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Abstract We design a new mesoscopic thin-film model for shape-memory materials which takes into account
thermomechanical effects. Starting from a microscopic thermodynamical bulk model, we guide the reader
through a suitable dimension reduction procedure followed by a scale transition valid for specimen large in
area up to a limiting model which describes microstructure by means of parametrized measures. All our models
obey the second law of thermodynamics and possess suitable weak solutions. This is shown for the resulting
thin-film models by making the procedure described above mathematically rigorous. The main emphasis is,
thus, put on modeling and mathematical treatment of joint interactions of mechanical and thermal effects
accompanying phase transitions and on reduction in specimen dimensions and transition of material scales.

Keywords Dimension reduction problems · Shape-memory alloys · Parameterized measures ·
Thermomechanics

Mathematics Subject Classification (2000) 9S05 · 74N15 · 74N20 · 80A17

1 Introduction

Shape-memory alloys (SMAs) belong to the group of so-called smart materials owing to their outstand-
ing response to thermal and/or mechanical loads. In particular, they exhibit the shape-memory effect related
to recovery from deformation by heat supply. The remarkable behavior of SMAs is due to a diffusionless
solid-to-solid phase transition (martensitic transformation) characterized by a change in the crystal lattice; in
particular, the specimen can transit from a phase of higher symmetry of the crystal lattice, called austenite, to
a phase with a less symmetric lattice, referred to as martensite. Martensite exists in many symmetry-related
variants. Hence, the aforementioned phase transition is often accompanied by fast spatial oscillations of the
deformation gradient in martensite, the so-called microstructure. A SMA specimen can, then, by restructuring
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this microstructure (sometimes referred to as reorientation) compensate mechanical loads, which is a key
ingredient for its thermomechanical response.

Due to their particular multiscale character, when changes of the crystal lattice lead to extra-ordinary
response on macroscale, SMAs have been in the scope of research of physicists, mathematicians and engineers
for the last decades, cf. the monographs [10,18,27,37,40] for example. In particular, developing reliable models
on various time and length scales as well as surpassing scales is still a big challenge to these communities [39].

Models of the behavior of SMAs then serve for experiment interpretation or when tailoring SMA samples
to a specific application area like to surgical tools or stents (for which SMAs are already widely used nowa-
days [21]); cf. [46] also for other applications. Thus, a large number of models has been developed for specific
scales and/or loading regimes, see, e.g., [44] for a survey.

Within this contribution, we consider only continuum-mechanics-based models operating on the single-
crystalline level. Following [44], such models can be divided into microscopic and mesoscopic ones; the crucial
difference is that microscopic models operate on the scale of several µm’s and record fully the oscillations
of the deformation gradient while mesoscopic models record only asymptotics of fine oscillations, e.g., in
terms of Young measures generated by gradients (cf. [29]) and are suited for laboratory-sized specimen. Even
though, as mentioned, the modeling effort has been large in the past decades, a model for single-crystalline
SMAs on the mesoscopic scale that would reflect the thermomechanically coupled nature of SMAs has been
proposed only very recently [8].

The main goal of this contribution is to adapt the aforementioned model [8] to the special geometry of thin
films. Indeed, this adaptation is of importance since thin-film specimens are widely used for their microactuator
behavior in micro-electro-mechanical (MEMS) devices as they are able to form, under certain circumstances,
tents and tunnels [11,19,36]. They profit from the fact that the sizes of these components can be reduced
significantly without affecting their functionality that, as explained above, stems merely from crystallographic
changes; hence, actuators from SMAs possess a significant power–weight ratio [38].

Dimension reduction, i.e., the rigorous limit procedure when one dimension of the specimen becomes
negligible, forms an important tool for obtaining models for the thin-film geometry. In the context of SMAs,
this 3D–2D dimension reduction has been performed in the static case; see [11] for the static analysis on the
micro- or [31] on the macro-scale (the transition from the first to the latter was shown by Shu [38][48]), or on
a purely mesoscopic level [3,15,25,32]; similar procedures are used also in the context of multimaterials [9].
A general framework in rate-independent evolutionary system has been analysed in [34]. Nevertheless, a
dimension reduction in the evolutionary mesoscopic model capturing thermomechanical coupling is, to our
best knowledge, still missing in the literature.

Thus, we fill this gap by rigorously deriving a thin-film model in the thermomechanically coupled setting. To
reach this goal, we propose (see Sect. 2) a two-step procedure: starting from the microscopic thermodynamically
consistent hyperelastic bulk model [8], we perform the dimension reduction and then we upscale to a mesoscopic
model.

This paper is structured as follows. First, in Sect. 2, we review bulk and thin-film microscopic models
which are a starting point of our consideration and which furnish us with ingredients needed for the limiting
mesoscopic one. Then, in Sect. 3, we review the existence of a suitably defined weak solution to the microscopic
model and, in Sect. 4, we pass to a thin-film limiting model as the material thickness goes to zero. Finally,
Sect. 5 is devoted to the existence of a weak solution to a mesoscopic model stemming from the microscopic
one by omitting surface energy terms.

