
REASONING ABOUT COALITIONAL EFFECTIVITY IN MODAL
EXTENSION OF ŁUKASIEWICZ LOGIC

TOMÁŠ KROUPA AND BRUNO TEHEUX

Abstract. We generalize the notion of α-effectivity existing in the context of
game forms to deal with situations in which a coalition can enforce a fuzzy set
of outcomes. Then we introduce a modal extension of Łukasiewicz (n + 1)-
valued logic together with a many-valued neighborhood semantic in order to
encode the properties of the many-valued effectivity functions arising from
strategic game forms. We prove completeness theorem for the studied logic.

1. Introduction

Modelling collective actions of agents and capturing their effectivity is among
the important research topics on the frontiers of game theory, computer science and
mathematical logic. The main efforts are concentrated on answering the following
question: what is the set of outcome states that can effectively be implemented by
a coalition of agents? A game-theoretic framework for studying collective actions
and their enforceability is based on the notion of game forms. Loosely speaking,
the game form is a pure description of a game and its rules, without regard to the
agents’ preferences.

The concept of α-effectivity ([1, 8]) is one of the key approaches to character-
ize the coalitional effectivity within game form models. A set of outcome states
X is α-effective for a coalition C if the players in C can choose a joint strategy
that enforces the outcome in X no matter what strategies are adopted by the other
players. In his seminal paper [11], Pauly introduces a logic CLN to reason about
α-effectivity in strategic game forms with player set N . The axiomatization of CLN
is a characterization in a multi-modal language of the class of α-effectivity func-
tions. Pauly also defines a neighborhood semantics with respect to which CLN
is complete. The logic CLN was subsequently considered and extended by many
authors (see [2, 3], for instance).

In this paper, we are interested in the generalization of α-effectivity for fuzzy sets
of outcomes. In section 2, we introduce the notion of Łn-valued effectivity function
whose purpose is to capture the degree with which a coalition can enforce a fuzzy
set of outcomes. The meaning of such a generalization is illustrated with examples:
in Example 2.5 we show how to model the degree of satisfaction of agents’ goals in
strategic game forms. In section 3, we develop the tools to capture the properties
of many-valued effectivity functions in a many-valued modal language. These de-
velopments rely not only on recent advances in modal extensions of Łukasiewicz
logic ([4, 7]), but they also require the introduction of neighborhood semantics,
which has never been considered in this modal many-valued setting, to the best
of our knowledge. With the notion of weak Łn-valued coalitional logic and weak
Łn-valued coalitional model, we provide a general framework for the development
of completeness results. In this perspective, our main result is Theorem 3.9.
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We use the following notation throughout the paper. We fix a positive inte-
ger n and we denote the set

{
0, 1

n , . . . ,
n−1
n , 1

}
by Łn. This set is equipped with

Łukasiewicz interpretation of the connectors → and ¬ defined by

x→ y = min (1, 1− x+ y) ,(1.1)
¬x = 1− x,(1.2)

for every x, y ∈ Łn. Moreover, the strong disjunction ⊕ and the strong conjunction
� are defined by p ⊕ q = ¬p → q and p � q = ¬(¬p ⊕ ¬q) and hence they are
interpreted in Łn by the following associative binary operations:

x⊕ y = min (x+ y, 1) ,

x� y = max (x+ y − 1, 0) .

2. Many-valued Effectivity Functions

In what follows, S denotes a nonempty set, N = {1, . . . , k} is a finite set and,
for any i ∈ N , Σi denotes a nonempty set. Recall the following definition [1].

Definition 2.1. A game form is a tuple G = (N, {Σi | i ∈ N}, S, o), where N is
a set of players, Σi is a set of strategies for each i ∈ N , S is a set of outcome states,
and o :

∏
i∈N Σi → S is an outcome function.

The game forms are not to be confused with strategic games. While a preference
relation over S must be defined for each player i ∈ N in a strategic game [9], no
such requirement exists for a game form. Below we include the basic examples of
game forms.

Example 2.2. (i) Let N = {1, 2} and Σ1, Σ2 be some strategy sets. Assume that
the players choose their strategies simultaneously. Then we may set S = Σ1 × Σ2

and define o as the identity function, which turns ({1, 2}, {Σ1,Σ2},Σ1×Σ2, o) into
a game form.

