u = 0 on ∂Ω ,
(1)

where the function c(u) is nonlinear and N is assumed to be positive. We also
assume that (1) has a unique solution. A number of real life situations can be simu-
lated by the nonlinear diffusion equation (1); in particular, notable applications can
be found when modelling flow through porous material, in biochemistry, and in the
transport of radiation.

An established approach for dealing with problems of type (1) is to employ
Newton-Krylov methods and use domain decomposition methods as precondition-
ers. A number of preconditioning strategies have been considered (e.g. additive-
Schwarz [7, 11], approximate-Schur [8, 13]), giving rise to numerous different
Newton-Krylov type approaches, which have been applied to a wide range of prob-
lems mainly due to the quadratic convergence of Newton’s method. However, for
domains containing high local nonlinearities, the global convergence of Newton’s
method becomes entirely dependent on the local phenomena contained within the
domain. Therefore, a substantial number of iterations can be expected for certain
problems solved using such approaches, even for domains containing predominantly
smooth areas, and so it is desirable to consider alternative approaches for determin-
ing solutions to systems of the form (1).

3 Nonlinear Domain Decomposition
We consider an approach that applies domain decomposition directly to the nonlin-
ear problem. To do this, we divide our domain Ω into N nonoverlapping subdomains
Ωi with boundary ∂Ωi with outer normals ni. We denote by Γ the resulting skele-
tal interface Γ =

⋃N
i=1 Γi, where Γi

..=∂Ωi\∂Ω . The restriction of a function w to a
subdomain Ωi is denoted by wi. Assuming ui|Γi= λi is given, problem (1) can then
be seen to be equivalent to the following subproblemsN (ui) ..=−∆ui + c(ui) = fi in Ωi

ui = 0 on ∂Ωi\Γi
ui = λi on Γi.
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Let u = u1 + u2 and assume that the nonlinear function c(u) can be written as
c(u1 +u2) = c1(u1 +u2)+ c2(u1 +u2). The reason for splitting u and c in this way
is to attempt to form homogeneous Dirichlet subdomain problems around u1. The
remaining components will then form subdomain problems around u2.

Problem (1) can be viewed in terms of the following subproblems

(2a)
{
−∆u1

i + c1(u1
i +u2

i ) = fi in Ωi
u1

i = 0 on ∂Ωi

(2b)

{
N

∑
i=1

(
ni ·∇(u2

i )
)
=−

N

∑
i=1

(
ni ·∇(u1

i )
)

on Γ

(2c)

 −∆u2
i + c2(u1

i +u2
i ) = 0 in Ωi
u2

i = 0 on ∂Ωi\Γi
u2

i = λi on Γi.

The nonlinear subproblems presented in (2a) correspond to obtaining solutions to
local copies of (1) with homogeneous Dirichlet conditions enforced on local bound-
aries ∂Ωi. In comparison, the nonlinear subdomain problems presented in (2c)
use interfacial data found in the intermediate step (2b) to obtain local solutions.
The main motivation for considering such a splitting, and indeed for considering a
nonoverlapping decomposition of Ω is that each subproblem in both (2a) and (2c)
can be solved independently of other subdomains. In the following, we will assume
that solution operators exist for problems of the form (2c); these will be denoted
by Ei; in particular, we have u2

i = Ei(λi). We will denote by Fiµi any other linear
extensions of a given function µi defined on Γi to Ωi.

4 Picard Linearisation
We decouple (2a), (2b) and (2c) via the following Picard linearisation

(3a)

{
N1(u

1,k
i ) ..=−∆u1,k

i + c1
(

u1,k
i +u2,k−1

i

)
= fi in Ωi

u1,k
i = 0 on ∂Ωi

(3b)

{
N

∑
i=1

ni ·∇(Ek−1
i λ

k
i ) =−

N

∑
i=1

ni ·∇(u1,k
i ) on Γ

(3c)


N2(u

2,k
i ) ..=−∆u2,k

i + c2
(

u1,k
i +u2,k

i

)
= 0 in Ωi

u2,k
i = 0 on ∂Ωi\Γi

u2,k
i = λ

k
i on Γi.