2 Considered models and captured effects

In this section, let us shortly introduce the models considered in this contribution and highlight the main effects
they capture. As mentioned, the goal of this contribution is to develop a mesoscopic, thermomechanically
coupled model in the thin-film geometry. In order to achieve this, we perform the following two-step limiting
procedure

Microscopic bulk model → Microscopic thin-film model → Mesoscopic thin-film model,

i.e., we consider a thermomechanically coupled model for bulk SMAs that fully resolves the microstructure
and let one dimension of the specimen vanish in the first step. Thus, we obtain a thin-film model that is
again thermomechanically coupled and fully resolves the microstructure (microscopic thin-film model). In this
model, we perform then the upscaling for thin films large in area to obtain the mesoscopic thin-film model.
This sequence of reasoning is kept throughout the article.
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One might also consider following another path, namely, to pass first to a mesoscopic bulk model and
then perform the dimension reduction. However, as argued in [17], in the case of ferromagnetics, mesoscopic
models form a good approximation of the microscopic ones when the size of the specimen becomes in all
directions much larger than the size of the associated microstructure. On the other hand, during the dimension
reduction procedure, the size of the specimen in a certain direction converges to zero becoming thus less and
less dominant over the microstructure size.

Therefore, we consider the former path—dimension reduction followed by scale transition—physically
more appropriate. One might still want to consider, e.g., a joint limiting procedure as in [15]. There is no
indication the two different approaches should yield the same result.

Our analysis is restricted to single-crystal materials as in [11]. Although shape-memory thin films are
typically polycrystals, single-crystal films have as well been produced [20,50]. Nevertheless, we believe that
our model can be extended to polycrystals; however, various scaling limits depending on the aspect ratio
between film thickness and grain size [48] would make the analysis much more complicated; therefore, we
refrain from this scenario here.

2.1 Microscopic bulk model

The starting point of our analysis shall be a microscopic bulk model, analogous to [8], defined in the framework
of generalized standard materials, cf. [28]. Take Ωε ⊂ R

3 (the reference configuration of the body), ε > 0,
such that

Ωε := ω × (0, ε) for some ω ⊂ R
2, (1)

as usual in dimension reduction problems; here ω, the plane of the film is a bounded Lipschitz domain in the
(x1, x2) plane with disjoint boundary segments γD ∪γN ∪ N = ∂ω, where γD is the part of the boundary where
Dirichlet boundary condition is prescribed, on γN, we demand a Neumann boundary conditions and N is a
null set; moreover, ε is the thickness measure of the body. Furthermore, time t ∈ [0, T ] shall be considered on
a finite time horizon 0 < T < +∞, and we denote Qε := [0, T ] × Ωε the space-time cylinder, its boundary
Σε := [0, T ] × ∂Ωε, while Σε

N := [0, T ] × Γ ε
N for Γ ε

N := γN × (0, ε);Σε
D and Γ ε

D analogously.
In what follows, y(t) : Ωε → R

3 will denote the deformation of Ωε at each time instant t ∈ [0, T ]. The
set of state variables further includes the temperatureθ : Qε → R and an internal variable, namely, a vectorial
phase field λ : Qε → R

M+1 that, up to small mismatch, corresponds to the vector of volume fractions of the
variants of martensite and/or the austenite phase. Indeed, when assuming that the considered material can exist
in M ∈ N variants of martensite, together with the austenite, we have possible M + 1 states of the specimen.
Hence, we may introduce L : R

3×3 → R
M+1 a continuous, frame-indifferent (i.e., L (F) = L (RF) for

every R ∈ SO(3) and every F ∈ R
3×3), bounded mapping such that

L (∇ y)i =
{

volume fraction of the i-th variant of martensite if i ≤ M,

volume fraction of austenite if i = M + 1;
e.g., L (·)i can be chosen such that it equals one near the respective well and vanishes far from it [30]. We
then assume that λ ∼ L (∇ y), the size of the mismatch is controlled by the penalty term in (2). Moreover,
we follow the modeling assumption that the evolution of the internal variable leads to energy dissipation (so,
indirectly, change of the ratio of the martensitic variants and/or austenite phase leads to dissipation).