(ii) Suppose, on the other hand, that player 2 makes his choice only after ob-
serving the strategic choice of player 1. This sequential procedure is modeled by
a game form such that Σ2 is the set of all functions r : Σ1 → Σ′2, where Σ′2 can
be viewed as the set of all possible moves that can be played by player 2. Hence,
Σ2 models the replies of player 2 to the selection of a strategy by player 1. The
outcome function is given by o(σ1, r) = (σ1, r(σ1)), where (σ1, r) ∈ Σ1 × Σ2 and
the set of outcome states is S = Σ1 × Σ′2.

An important example is when the outcome function coincides with some social
choice function, as recalled in the next example—see [1, Chapter 1].

Example 2.3. Let S be any set of outcome states and Π(S) be a set of admissible
preference relations on S. In most applications, Π(S) will be either the set of total
preorders (reflexive, transitive, and complete binary relations) or the set of linear
orders. A social choice function is a map π : Π(S)k → S that implements a col-
lective decision procedure mapping the preferences of the agents into an effective
outcome state. If an agent (or a group of agents) wants to enforce some specific
outcome, his/her only possible strategy is to declare a preference relation that is
likely to bring the collective decision into the desired state. We can describe this
scheme as a game form G = (N, {Σi | i ∈ N}, S, o) in which Σ1 = · · · = Σk = Π(S)
and o = π.

Elements of the powerset PN of N are called coalitions. For every coalition C
we denote by C its set-complement in N . If σC ∈

∏
i∈C Σi and σC ∈

∏
i∈C Σi,
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then σCσC is the strategy vector in
∏
i∈N Σi defined by (σCσC)i = (σC)i if i ∈ C

and (σCσC)i = (σC)i if i ∈ C.
The usual definition [1, 8] of the α-effectivity function E : PN → PPS associated

with a game form aims to model the following. For any C ⊆ N and X ⊆ S, we set
X ∈ E(C) if coalition C can choose a joint strategy σC enforcing the outcome in
X no matter what strategies σC are adopted by the players in C. We are going to
generalize the concept of effectivity function: our goal is to capture the degree to
which a coalition C can enforce a fuzzy set of outcomes f ∈ ŁSn .

Definition 2.4. Let G = (N, {Σi | i ∈ N}, S, o) be a game form. The Łn-valued
effectivity function of G is the map EG : PN × ŁSn → Łn defined by

(2.1) EG(C, f) = max
σC

min
σC

f(o(σCσC)), C ∈ PN, f ∈ ŁSn ,

where σC and σC range in the set of all joint strategies of coalitions C and C,
respectively.

The meaning of definition (2.1) is the following: coalition C is effective for f ∈ ŁSn
to the degree at most EG(C, f) ∈ Łn, disregarding the strategic options of players
in opposite coalition C.

As an example, consider the situation in which we evaluate the capacity of groups
of agents to fulfill specified goals.

Example 2.5. Let N be the set of the countries of the European Union (EU) and
set n = k. Let Σi be the set of possible policies that country i can adopt at the
local (country) level for each i ∈ N . Assume that for every i ∈ N we evaluate the
following question:

‘Given a global strategy vector σN , does the economy of country
i ∈ N operate at full employment provided that σN is applied?’

This situation can be modeled by a set of states S = PN . The outcome state
A ∈ PN means that only the countries in A realize full employment. Experts
define the outcome function o :

∏
i∈N Σi → PN by setting i ∈ o(σN ) if and only

if the global strategy σN leads to a state in which country i ∈ N has reached full
employment.

In this setting, an example of a relevant fuzzy set f ∈ ŁSk can be defined by
f(A) = |A|

k , where |A| is the cardinality of A ∈ S = PN . For any coalition C, the
value EG(C, f) measures the level with which the countries in C can collaborate
to enforce full employment in Europe, regardless of the policies adopted by the
countries in C. As another example, consider now that n = lcm(1, . . . , k) and
define gC : PN → Łn by setting gC(A) = |A∩C|

|C| for every A,C ∈ PN with C 6= ∅.
Then the value of EG(C, gC) can be seen as measuring how efficient is coalition C
in enforcing full employment in the countries of C (regardless of the result of their
strategies in countries in C).