Given uk−1, N nonlinear subproblems are first solved independently in (3a). The
solution to these subproblems is then used in equation (3b) to obtain the interface
update λ k

i . Finally, the solutions to each nonlinear subproblem in (3c) are obtained
independently using the updates from the previous two steps. Note that it is pos-
sible to solve each of the two sets of N nonlinear subproblems in (3a) and (3c) in
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parallel. Equation (3b) is a linear Steklov-Poincaré equation involving the operator
Sk:H1/2

00 (Γ )→ H−1/2
00 (Γ ) defined as

〈Sk
λ

k,µ〉 ..=
N

∑
i=1

∫
Γi

(ni ·∇)(Ek−1
i λi)µi ds =

N

∑
i=1
〈Sk

i λ
k
i ,µi〉,

where Ek−1
i are linearizations of the nonlinear extension operators Ei corresponding

to (3c). We summarize below the proposed iterative scheme for computing the exact
solution u∗, given an initial u0.

1. Run through the following three steps to compute the solution uk = u1,k +u2,k:

(4a)

{
N1(u

1,k
i ) = f in Ωi

u1,k
i = 0 on ∂Ωi

i = 1, . . . ,N.

(4b)

{
Sk

λ
k =−

N

∑
i=1

ni ·∇(u1,k
i ) on Γ

(4c)


N2(u

2,k
i ) = 0 in Ωi

u2,k
i = 0 on ∂Ωi\Γi

u2,k
i = λ

k
i on Γi.

i = 1, . . . ,N.

2. Compute the residual Rk = N (uk)− f . If ‖Rk‖< τ , set u∗ = uk and terminate.
Else, set k = k+1 and return to step 1.

5 Finite Element Discretisation
Define now local bilinear forms

al
i (v,w ;z) ..=

∫
Ωi

∇v∇wdx+
∫

Ωi

cl(v+ z)w dx,

for l = 1,2. Using the above notation, the weak formulation of (4) is

(5a)

{
Find u1,k

i ∈ H1
0 (Ωi) such that ∀vi ∈ H1

0 (Ωi)

a1
i (u

1,k
i ,vi ;u2,k−1

i ) = ( fi,vi)

(5b)


Find λ k ∈ H1/2

00 (Γ ) such that ∀µ ∈ H1/2
00 (Γ )

s(λ k,µ) =
N

∑
i=1

( fi,Fiµi)−a1
i (u

1,k
i ,Fiµi ;u2,k−1

i )

(5c)

{
Find u2,k

i ∈ E(λ k
i )+H1

0 (Ωi) such that ∀vi ∈ H1
0 (Ωi)

a2
i (u

2,k
i ,vi ;u1,k

i ) = 0.

Let now Vh ⊂ H1
0 (Ω)∩C0(Ω) be a space of continuous piecewise polynomials

of degree m defined on an isotropic subdivision of Ω into simplices of maximum
diameter h. In our tests we choose m = 1, though other values are equally possible.
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Let the corresponding basis be denoted by {ψr}. Let B denote the index set corre-
sponding to basis elements ψr with support on Γ . Let Sh

..=span{γ0 (Γ )ψr : r ∈ B}
where γ0 denotes the trace operator. The finite element discretisation of the systems
in (5) can then be written for i = 1, . . . ,N as

(6a)

{
Find u1,k

i,h ∈Vi,h such that ∀vi,h ∈Vi,h

a1
i (u

1,k
i,h ,vi,h ;u2,k−1

i,h ) = ( fi,vi,h)

(6b)


Find λ k

h ∈ Sh such that ∀µh ∈ Sh

s(λ k
h ,µh) =

N

∑
i=1

( fi,Fiµi)−a1
i (u

1,k
i,h ,Fiµi,h ;u2,k−1

i,h )

(6c)

{
Find u2,k

i,h ∈ (Eλ )k
i,h +Vi,h such that ∀vi,h ∈Vi,h

a2
i (u

2,k
i,h ,vi,h ;u1,k

i,h ) = 0.