Within the framework of generalized standard solids, we have to constitutively define two potentials: the
Gibbs free energy G ε

η and a dissipation potential Rε
η (the two parameters denote the dependence on both

the bulk thickness ε and the parameter η governing microscopic effects). Here, we confine ourselves to the
following forms of the two potentials:

G ε
η (t, y, λ, θ) =

∫
Ωε

H(∇ y, λ, θ) dx

︸ ︷︷ ︸
Helmholtz free energy

−
∫
Ωε

f (t) · y dx−
∫
Γ ε

N

g(t) · y dS

︸ ︷︷ ︸
external loading

+η
(
‖∇2 y‖2

L2(Ωε;R3×3×3)
+‖∇λ‖2

L2(Ωε;R(M+1)×3)

)
︸ ︷︷ ︸

interfacial energy

+κ ‖λ−L (∇ y)‖2
W−1,2(Ωε;RM+1)︸ ︷︷ ︸

penalty term

(2)
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following [22,42], we propose the following partially linearized ansatz

H(F, λ, θ) := W (F) + Z(θ) + (θ − θtr)a · λ, ∀F ∈ R
3×3, λ ∈ R

M+1, θ > 0, (3)

where θtr > 0 is the temperature at which austenite and martensite are energetically equal, W is the purely
mechanic part of the Helmholtz free energy, Z purely thermal part and a := (0, 0, . . . , 0,−str)

� with str being
a specific transformation entropy, which corresponds, roughly, to the Clausius–Clapeyron constant multiplied
by the transformation strain, cf. [4,30]. Also, the transformation entropy is proportional to the latent heat. Let
us note that the thermomechanical coupling term is the leading order in the chemical energy [49].

The range of temperatures where such an approximation holds has to be determined for the particular SMAs
individually as it is, as mentioned in [49], essentially given by the ratio of the difference in heat capacities
between austenite and martensite and the transformation entropy—the latter being commonly much larger.

When choosing W of a multi-well character with the individual wells manifesting the variants of martensite
and the austenitic phase, this choice allows the model to predict the formation of microstructure, or in other
words, oscillations of the deformation gradient. Now, as the interfacial energy in (2) (the form is chosen
following, e.g., [10,37]) has a compactifying effect, the size of the microstructure is controlled by

√
η.

To see how does this thermomechanical coupling induces the shape-memory effect, let us begin at high
temperature θ > θtr . This means that [(θ − θtr)a]M+1 < 0, namely, to achieve the smallest Gibbs energy, the
material will prefer to reside in the austenite phase. At the transformation temperature θ = θtr , as W is presumed
to have equally deep wells, there is no energetic distinction between the different phases. And analogously, for
low temperatures, θ < θtr , the austenite yields a positive contribution to the overall energy through the coupling
term, therefore the zero-coupling-energy contributor martensitic phases, recall that a := (0, 0, . . . , 0,−str)

�,
will be given priority in the lattice.

We remark that the interfacial energy term for the volume fraction ‖∇λ‖2
L2(Ωε;R(M+1)×3)

is fairly standard
in modeling of SMA, see for example [26, Sect. 13.6] or [33] even though other terms allowing for sharp
interfaces between variants can be found in an isothermal setting, e.g., in [4,5].

Note that the W−1,2 penalization term relaxes the pointwise constraint λ = L (∇ y), the Lagrange multiplier
κ > 0 considered constant all through, making the mathematical analysis feasible (e.g., an L2-penalty would
require in the weak formulation of the flow rule an L2-estimate for ∇λ̇, what we do not have at hand).

The dissipation potential is chosen in the form

Rε
η(ẏ, λ̇) =

∫
Ωε

η|∇ ẏ| + α

q
|λ̇|q + δ∗

S(λ̇) dx, (4)

with real constants α > 0 and q ≥ 2, the dot standing for ḣ := ∂h
∂t . The last term δ∗

S(λ̇), the Legendre–Fenchel
conjugate of the indicator function of a bounded convex neighborhood S of the origin 0 ∈ R

M+1, is considered
1-homogeneous (to capture dissipation due to rate-independent processes—considered dominant) and non-
smooth at δ∗

S(0) (to assure that the change of the phase variable—and, in particular, also the martensite/austenite
transition—is an activated process). The term α

q |λ̇|q corresponds to dissipation due to rate-dependent processes
and, in fact, is included mostly for mathematical convenience although models featuring rate dependent dissi-
pation were, at least in the pollyerstatline care, derined recently[13] . Indeed, heat conduction is the dominant
cause of rate-dependent effects when the loading frequency is small enough so that we can neglect inertia;
cf. Remark 1. So, we consider α sufficiently small so that the rate-dependent term only yields integrability of
λ that is needed but does not dominantly contribute to the overall evolution. Finally, the term η|∇ ẏ| models
pinning effects, cf. [1], which will vanish on the mesoscopic scale. The chosen, rate-independent, form of the
dissipation potential is a modeling issue which is analytically convenient in our situation.