The previous example is just an instance of a more general scheme. Assume that
each player in N is trying to achieve his/her own specific goal and that each goal
can be partially achieved with a degree of achievement quantified in the scale Łn.
As usual, let Σi be the set of possible strategies that player i ∈ N can adopt for that
purpose. This situation is modeled by the game form G = (N, {Σi | i ∈ N},ŁNn , o)
where o :

∏
i∈N Σi → ŁNn is an output function that maps any global strategy

vector σ to the achievement vector o(σ) where for every i ∈ N , the value of o(σ)i
measures the degree of achievement of the ith player’s goal if strategy σ is adopted.
A fuzzy set f : ŁNn → Łn can be considered as an aggregation function mapping
any achievement vector into a single value, summarizing achievement on the global



4 TOMÁŠ KROUPA AND BRUNO TEHEUX

level of the grand coalition. For instance, for every nonempty coalition C ⊆ N one
can consider the aggregation function fC : ŁNn → Łn such that

fC(a) = min{ai | i ∈ C}, where a = (a1, . . . , ak) ∈ ŁNn .

The value EG(C, fC) is thus the minimal degree of achievement of the members of
coalition C, regardless of the strategies of players in C.

It is shown in the next example that Łn-valued effectivity functions arise nat-
urally from particular social choice functions, when the agents’ preferences are
represented in a finite numerical scale.

Example 2.6. Assume that Σ1 = · · · = Σk = ŁSn . Every f ∈ ŁSn can be viewed
as a function assigning utility—measured in the scale Łn—to each outcome state
in S. Each such function f is thus called a utility function. This situation can be
viewed as a special case of the social choice framework of Example 2.3. Indeed, for
any f ∈ ŁSn let us denote by �f the linear order defined on S by setting s1 �f s2
whenever f(s1) ≤ f(s2). Conversely, every linear order on S arises in this way.
Analogously to Example 2.3, the player’s strategic choice boils down to declaring
his/her own preferences over S, that is, his/her own utility function over S. Assume
that an outcome function o : (ŁSn)k → S is fixed. What is the meaning of Łn-valued
effectivity function EG(C, g) in this setting? The number EG(C, g) ∈ Łn is the
degree to which coalition C enforces the utility distribution described by g ∈ ŁSn .

Analogously to the classical literature on effectivity functions, we can study the
notion of effectivity in a more general setting independent on game forms. In this
sense a Łn-valued effectivity function is a map E : PN × ŁSn → Łn.

Definition 2.7. Let E be a Łn-valued effectivity function. We say that E is
(1) output monotonic whenever E(C, f) ≥ E(C, g), for every C ∈ PN and

every f, g ∈ ŁSn with f ≥ g;
(2) weakly-playable if it is output monotonic and satisfies the two conditions

E(C, f ⊕ f) = E(C, f)⊕E(C, f) and E(C, f � f) = E(C, f)�E(C, f), for
every C ∈ PN and every f ∈ ŁSn .

The readers familiar with the Boolean approach to effectivity functions may be
surprised not to find a Łn-valued version of superadditivity. As explained in Section
4, this is the topic of current research. Moreover, it may be difficult to interpret
the two conditions in (2) of Definition 2.7 in the game form framework. We refer
to Remark 1 for an equivalent formulation of these two conditions.

The following result is straigthforward.

Lemma 2.8. If G is a game form, then EG is a weakly-playable Łn-valued effec-
tivity function.

Hence weak-playability can be seen as a minimal framewok for studying Łn-valued
generalizations of effectivity functions.

3. Weak Łn-valued coalitional logic

In this section, we build a modal logic framework in the spirit of [11] to capture
the properties of the Łn-valued effectivity functions.

Let L be the language {→,¬, 1} ∪ {[C] | C ∈ PN} where → is binary, ¬ and
[C] are unary for every C ∈ PN and 1 is constant. The set FormL of formulas
is defined inductively from the infinite set Prop of propositional variables by the
following rules:

φ ::= 1 |p | φ→ φ | ¬φ | [C]φ

where p ∈ Prop and C ∈ PN .
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Definition 3.1. A weak Łn-valued coalitional logic is a subset L of FormL that is
closed under Modus Ponens, Equivalence, Uniform Substitution, Monotonicity (if
φ→ ψ ∈ L then [C]φ→ [C]ψ ∈ L for any C ∈ PN) and that contains an axiomatic
base of Łukasiewicz (n+ 1)-valued logic together with the axioms

[C](p� p) ↔ [C]p� [C]p,(3.1)
[C](p⊕ p) ↔ [C]p⊕ [C]p,(3.2)

for any C ∈ PN .
We denote by WCn the smallest weak Łn-valued coalitional logic, that is, the

intersection of all the weak Łn-valued coalitional logics. We conform with common
usage and we often write WCn ` φ for φ ∈WCn.