The system (6) can be represented systematically by matrices and vectors in the
usual way. In particular, the Schur complement of the system matrix corresponds to
the matrix representation of s(·, ·) in the basis of Sh. We can therefore describe our
proposed method as follows:

1. Run through the following three step procedure to determine u.

a. Solve the N decoupled nonlinear subdomain problems (6a) written in matrix
form as

Ai,1
II (u

1,k
I,i )u

1,k
I,i = f1

I,i, (7a)

using a Newton-Krylov method with line search and adaptive tolerances τ1,i.
b. Calculate interface values λλλ k using

Sk
λλλ

k = fΓ −
N

∑
i=1

Ai,1
Γ I(u

1,k
I,i )u

1,k
I,i . (7b)

c. Solve the N decoupled nonlinear subdomain problems (6c) written in matrix
form as

Ai,2
II (u

2,k
I,i )u

2,k
I,i =−Ai,2

IΓ (u
2,k
I,i )λλλ

k
i , (7c)

using a Newton-Krylov method with line search and adaptive tolerances τ2,i.

2. Set uk = u1,k +u2,k, where u1,k = [u1,k
I ,0]T and u2,k = [u2,k

I ,λλλ k ]T . Assemble the
global stiffness matrix Ak(u) and compute the residual Rk(uk) = A(uk)uk− f. If
‖Rk‖< τ set u∗ = uk and exit; else, return to Step 1.

The subindices I and Γ indicate permutations involving the index sets corresponding
to the interior and boundary nodes in the subdivision of Ω . The adaptive tolerances
τ1,i,τ2,i are chosen in relation to the norm of the global nonlinear residual ‖Rk‖,
following the strategy in [6].

We solve the system (7b) using iterative methods of Krylov type with precon-
ditioning. The matrix Sk is the interface Schur complement corresponding to the
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reaction-diffusion problem −∆u2,k−1 + c2(u1,k−1 + u2,k−1); as such, it can be pre-
conditioned by any domain decomposition preconditioner designed for elliptic prob-
lems. The preconditioner employed in this work is based on [2], where discrete
norms corresponding to finite element discretisations of fractional Sobolev spaces
are presented. In particular, it was shown that a discrete norm on Sh ⊂ H1/2

00 (Γ )
which is spectrally equivalent to Sk is given by

H1/2 = MΓ

(
M−1

Γ
LΓ

)1/2
.

In [2], MΓ and LΓ correspond to the mass and Laplacian matrices, respectively,
assembled on Γ . We adapt the definition of H1/2 to include the contribution from
the reaction term as suggested in [1]; this involves replacing LΓ with

Lk
Γ = LΓ +Mk

Γ ,

where Mk
Γ

is the mass matrix assembled on Γ and weighted by the trace on the
interface Γ of c2

(
u1,k−1 +u2,k−1

)
. For more details, see [15].

Note that MΓ ,Lk
Γ

are assembled globally on Γ and hence H1/2 is a dense matrix.
However, in our computations we use sparse techniques to circumvent this issue. In
particular, the application of both Lanczos and inverse Lanczos factorisations has
been considered in [2], and will be applied in this work in a similar manner.

6 Results
In this section, we will consider a number of examples to highlight the benefits of
our proposed method. In particular, we will consider models for which

(a) c(u) = uq+1, and (b) c(u) = uq+1 sin(10u),

where q is a positive integer. For both choices, we note that by substituting u =
u1 +u2 into the function, we can write

c(u1 +u2) = (u1 +u2)q+1 = (u1 +u2)qu1 +(u1 +u2)qu2.