The evolution of the state variables is then standardly [28], in quasistatic approximation, governed by the
following inclusions accompanied with the balance of the entropy s:

∂ẏR
ε
η(ẏ, λ̇) + ∂yG

ε
η (t, y, λ, θ) � 0, (5a)

∂λ̇R
ε
η(ẏ, λ̇) + ∂λG

ε
η (t, y, λ, θ) � 0, (5b)

θ ṡ + div j = ∂

(
α

q
|λ̇|q + δ∗

S(λ̇)

)
λ̇ + η|∇ ẏ|. (5c)

In the last equation, j stands for the heat flux and shall be assumed to be governed by the Fourier law, i.e.,
j = −K(λ, θ)∇θ with K being the heat conductivity tensor. Moreover, ∂ is the convex sub-differential which



Mesoscopic thermomechanically-coupled model for thin-film SMAs 687

we used in (5a) only formally (since G ε
η (t, y, λ, θ) is not convex). We shall give a rigorous weak formulation

of the system (5) in Sect. 3—here, for highlighting ideas, we believe the formal system is sufficient.

Remark 1 (Quasistatic approximation) The quasistatic approximation considered here is motivated by speed
of propagation of the austenite/martensite interface in CuAlNi measured in [47]. In thermal gradient, the speed
may be as slow as 10−3 ms−1 which is significantly less than the characteristic speed of wave propagation
being around the order 103 ms−1. Since the interface propagation is connected to temperature changes, and
thus to heat conduction, we include it in our model. On the other hand, we assume that the loading frequency
of the specimen is sufficiently low so that inertial effects may be neglected.

Remark 2 (Boundary conditions) The system (5), of course, needs to be furnished with appropriate boundary
conditions. As it turns out, this is rather nontrivial due to the fact that we included the second gradients in the
Gibbs free energy through its interfacial part. Due to this fact, we have to work in the context of so-called
non-simple continua where boundary conditions have to be prescribed with special care (see e.g., [43]). We
shall, thus, assume that the boundary conditions for (5a) in the strong formulation are such that they “vanish”
in weak formulation. The entropy equation (5c) is, nonetheless, furnished by Robin-type boundary conditions,
cf. Sect. 3.

To summarize, the system (5) records formation of microstructure of finite width in martensite as well as
its dissipative evolution that is linked to thermal effects, in particular, the shape-memory effect (i.e., recovery
from deformation by heat supply) is captured; also, an “inverse” effect is included in the model, namely, the
heating/cooling of the specimen during martensitic transformation—since the latent heat in SMAs is typically
larger than dissipative effects, the mentioned cooling can indeed be observed [49].

2.2 Microscopic thin-film model

Now when ε → 0+ in the potentials (2)–(4), we obtain (after suitable rescaling and a careful limit procedure
exposed in Sect. 3) the following “thin-film Gibbs free energy and dissipation potential”

Gη(t, y, b, λ, θ) =
∫
ω

H (∇p y, b, λ, θ) dz p

︸ ︷︷ ︸
in-plane Helmholtz free energy

−
∫
ω

f 0(t) · y dz p −
∫
γN

g0(t) · y dSp

︸ ︷︷ ︸
external force acting in-plane

+ η
(
‖∇2

p y‖2
L2(ω;R3×2×2)

+ 2
∥∥∇pb

∥∥2
L2(ω;R3×2)

+ ‖∇pλ‖2
L2(ω;R(M+1)×2)

)
︸ ︷︷ ︸

interfacial energy

+ κ
∥∥λ − L (∇p y|b)

∥∥2
W−1,2(ω;RM+1)︸ ︷︷ ︸

penalty term

, (6a)

where H (∇p y, b, λ, θ) = W (∇p y|b) + Z(θ) + (θ − θtr)a · λ, and

Rη(ẏ, ḃ, λ̇) =
∫
ω

η|(∇p ẏ|ḃ)| + α

q
|λ̇|q + δ∗

S(λ̇) dz p. (6b)

So, the potentials (6a) and (6b) are analogous to (2) and (4) but operate only on the two-dimensional domain
ω, and, following [11], we obtained a further state variable b that refers to the Cosserat vector and measures
the deformation of the cross section of the thin film. All state variables y, b, λ and θ in (6a) will be shown
to be independent of the third variable x3, likewise the external forces: f 0(t, x1, x2) = f (t, x1, x2, 0), g0(t)
analogously. Consistently, we introduced ∇p, the in-plane gradient, more precisely,(∇pu

)
i j = ∂ui/∂x j for any u : ω → R

d and i = 1, . . . , 3 and j = 1, 2; (7)

also a point (x1, x2, x3) ∈ Ωε consists of an in-plane x p = (x1, x2) and a normal component x3. Lastly, we
introduce the notation (F |z) ∈ R

3×3 if F ∈ R
3×2 and z ∈ R

3 is the last column of the matrix.
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With the definition of the two needed potentials at hand, we have the evolution of the thin-film specimen
governed by the following system analogous to (5)

∂(ẏ,ḃ)Rη(ẏ, ḃ, λ̇) + ∂(y,b)Gη(t, y, b, λ, θ) � 0, (8a)

∂λ̇Rη(ẏ, ḃ, λ̇) + ∂λGη(t, y, b, λ, θ) � 0, (8b)

θ ṡ + div j = ∂

(
α

q
|λ̇|q + δ∗

S(λ̇)

)
λ̇ + η

∣∣(∇p ẏ|ḃ)
∣∣. (8c)

Since the structure of the model is inherited from the bulk model, its main features are analogous to the
ones highlighted in the previous subsection.

