
◮ TOMÁŠ KROUPA, TOMÁŠ VALLA, Constructing many-valued logical functions with

small influence of their variables. 1

Institute of Information Theory and Automation, Academy of Sciences of the Czech
Republic, Prague, Czech Republic.
E-mail: kroupa@utia.cas.cz.
Faculty of Information Technology, Czech Technical University in Prague, Czech Re-
public.
E-mail: tomas.valla@fit.cvut.cz.

§1. Introduction. The Boolean functions with small influence of their inputs are
used in the collective coin flipping algorithms [2]. In this contribution we replace
the random bit generator with a random generator over a finite set and we show the
existence of finitely-valued Lukasiewicz formulas with small influence of their variables.

§2. Lukasiewicz logic. We repeat basic definitions and results concerning finite-
valued Lukasiewicz logic and its Lindenbaum algebra [3, 1]. We consider only finitely-
many propositional variables A1, . . . , An. Formulas ϕ,ψ, . . . are then constructed from
these variables and the truth-constant 0̄ using the following basic connectives: negation
¬ and strong disjunction ⊕. For any k ∈ N the semantics for connectives of (k + 1)-
valued Lukasiewicz logic is given by the corresponding operations of the finite MV-

chain, which is just the set of rational numbers Łk =
{

0, 1
k
, . . . , k−1

k
, 1
}

endowed with
constant zero 0 and the operations of negation ¬ and strong disjunction ⊕ defined as
¬a = 1 − a and a ⊕ b = min{1, a + b}, respectively, for each a, b ∈ Łk. The structure
〈Łk,⊕,¬, 0〉 then becomes an MV-algebra. The operations ⊙, ∧, ∨, → are introduced
in the standard way.

In the sequel we consider the expansion of the (k+ 1)-valued Lukasiewicz logic with
the truth constants from the chain Łk. The language of (k + 1)-valued Lukasiewicz

logic with truth constants results from the language of (k+ 1)-valued Lukasiewicz logic
by adding the truth constant r̄ for each r ∈ Łk. Every truth constant is a formula.
Formulas are built from propositional variables A1, . . . , An and truth constants using
the connectives ⊕ and ¬ as well as other defined connectives of Lukasiewicz logic. Let
F k
n be the Lindenbaum algebra of (k+1)-valued Lukasiewicz logic with truth constants

over n variables. By [1] we may identify F k
n with the product Ł

(Łn
k)

k whose elements are
all the functions f : Ł

n
k → Łk.

§3. Influence of Boolean variables. Boolean functions have a natural interpre-
tation in game theory. A Boolean function is called a simple game. Each variable is
controlled by a unique player and setting this variable to 1 or 0 expresses the yes/no
voting scheme. The value of the Boolean function then represents an overall outcome of
the voting. Observe that in our notation an n-variable Boolean function f : Ł

n
1 → Ł1 is

an element of F 1
n . The problem of measuring influence of a given propositional variable

on the values of f ∈ F 1
n was studied in coalitional game theory [6] and in the field of

fault-tolerant computations [2].
The following notations will be used throughout the paper. Let f ∈ F k

n and i ∈
{1, . . . , n}. For every y = (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Ł

n−1
k , we denote by f−i

y the

function Łk → Łk defined by f−i
y (x) = f(y1, . . . , yi−1, x, yi+1, . . . , yn), where x ∈ Łk.

The influence βi(f) of variable xi on a monotone Boolean function f ∈ F 1
n is defined

1Tomáš Kroupa was supported by the grant GAČR n. 13-20012S. The work of Tomáš Valla was supported
by the grant GA P402/12/1309 of the Czech Science Foundation.

as the probability that f−i
y remains non-constant when y ∈ {0, 1}n−1 is selected at ran-

dom: βi(f) =
∑

y∈{0,1}n−1

f−i
y (1)−f−i

y (0)

2n−1 . The number βi(f) is also called the Banzhaf

index of player i in a coalition game f . We also define the Banzhaf index β(f) of f as
β(f) = max{β1(f), . . . , βn(f)}. The Banzhaf index measures the influence of players.

A natural motivation for investigating the players’ influence comes from the collec-
tive random bit generators. Suppose there are n computers equipped with random
generators. The task is to generate one random bit identical for all the machines. Si-
multaneously, each machine produces a uniform random bit and announces it to other
machines. Each of them then has to perform a computation based on these inputs to
produce the identical uniform random bit. The question is to which extent is a given
random generator resistant towards possible third party attacks and corruption of one
machine. The goal of the design of Boolean functions with low variables’ influence is
to minimize the chance of the attacker to manipulate the result.