Table 1 displays performance comparisons of our proposed method to the stan-
dard Newton-Krylov approach for two test problems. We used piecewise linear dis-
cretizations for a range of mesh parameters h. Each nonlinear problem was solved
with a zero initial guess. We consider four different representations for the pre-
conditioner S̃, namely the exact Schur complement, the exact discrete fractional
Sobolev norm H1/2, and both the Lanczos (L) and inverse Lanczos (I) approxima-
tions to H1/2. The performance recorded in the table indicates that our method deliv-
ers promising results when directly compared to the corresponding Newton-Krylov
method. In particular, it can be seen that the results indicate independence with re-
spect to both the mesh size and the number of subdomains used. By comparing the
columns in Table 1, an indication is given on how well both methods adapt to the in-
crease in nonlinearity. Notably, it is clear that the Newton-Krylov method struggled
when faced with the increased nonlinearity, confirming results noted earlier. How-
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(a), q = 2 (b), q = 9

Newton-Krylov 3-Step Procedure Newton-Krylov 3-Step Procedure

S̃ h 4 16 64 4 16 64 4 16 64 4 16 64

1/16 4 (8) 4 (8) 3 (6) 4 (8) 4 (8) 3 (5) 11 (22) 10 (20) 10 (20) 6 (12) 5 (10) 5 (10)

S 1/32 4 (8) 3 (6) 3 (6) 4 (8) 3 (6) 3 (5) 10 (20) 10 (20) 9 (18) 5 (10) 5 (10) 5 (10)

1/64 3 (6) 3 (6) 3 (6) 3 (6) 3 (6) 3 (5) 10 (20) 9 (18) 8 (16) 5 (10) 5 (10) 4 (8)

1/16 9 (24) 11 (35) 6 (48) 6 (29) 6 (26) 5 (35) 15 (66) 16 (89) 12 (110) 7 (48) 8 (60) 6 (47)

H1/2 1/32 12 (38) 7 (42) 5 (49) 6 (36) 5 (25) 4 (30) 17 (79) 12 (103) 10 (110) 7 (53) 6 (49) 5 (52)

1/64 6 (33) 4 (29) 4 (42) 5 (28) 4 (25) 4 (41) 11 (75) 9 (96) 8 (103) 6 (47) 4 (28) 4 (43)

1/16 9 (24) 11 (35) 6 (48) 6 (29) 6 (26) 5 (35) 15 (66) 16 (89) 12 (110) 7 (48) 8 (60) 6 (47)

H(L)
1/2 1/32 12 (38) 7 (42) 5 (49) 6 (36) 5 (25) 4 (30) 17 (79) 12 (103) 10 (110) 7 (53) 6 (49) 5 (52)

1/64 6 (33) 4 (29) 4 (42) 5 (28) 4 (25) 4 (41) 11 (75) 9 (96) 8 (103) 6 (47) 4 (28) 4 (43)

1/16 17 (39) 106 (148) 7 (51) 6 (31) 6 (34) 5 (39) 21 (78) 132 (193) 12 (102) 8 (64) 7 (56) 6 (58)

H(I)
1/2 1/32 11 (40) 6 (35) 4 (36) 6 (37) 5 (35) 4 (33) 14 (77) 11 (92) 5 (53) 7 (54) 6 (49) 5 (55)

1/64 6 (37) 4 (34) 4 (40) 5 (36) 4 (27) 3 (27) 11 (76) 9 (90) 8 (92) 5 (40) 5 (44) 4 (45)

Table 1 Nonlinear iterations (total GMRES iterations) for a global tolerance τ = 10−7.

ever, in comparison our method was found to deal with the increase in nonlinearity
in a much more efficient manner. This would suggest that our method would adapt
quite well to domains containing high local nonlinearities confined to a particular re-
gion of the domain. It is also noted that by directly inverting the Schur complement,
an adaptation of the result presented in [10] is also shown for our method, namely
that the interface problem (7b) solved with GMRES can be expected to converge in
a number of iterations no more than the dimension of Ω per fixed point iteration.

7 Conclusion
In this paper, we introduced a three step procedure for solving a class of nonlin-
ear PDEs. We have demonstrated that our method is able to deliver results inde-
pendent of both the mesh size and the number of subdomains used. Furthermore,
we have shown that our procedure is competitive when directly compared to the
corresponding Newton-Krylov method. Future work will involve further testing to
include problems that contain a high nonlinearity confined to a particular region of
the domain together with an appropriate analysis of the method. We will also adapt
our method to problems in topology optimization [15].
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the University of Birmingham.
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