2.3 Mesoscopic thin-film model

For thin films of large area passing to the limit, η → 0+ is justified by scaling arguments similar to [8,17];
this limit is sometimes referred to as relaxation.

In such a case, the interfacial energy vanishes and so the microstructure—or, in other words, oscillations of
the deformation gradient—become “infinitely fine”; therefore, we need a suitable mathematical tool to capture
this phenomenon. To this end, we employ here the so-called gradient Young measure ν ∈ G

p
ΓD

(Ω; R
2×3) which

we shortly introduce in Sect. 5; at this point, it is sufficient to think of them as representatives of the “infinitely
fine” microstructure. We use the operator “•” to indicate an application of the (gradient) Young measure on
its dual, a continuous function with appropriate growth at infinity. For the precise defination see Sect. 5.

In the thin-film geometry, also the Cosserat vector can form fast spatial oscillations additionally to the
deformation gradient. This is caused by the fact that a thin film can form an accordion-like structure; if the
area of the thin film approaches infinity, also the piling up of the film into the accordion-like structure may
become infinitely fine causing again “infinitely fast” oscillations of the Cosserat vector. We capture these by
introducing the Young measure μ ∈ Y

p
ΓD

(Ω; R
3).

After passing η → 0+, the Gibbs free energy will read as

G (t, y, ν, μ, λ, θ) =
∫
ω

W•(ν, μ) + Z(θ) + (θ − θtr)a · λ(t) dz p

︸ ︷︷ ︸
(relaxed) Helmholtz free energy

+ κ‖λ − L •(ν, μ)‖2
W−1,2(ω;R3×3)︸ ︷︷ ︸

mismatch term

−
∫
ω

f 0(t) · y dz p −
∫
γN

g0(t) · y dSp

︸ ︷︷ ︸
external forces

, (9)

here we denoted ∇ y = id•νz p for a.a. z p ∈ ω the “average deformation” induced by the microstructure. Notice
that the interfacial energy is missing now. Similarly, we scale pinning effects in the dissipation potential to
zero and obtain

R(λ̇) =
∫
ω

α

q
|λ̇|q + δ∗

S(λ̇) dz p.

Again, the evolution of the state variables is governed by the following set of equations/inclusions:

∂(ν,μ)G (t, y, ν, μ, λ, θ) � 0, (10a)

∂λ̇R(λ̇) + ∂λG (t, y, ν, μ, λ, θ) � 0, (10b)

θ ṡ + div j = ∂

(
α

q
|λ̇|q + δ∗

S(λ̇)

)
λ̇. (10c)

In this system, in particular, (10a) is merely a formal inclusion since the set of gradient Young measures is
not convex; therefore, the (convex) subdifferential loses sense here. However, we shall formulate (10a) later,
in Sect. 5, via a minimization problem which will, additionally, capture the standard assumption in quasistatic
processes that the Gibbs free energy is minimized in every t ∈ [0, T ].
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Lastly, let us note that this mesoscopic model does predict several geometric properties of the microstructure,
on the other side, the width of the microstructure is not captured anymore. In this approximation, it is so fine
that it becomes a characteristic of a single material point—in accord with our intentions with the upscaling.
Still, all the important effects stemming from the interplay of formation of microstructure, dissipation and heat
conduction in the specimen remain included.

3 Analysis of the microscopic bulk model

Let us now review the weak formulation of (5) and a proof of existence of weak solutions following [7,8,42].
We start with some preparatory paragraphs introducing the necessary notation and the so-called enthalpy
transformation that will come in handy for the analysis performed later.

To perform the latter, we first transform the entropy equation (5c) into a heat equation by employing the
standard Gibbs relation s = −H ′

θ ; thus getting

cv(θ)θ̇ − div (K(λ, θ)∇θ) = α

q
|λ̇|q + δ∗

S(λ̇) + η|∇ ẏ| + θa · λ̇, (11)

where cv(θ) = −θ H ′′
θθ is the specific heat capacity. Note that the adiabatic term+θa·λ̇ results from the proposed

thermomechanical coupling and leads (as already announced) to heating/cooling during phase transition which
is actually dominant over the dissipated energy transformed to heat, as observed in experiments [49].