Consider the Boolean function f(x1, . . . , xn) = xk called the dictatorship of player k.
The influence of dictator k is 1 and 0 for other players: β(f) = 1. The Boolean majority

function m ∈ F 1
n is defined as follows. Let n be odd and let m(x1, . . . , xn) = 1 if there

is a set S ⊆ {1,n}, |S| > n/2, such that xi = 1 for i ∈ S, and 0 otherwise. It
follows that β(m) = Θ(1/

√
n). On the other hand, it was shown [5, 4] that for any

Boolean function the average influence of a variable is at least Ω(1/n). Surprisingly,
there exists a Boolean function L performing better than the majority functions. In
the next theorem we identify the vertices of {0, 1}n with the subsets of {1, . . . , n}.

Theorem 1 (Ben-Or and Linial [2]). There exists a construction of the function L ∈
F 1
n such that |L−1(0)| = |L−1(1)| = 2n−1 and β(L) = O

(
logn
n

)
.

The rough idea how the function L is constructed is as follows. Let b be the unique
solution of the equation (2b − 1)1/b = 21−1/n. Decompose the set {1, . . . , n} into n/b
blocks of size b and consider the set J of those subsets of {1, . . . , n} which contain no
block. Let L be defined such that L(A) = 0 if A ∈ J and L(A) = 1 otherwise.

§4. Influence of variables in many-valued logics. We will propose a natural
generalization of Boolean Banzhaf index. Let f ∈ F k

n , k ≥ 1, and i ∈ {1, . . . , n}. The

influence of variable xi on f is γi(f) = (k+ 1)1−n · ∑
y∈Ł

n−1

k

(
max
x∈Łk

f−i
y (x) − min

x∈Łk

f−i
y (x)

)
.

It can be shown that γi(f) is a faithful generalization of the Banzhaf index. A natural
next step is to design functions with low variable influence in the setting of the finitely-
valued Lukasiewicz logic with truth constants. Our setting is the case of random
generators producing a number from a finite set. Note that this setting naturally
allows designs that may ask the input generators repeatedly.

4.1. 2k-valued logic. Let us consider the set Łh−1 for h = 2k for some nonegative
integer k. In the sequel, we will naturally identify the elements Sh = {0, 1, . . . , h− 1}
with those in Łh−1. Note that we may encode each x ∈ {0, 1, . . . , h − 1} by a k-
element Boolean vector (x1, x2, . . . , xk) representing the binary number x, with x1

being the highest bit and xk the lowest. Under the identification of Sh with Łh−1,
we may analogously use the Banzhaf index γ′

i(f) = h1−n ∑
y∈Sn−1

h

(maxx∈Sh
f−i
y (x) −

minx∈Sh
f−i
y (x)). Let us define the function f : Sn

h → Sh as

f(x1, . . . , xn) =
(
L(x11, x

1
2, . . . , x

1
n), L(x21, . . . , x

2
n), . . . , L(xk1 , . . . , x

k
n)
)
,(1)

where the value f(x1, . . . , xn) is the binary representation of a number in Sh.
We shall prove that f has a small variable influence.

2

Theorem 2. For i = 1, . . . , n, γ′
i(f) = O

(
h logn

n

)
.

Proof. The Banzhaf index of the function L′ = L(x11, . . . , x
1
n) is βi(L

′) = O(log n/n)
by [2]. Observe that in the resulting vector of f the value of the highest bit L(x11, x

1
2, . . . , x

1
n)

has the same effect on the size of the output value as the sum of all other lower bit
orders, and the same holds for the influence of each lower bit. We may thus bound

γ′
i(f) ≤ (2k−1 + 2k−2 + · · · + 1) · β(L′) ≤ 2k · β(L′) = O

(
h

log n

n

)
.

⊣
4.2. General many-valued logic. Let us now consider the set Sh with h > 2 and

let ℓ be the smallest integer such that 2ℓ ≥ h. Let us denote by G2 a random generator
producing one uniform random bit. We construct the generator G2→h that uses G2 as
the input and produces a value from Sh with uniform distribution:

1. Produce a number N by reading random bits b1, . . . , bℓ from the G2.
2. If N < h then return the number N .
3. Otherwise, repeat the whole process.

Lemma 3. The generator G2→h produces a result with a uniform distribution over

Sh. The expected number of random bits read from G2 is ℓ2ℓ/h = Θ(log h).

Proof. W.l.o.g., let p denote the probability that 0 is on the output of G2→h. Then

p =
1

2ℓ
+

2ℓ − h

2ℓ
p

since with probability 1/2ℓ the result is produced immediately and with probability
(2ℓ − h)/2ℓ the process is repeated independently on the previous round. Solving the
equation yields p = 1/h.

Denote by E the expected number of random bits needed to produce the result.