The formula [C]φ reads as ‘coalition C can enforce a state in which φ holds’.
The axioms (3.1) and (3.2) and the rule of Monotonicity reflect the properties of
weak-playability. In Remark 1 at the end of section 3.1, we give an equivalent and
more intuitive axiomatization.

Now, we introduce a Łn-valued generalization of neighborhood semantics in order
to interpret L-formulas.

Definition 3.2. A weak Łn-valued coalitional frame, or simply a frame, is a couple
F = (S,E) where S is a nonempty set and E : S → (PN × ŁSn → Łn) assigns
a weakly-playable function E(s) : PN × ŁSn → Łn to every s ∈ S. Elements of S
are called states.

A weak Łn-valued coalitional model, or simply a model, is a coupleM = (F,Val)
where F = (S,E) is a weak Łn-valued coalitional frame and Val : S × Prop→ Łn.

In a modelM, the valuation map Val is extended inductively to S × FormL by
using Łukasiewicz interpretation of the connectors ¬,→, 1 in [0, 1] (see (1.1) and
(1.2)) and by setting

Val(u, [C]φ) = E(u)
(
C,Val(−, φ)

)
for every C ∈ PN and every φ ∈ FormL. We use the standard notation and
terminology: we say that a formula φ is true inM = (F,Val) and we writeM |= φ
if Val(u, φ) = 1 for every state u ofM.

The following result can be proved by a standard induction argument.

Lemma 3.3. If M is a weak Łn-valued coalitional model and if WCn ` φ then
M |= φ.

3.1. Construction of the canonical model. To prove completeness of WCn

with respect to the class of the weak Łn-valued coalitional models, we use the
technique of the canonical model.

Let us denote by FWCn
the Lindenbaum - Tarski algebra of WCn, i.e., the

quotient of FormL under the syntactic equivalence relation ≡ defined by

φ ≡ ψ if WCn ` φ↔ ψ,

equipped with the operations 1, ¬, → and [C] defined by 1 = 1/ ≡, ¬(φ/ ≡) =
¬φ/ ≡, φ/ ≡→ ψ/ ≡ = (φ → ψ)/ ≡ and [C](φ/ ≡) = [C]φ/ ≡ for any C ∈ PN
and any φ, ψ ∈ FormL (these definitions are allowed because WCn is closed under
Equivalence). By abuse of notation, we denote by φ the class φ/ ≡.

Since WCn contains every tautology of Łukasiewicz n+1-valued logic, the {→
,¬, 1}-reduct of FWCn

is an MV-algebra that belongs to the varietyMVn generated
by Łn. Recall that MV-algebras are the algebraic counterpart of Łukasiewicz
infinite-valued logic exactly as Boolean algebras are the algebraic counterpart of
propositional logic. We refer to [6] for a survey of the theory of MV-algebras and
to [5] for a monograph on the subject.
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In the Boolean setting, one of the key ingredient of the construction of the
canonical model is the ultrafilter theorem that allows to separate by an ultrafilter
any two different non-top elements of any Boolean algebra B. We can rephrase this
separation result using the bijective correspondence between ultrafilters of B and
homomorphisms from B to the two-element Boolean algebra 2: for any a 6= b ∈
B \ {1}, there is a homomorphism u : B → 2 such that u(a) = 1 and u(b) = 0. It
turns out (see [5]) that the variety MVn enjoys a similar property: if A ∈ MVn
then for any a 6= b of A \ {1}, there is a {¬,→, 1}-homomorphism u : A→ Łn such
that u(a) = 1 and u(b) 6= 1.

This separation property explains why we choose the set MV(FWCn ,Łn) of
{¬,→, 1}-homomorphisms from FWCn

to Łn as universe for the canonical model
of WCn.

Before going into the details of the construction, we need some technical prelim-
inaries.

Definition 3.4. Let i be an element of {1, . . . , n}. We denote by τi/n a composition
(fixed throughout the paper) of the formulas p⊕ p and p� p whose Łukasiewicz
interpretation on Łn satisfies τi/n(x) = 0 if x < i

n and τi/n(x) = 1 if x ≥ i
n (see [10]

for the existence and the construction of such formulas). For the sake of readability,
we denote by τ i

2n
the formula τd i

2n e
.