Reformulating this heat Eq. (11) through the enthalpy transformation (cf. [42], for example) by introducing
the enthalpy w through

w = ĉv(θ) =
θ∫

0

cv(r) dr, (12)

one arrives to the relation

ẇ − div (K (λ,w)∇w) = α|λ̇|q + δ∗
S(λ̇) + η|∇ ẏ| + Θ(w)a · λ̇, (13)

where

Θ(w) :=
{

ĉ−1
v (w) = θ, if w ≥ 0,

0, otherwise
, and K (λ,w) := K(λ, Θ(w))

cv(Θ(w))
.

We refer to (13) as the enthalpy equation; notice that this will be more convenient for our analysis since the
time derivative is not multiplied by the specific heat capacity anymore. Let us stress that in more complicated
situations—when we do not have the partially linearized ansatz (3) for the Helmholtz free energy—it requires
more care to perform the enthalpy transformation (12), cf. [45].

Let us consider the following Robin boundary condition for (13)(
K (λ,w)∇w

) · n + bΘ(w) = bθext on Σε,

for b, θext ∈ R a given heat transfer coefficient, θext a given external temperature; cf. [8].
As far as additional notation is concerned, we will use Gε

η for the “deformation-related” part of the Gibbs
free energy

Gε
η(t, y(t), λ(t),Θ(w(t))) :=

∫
Ωε

W (∇ y(t)) + η
∣∣∇2 y(t)

∣∣2 + κ

2

∣∣∇�−1(λ(t) − L (∇ y(t)))
∣∣2

dx

−
∫
Ωε

f (t) · y(t) dx −
∫
Γ ε

N

g(t) · y(t) dS,

since this is the only part of the energy that contributes to the semi-stability (14).
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Further, where it shall be obvious, we will denote the list of arguments of G ε
η and Gε

η at time t simply by
t , that is,

G ε
η (t) ≡ G ε

η (t, y(t), λ(t), Θ(w(t))), Gε
η(t) ≡ Gε

η(t, y(t), λ(t),Θ(w(t)))

Lastly,

((u, v))ε =
∫
Ωε

∇�−1u · ∇�−1v dx

will stand for the inner product in W−1,2(Ωε; R
M+1) � (

W 1,2
0 (Ωε; R

M+1)
)∗, while Varh(u; I × M) shall be

the time variation of a map u with respect to a continuous function h ≥ 0, more precisely

Varh(u; I × M) := sup

{ n∑
i=1

∫
M

h(u(ti , x) − u(ti−1, x)) dx :

for all partitions [t0, tn] = I, n ∈ N, such that t0 < t1 < · · · < tn
}
;

we shall omit the space argument I × M in case I × M = Qε.

3.1 Weak formulation

To define a suitable weak solution of the system (5), we shall call for the energetic solution concept (see
e.g., [35]) further adapted to combinations of rate-independent/rate-dependent processes in [42]. Let us note
that, for further convenience, we will explicitly express the dependence of the solutions on the parameters ε
and η in their notation.

Definition 1 The triple (yη,ε, λη,ε, wη,ε) belonging to

yη,ε ∈ BV (0, T ; W 1,1(Ωε; R
3)) ∩ L∞(0, T ; W 2,2(Ωε; R

3)),

λη,ε ∈ W 1,q(0, T ; Lq(Ωε; R
M+1)) ∩ L∞(0, T ; W 1,2(Ωε; R

(M+1)×3)),

wη,ε ∈ L1(0, T ; W 1,1(Ωε)),

satisfying the boundary condition yη,ε(t, x) = 0 on Σε
D which is called a weak solution of the system (5) if

the following holds:
1. Semi- stability:

G ε
η (t) ≤ G ε

η (t, ȳ, λη,ε(t),Θ(wη,ε(t))) + η

∫
Ωε

|∇ ȳ − ∇ yη,ε(t)| dx (14)

for all ȳ ∈ W 2,2(Ωε; R
3) such that ȳ(x) = 0 on Γ ε

D and all t ∈ [0, T ].
2. Deformation- related energy equality:

Gε
η(T ) − Gε

η(0) + ηVar|·|(∇ yη,ε) =
T∫

0

[Gε
η]′t (t) + 2κ((λη,ε − L (∇ yη,ε), λ̇η,ε))ε dt (15)

3. Flow rule:
s∫

0

2κ((λη,ε − L (∇ yη,ε), v − λ̇η,ε))ε dt

+
s∫

0

∫
Ωε

(Θ(wη,ε) − θtr)a·(v − λ̇η,ε) + 2η∇λη,ε·∇v + α

q
|v|q + δ∗

S(v) dxdt

≥ η‖∇λη,ε(s)‖2
L2(Ωε;RM+1)

− η‖∇λη,ε(0)‖2
L2(Ωε;RM+1)

+
s∫

0

∫
Ωε

α

q
|λ̇η,ε|q + δ∗

S(λ̇
η,ε) dxdt (16)

for all test functions v ∈ Lq(0, T ; Lq(Ωε; R
M+1)) ∩ L∞(0, T ; W 1,2(Ωε; R

M+1)) and all s ∈ [0, T ].
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4. Enthalpy equation:∫
Qε