Similar equation E = ℓ + 2ℓ−h
2ℓ

E holds as ℓ bits are used always and with probability

(2ℓ − h)/2ℓ the whole memoryless process repeats. The solution gives E = ℓ2ℓ/h.
Finally, note that ℓ ≈ log2 h and h ≤ 2ℓ < 2h. ⊣

Let us denote Gh a random generator producing uniform Sh-valued output. Using
analogous technique, we design a generator Gh→2 which reads uniformly distributed
random Sh-valued input and produces a uniformly distributed random bit. The process
is as follows. If h is even, one random input is read and its parity is returned. If h is
odd, the following procedure is used.

1. Read one random number N ∈ Sh from Gh.
2. If N 6= h− 1, return the parity of N .
3. Otherwise, repeat the whole process.

Lemma 4. The generator Gh→2 produces a uniform random bit. If h is even, Gh→2

reads 1 random input value. If h is odd, the expected number of random values read is

h/(h− 1).

Proof. Let p denote the probability that Gh→2 produces, w.l.o.g., 0. Then p =
(h−1)/2

h
+ 1

h
p as with probability (h− 1)/(2h) the result is produced immediately and

with probability 1/h the process is repeated independently on the previous round. We
get p = 1/2.

Denote by E the expected number of random Sh-values needed to produce the result.
We have that E = 1 + 1

h
E holds as 1 value is used always and with probability 1/h the

memoryless process repeats, which gives the solution E = h/(h− 1). ⊣

3

4.3. Function with low influence of variables. We describe the generator G
which is given n uniform Sh-valued random generators and produces the Sh-valued
output with a low influence of the input generators. Let us denote the input random
Sh-value generators by g1, . . . , gn.

The generator is constructed asG = G2→h

(
L
(
Gh→2(g1), Gh→2(g2), . . . , Gh→2(gn)

))
,

where L is the function from Theorem 1. In another words, the generator G2→h re-
peatedly asks for Boolean bits from the function L, which in turn asks the n generators
Gh→2 connected to the inputs of L, which in turn ask the input generators g1, . . . , gn.

Lemma 5. The probability that G produces v ∈ Sh is 1/h.

Proof. By Lemma 4, each generator Gh→2(gi) produces uniform random bit. By
Theorem 1, the function L then produces a uniform random bit. Finally, the generator
G2→h produces uniform Sh-valued output. ⊣
Let ℓ be the smallest integer such that 2ℓ ≥ h.

Lemma 6. For the generator G, the expectation of the total number of random values

produced by the generators g1, . . . , gn in order to obtain one output of G is n·ℓ·2ℓ/(h−1).

Proof. Recall that by Lemma 4 the expectation of random values needed by the
generator Gh→2 to produce single output is h/(h − 1). As the generators g1, . . . , gn
are independent, linearity of expectation yields that to produce one output bit of the
function L, nh/(h−1) input values are needed in the expectation. Since each execution
of L is independent on the previous runs, by Lemma 3 we obtain the total expectation
(ℓ2ℓ/h)nh/(h− 1) = nℓ2ℓ/(h− 1). ⊣

Lemma 7. For each i = 1, . . . , n, we have γ′
i(G) = O((2ℓ log n)/n).

Proof. Observe that the function L′ = L(Gh→2(g1), . . . , Gh→2(gn)) behaves ex-
actly as the function f defined by (1). Theorem 2 yields γ′

i(L
′) = O((2ℓ log n)/n.

During the step 1 of the generator G2→h, the function L is called ℓ times, which pro-
duces a number N in the range 0, . . . , 2ℓ − 1. Less than one half of the possible values
of N is rejected and step 1 is repeated independently on the result of the previous
iteration. ⊣

We may identify G with a unique function Ĝ : Ł
n
h−1 → Łh−1. Note that γi(Ĝ) =

γ′
i(G)/(h − 1). Since ℓ ≈ log2 h, using Lemma 6 and Lemma 7 we may conclude with

the following corollary.

Corollary 8. The generator Ĝ needs in total Θ(n log h) input random values in

expectation, and max
i=1,...,n

γi(Ĝ) = O(log n/n).

[1] S. Aguzzoli, S. Bova, and B. Gerla, Free algebras and functional repre-

sentation for fuzzy logics, Handbook of Mathematical Fuzzy Logic - Volume 2,
(P. Cintula, P. Hájek, and C. Noguera, editors), College Publications, London, 2011,
pp. 713–791.

[2] M. Ben-Or and N. Linial, Collective coin flipping, Randomness and Com-

putation (S. Micali, editor), Academic Press Inc., 1989, pp. 91–115.
[3] P. Hájek, Metamathematics of fuzzy logic, volume 4 of Trends in Logic—

Studia Logica Library, Kluwer Academic Publishers, 1998.
[4] L. Harper, Optimal Numberings and Isoperimetric Problems of Graphs, Jour-

nal of Combinatorial Theory ser. A (1966), pp. 385–393.
[5] S. Hart, A note on the edges of the n-cube, Discrete Mathematics 14 (1976),

pp. 157–163.
[6] G. Owen, Game theory, Academic Press Inc., 1995.

4