Definition 3.5. The canonical model of WCn is the model M = (F,Valc) with
F = (W c, Ec) where W c = MV(FWCn

,Łn), where Ec(u)(C,−) is defined for any
u ∈W c and any C ∈ PN by

(3.3) Ec(u)
(
C, f) ≥ i

n
if ∃φ

(
u([C]φ) ≥ i

n
& ∀v

(
v(φ) ≥ i

n
=⇒ f(v) ≥ i

n

))
,

for any f ∈ ŁSn , and where Valc is defined by

(3.4) Valc(u, p) = u(p),

for any p ∈ Prop and u ∈W c.

The following technical result states that condition (3.3) can legitimately be used
to define a function Ec(C,−) : ŁSn → Łn.

Lemma 3.6. If Ec(u)
(
C, f) ≥ i

n for some i ∈ {1, . . . , n}, then Ec(u)
(
C, f) ≥ i−1

n .

Proof. Assume that φ satisfies condition (3.3) for C, f and i > 0 and set ρ = τi/n(φ).
Then u([C]ρ) = τi/n

(
u([C]φ)

)
= 1 ≥ i−1

n . Moreover if v(ρ) ≥ i−1
n then v(ρ) = 1

since ρ is an idempotent element of FWCn
. It follows that v(φ) ≥ i

n which implies
that f(v) ≥ i

n ≥
i−1
n . �

The next proposition proves that in the canonical model the identity (3.4) re-
mains true if we replace p by any formula φ ∈ FormL.

Proposition 3.7 (Truth Lemma). For any φ ∈ FormL and any u ∈ W c, the
canonical model satisfies Valc(u, φ) = u(φ).

Proof. We proceed by induction on the number of connectors in φ. For propositional
variables, the result is obtained by (3.4). If φ = ¬ψ or φ = ψ → ρ, the result is
easily obtained. Assume that φ = [C]ψ for some ψ ∈ FormL and C ∈ PN . We
prove that for any u ∈W c and any i ≤ n,

(3.5) Ec(u)
(
C,Valc(−, ψ)

)
≥ i

n
⇐⇒ u([C]ψ) ≥ i

n
.

First, assume that Ec(u)
(
C,Valc(−, ψ)

)
≥ i

n . Then, by definition of Ec, there is
a ρ ∈ FormL such that u([C]ρ) ≥ i

n and such that Valc(v, ψ) ≥ i
n for any v ∈ W c
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such that v(ρ) ≥ i
n . The latter condition is equivalent to

v(ρ) ≥ i

n
=⇒ v(ψ) ≥ i

n
, v ∈W c,

by induction hypothesis.
It follows that v

(
τi/n(ρ) → τi/n(ψ)

)
= 1 for any v ∈ W c. This means that

WCn ` τi/n(ρ)→ τi/n(ψ) since the {→,¬, 1}-reduct of FWCn
enjoys the separation

property discussed before Definition 3.4. As WCn is closed under Monotonicity,
we obtain that WCn ` [C]τi/n(ρ)→ [C]τi/n(ψ). Thanks to axioms (3.1) and (3.2)
and Uniform Substitution, this is equivalent to WCn ` τi/n([C]ρ) → τi/n([C]ψ).
Hence, for any v ∈ W c, if v([C]ρ) ≥ i

n then v([C]ψ) ≥ i
n . We can thus conclude

that u([C]ψ) ≥ i
n , which is the desired result.

Now, assume that u([C]ψ) ≥ i
n . We want to prove that Ec(u)

(
C,Valc(−, ψ)

)
≥

i
n . This inequality is simply obtained by induction hypothesis by considering φ = ψ
in the definition (3.3) of Ec. �

In order to use the canonical model to prove completeness of WCn with respect
to the class of the Łn-valued coalitional models, we need the following result.

Lemma 3.8. The canonical model of WCn is a weak Łn-valued coalitional model.

Proof. Let u ∈ W c. It is easily checked that Ec(u) is output monotonic. Then we
have to prove that Ec(u) is weakly playable. Let C ∈ PN and f ∈ ŁSn . We first
prove that for any i ∈ {0, . . . , n},

(3.6) Ec(u)(C, f ⊕ f) ≥ i

n
⇐⇒ Ec(u)(C, f)⊕ Ec(u)(C, f) ≥ i

n
.

First, assume that Ec(u)(C, f)⊕Ec(u)(C, f) ≥ i
n , or equivalently that E

c(u)(C, f) ≥
i
2n . By definition of Ec, there is a formula ρ such that u([C]ρ) ≥ i

2n and such that
f(v) ≥ i

2n for any v that satisfies v(ρ) ≥ i
2n . On the one hand, by considering

φ = τ i
2n

(ρ) we obtain thanks to axioms (3.1) and (3.2) that

u([C]φ) = τ i
2n

(u([C]ρ)) = 1 ≥ i

n
.