K (λη,ε, wη,ε)∇wη,ε · ∇ζ−wη,εζ̇ dxdt +
∫
Σε

bΘ(wη,ε)ζ dSdt

=
∫
Qε

(
δ∗

S(λ̇
η,ε) + α|λ̇η,ε|q + Θ(wη,ε)a · λ̇η,ε

)
ζ dxdt + η

∫
Qε

ζH η
ε ( dxdt)

+
∫
Ωε

w
η,ε
0 ζ(0) dx +

∫
Σε

bθextζ dSdt (17)

for all ζ ∈ C1(Qε) such that ζ(T ) = 0; the Radon measure H
η

ε ∈ M (Qε), representing the heat
production stemming from the term |∇ ẏ| in (4), is defined for every closed set A = [t, s] × B, where
[t, s] ⊆ [0, T ] and B ⊂ Ωε a Borel set, as

H η
ε (A) := Var|·|(∇ yη,ε; [t, s] × B).

5. Initial conditions: yη,ε(0) = y0 for some y0 ∈ W 2,2(Ωε; R
3) and λη,ε(0) = λ0 in Ωε, λ0 ∈

Lq(Ωε; R
M+1).

Remark 3 (Weak formulation of the flow rule (5b)) The weak formulation (16) is a standard weak formulation
of the differential inclusion (5b) together with a by parts integration in the term

s∫
0

∫
Ωε

2η∇λη,ε · (∇v − ∇λ̇η,ε) dxdt

by parts=
s∫

0

∫
Ωε

2η∇λη,ε · ∇v dxdt − η‖∇λη,ε(s)‖2
L2(Ωε;RM+1)

+ η‖∇λη,ε(0)‖2
L2(Ωε;RM+1)

.

Further, while standardly one would demand only that it holds for s = T , we require that the flow rule holds
for all s ∈ [0, T ]. Notice that if we did not perform the aforementioned by parts integration, both requirements
would be equivalent. Indeed, in such a case, taking a test function such that v ≡ λ̇η,ε on (s, T ] would yield the
flow rule for any s ∈ [0, T ] if it were known for s = T .

Here, since we used by parts integration, the required weak formulation is a bit stronger which shall be
advantageous when performing the dimension reduction in Sect. 4.

Remark 4

(i) Note that the second law of thermodynamics holds, i.e., the entropy production will be non-negative, if
we can show that θη,ε ≥ 0 (when the assumed positive semi-definiteness of K holds).

(ii) Definition 1 is indeed selective, cf. [8].

3.2 Change of variables and rescaling

In order to prepare for the dimension reduction performed later, let us change variables in order to work on
the fixed domain Ω := Ω1 = ω × (0, 1) by introducing new coordinates z : Ωε → Ω as

z(x) := (z1, z2, z3) = (x1, x2, x3/ε) ∀x = (x1, x2, x3) ∈ Ωε. (18)

Subsequently, the scaled functionals (with unchanged notation)

G ε
η = 1

ε
G ε

η ◦ z−1 and Rε
η = 1

ε
Rε

η ◦ z−1, (19)
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in terms of the new variables read as

G ε
η (t) =

∫
Ω

W
(∇′

ε yη,ε(t)
) + κ

∣∣∇′
ε�−1

ε

(
λη,ε(t) − L (∇′

ε yη,ε(t))
)∣∣2

+η

(
|∇2

p yη,ε(t)|2 + 2

ε2 |∇p yη,ε
,3 (t)|2 + 1

ε4 |yη,ε
,33 (t)|2 + |∇pλ

η,ε(t)|2 + 1

ε2 |λη,ε
,3 (t)|2

)

+(Θ(wη,ε(t)) − θtr)a · λη,ε(t) − f (t) · yη,ε(t) dz −
∫
ΓN

g(t) · yη,ε(t) dS (20a)

and

Rε
η(ẏη,ε(t), λ̇η,ε(t)) =

∫
Ω

η
∣∣∇′

ε ẏη,ε(t)
∣∣ + α

q
|λ̇η,ε(t)|q + δ∗

S(λ̇
η,ε) dz. (20b)

The scaling factor 1/ε corresponds to the stiffness of the material (in linearized elasticity to the Lamé coeffi-
cients of order 1/ε).