On the other hand, if v is any world of W c such that v(φ) ≥ i
n , then v(φ) = 1 since

φ is an idempotent element of FWCn and so v(ρ) ≥ i
2n . This implies f(v) ≥ i

2n , or
equivalently (f ⊕ f)(v) ≥ i

n . We conclude that Ec(u)(C, f ⊕ f) ≥ i
n .

Conversely, assume that Ec(u)(C, f ⊕ f) ≥ i
n for some i > 0. By definition of

Ec, there is a formula ρ such that u([C]ρ) ≥ i
n and f(v) ≥ i

2n for any v ∈W c such
that v(ρ) ≥ i

n . By considering φ = τi/n(ρ), we obtain on the one hand that

u([C]φ) = τi/n
(
u([C]ρ)

)
= 1 ≥ i

2n
.

On the other hand, if v is any world of W c such that v(φ) ≥ i
2n then v(φ) = 1. It

follows that v(ρ) ≥ i
n so that f(v) ≥ i

2n . We have proved that Ec(u)(C, f) ≥ i
2n

or equivalently that Ec(u)(C, f) ⊕ Ec(u)(C, f) ≥ i
n . This concludes the proof of

equivalence (3.6). One proceeds in a similar way to prove that

(3.7) Ec(u)(C, f � f) ≥ i

n
⇐⇒ Ec(u)(C, f)� Ec(u)(C, f) ≥ i

n
,

which concludes the proof. �

We have gathered the necessary ingredients to obtain the following completeness
result.

Theorem 3.9 (Completeness of WCn). For any φ ∈ FormL we have WCn ` φ if
and only ifM |= φ for any weak Łn-valued coalitional model.
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Proof. The necessity is Lemma 3.3. For the sufficiency, note that according to
Proposition 3.7, Mc |= φ means that the class of φ is equal to 1 in FWCn

, or
equivalently that WCn ` φ. �

Remark 1. We can use the formulas τi/n to replace the axioms (3.1) and (3.2) by
a family of axioms, which are more easy to understand. Indeed, let us set

A = {[C](p ? p)↔ ([C]p ? [C]p) | ? ∈ {�,⊕}, C ∈ PN},
B = {[C]τi/n(p)↔ τi/n([C]p) | i ∈ {1, . . . , n}, C ∈ PN}.

It follows from the definition of a Łn-valued coalitional logic that B ⊆ WCn.
Now, a careful analysis of the proofs of Lemma 3.6, Proposition 3.7, Lemma 3.8
and Theorem 3.9 shows that we have only used the axioms in A in the form of
substitutions in formulas of B. Now denote by WC′n the smallest set of formulas
that contains an axiomatic base of Łukasiewicz logic and the set B, and that is
closed under Modus Ponens, Uniform Substitution, Equivalence and Monotonicity.
It follows from the previous observation that for any φ ∈ FormL we have WC′n ` φ
if and only if M |= φ for every weak Łn-valued coalitional model. It results that
WC′n = WCn.

In other words, the set of axioms A can be equivalently replaced by B. Hence,
informally speaking, the content of axioms (3.1) and (3.2) is essentially the follow-
ing:

For any i ≤ n, the truth value of the statement ‘coalition C can
enforce a state in which φ holds’ is at least i

n if and only if it holds
that ‘coalition C can enforce a state in which the truth value of φ
is at least i

n ’.

4. Conclusions and Future Work

In this paper, we have generalized the notion of α-effectivity in the context of
game forms to fuzzy set of outcomes. We also have introduced the class of weakly-
playable Łn-valued effectivity functions together with a characterization of this class
in a multi-modal many-valued language through the logic WCn. Any Łn-valued
effectivity function arising from a game form is weakly-playable. Hence, WCn and
its semantic counterpart (the class of the Łn-valued coalitional models) can be seen
as a minimal framework in which studying the properties of α-effectivity for fuzzy
sets of outcomes.

In this paper we do not consider the generalization of superadditivity, which is
a fundamental property of Boolean effectivity functions. Finding the appropriate
Łn-valued version of superadditivity and obtaining a characterization of the Łn-
valued effectivity functions arising from a game form in the spirit of Pauly’s result
[11, Theorem 3.2] constitute the main thread of ongoing research.
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