Above, we denoted by ∇′
εg the scaled gradient, namely,

∇′
εg =

(
∇pg

∣∣∣∣1

ε
g,3

)

with the 3 × 2 planar component (∇pg)i j of the gradient, cf. (7), and (g,3)k := ∂gk/∂x3 for k = 1, 2, 3.
The scaled inverse Laplace operator �−1

ε : L2(Ω; R
M+1) → W 1,2

0 (Ω; R
M+1) stands for the relation

�−1
ε g = h whenever ∫

Ω

∇′
εh(z) · ∇′

εϕ(z) − g(z)ϕ(z) dz = 0 (21)

for all ϕ ∈ C∞(Ω; R
M+1), i.e., in the classical formulation

∂2hi

∂z2
1

+ ∂2hi

∂z2
2

+ 1

ε2

∂2hi

∂z2
3

= gi in Ω, for i = 1, . . . , M + 1,

hi = 0 on ∂Ω, for i = 1, . . . , M + 1.

Also, we will keep the notation ((·, ·))ε, defined as (( f, g))ε = ∫
Ω

∇′
ε�−1

ε f · ∇′
ε�−1

ε g dz, for the scaled inner
product in W−1,2(Ω).

In the same spirit, the transformed initial conditions shall be denoted as

yη,ε(0, z) = y0,ε(z) := y0(z p, εz3),

λη,ε(0, z) = λ0,ε(z) := λ0(z p, εz3), (22)

wη,ε(0, z) = w0,ε(z) := w0(z p, εz3).

In view of (18)–(20), the transformation of Definition 1 of the weak solution is straightforward.

3.3 Data qualification and existence of weak solutions

Throughout the article, we shall use the following data qualifications:

(D1) Stored energy density: W : R
3×3 → R is continuous and frame-indifferent, and there exist positive real

constants c1 and c2 satisfying

c1(−1 + |A|p) ≤ W (A) ≤ c2(1 + |A|p)

for some 2 ≤ p < 6 and all A ∈ R
3×3.
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(D2) External forces:

f ∈ W 1,∞(0, T ; L p∗′
(Ωε; R

3)), g ∈ W 1,∞(0, T ; L p�′
(Γ ε

N; R
3)),

such that f ◦ z−1 and g ◦ z−1 (denoted again by f and g) are independent of the thickness ε.
(D3) Phase distribution function: L : R

3×3 → R is continuous and bounded.
(D4) Specific heat capacity:cv : R → R is continuous and satisfies the growth

c1(1 + θ)ς1−1 ≤ cv(θ) ≤ c2(1 + θ)ς2−1

for some real positive constants c1, c2 and q ′ ≤ ς1 ≤ ς2. This assumption will be employed to prove
the strong convergence (41) for the temperature.

(D5) Heat conductivity tensor:K : R × R → R
3×3 is continuous and there exist real positive constants ξ

and Ξ such that

K (λ,w) ≤ Ξ, χ�K (λ,w)χ ≥ ξ |χ |2
hold for all λ,w ∈ R and all χ ∈ R

3.
(D6) Initial and boundary data:

b ∈ L∞(Σε), b ≥ 0 and θext ∈ L1(Σε), θext ≥ 0,

y0 ∈ W 2,2(Ωε; R
3), and w0 ∈ L1(Ωε) with θ0 ≥ 0,

and

λ0 ∈ Lq(Ωε; R
M+1) is independent of x3.

Remark 5 Note that (D1) excludes the constraint on the Helmholtz free energy that W (F) → ∞ whenever
det(F) → 0, or, in the thin-film setting, whenever the normal of the thin film approaches zero. The results
of [2] would allow us to consider such a constraint in the static case when the Cosserat vector is minimized out.
Here, however, the interplay between the Cosserat vector and the film normal makes the situation considerably
more difficult, and results of [2] are not applicable. Let us also point to [6] for further results on Young measure
relaxation considering the non-interpenetration constraint.

To ease notation, we shall from now on use C as a generic constant possibly depending on the given data
but never on ε, η.

Proposition 1 (Existence of a bulk weak solution) Let (D1)–(D6) hold. Then, for every ε > 0, η > 0 fixed,
there exists a weak solution of (5) in the spirit of Definition 1 such that the following a-priori estimates hold:

‖yη,ε(t)‖BV (0,T ;W 1,1(Ω;R3)) ≤ Cη−1, (23a)

sup
t∈[0,T ]

‖∇′
ε yη,ε(t)‖L p(Ω;R3×3) ≤ C, (23b)

sup
t∈[0,T ]

∥∥∥∥ 1

ε2 yη,ε
,33 (t)

∥∥∥∥
L2(Ω;R3×3)

≤ Cη−1/2, (23c)

sup
t∈[0,T ]

‖∇′
ε yη,ε(t)‖W 1,2(Ω;R3×3) ≤ Cη−1/2 (23d)

for the deformation,

‖λ̇η,ε‖Lq (0,T ;Lq (Ω;RM+1)) ≤ C, (24a)

sup
t∈[0,T ]

‖∇′
ελ

η,ε(t)‖L2(Ω;R(M+1)) ≤ Cη−1/2 (24b)

for the phase field, and

‖wη,ε‖L∞(0,T ;L1(Ω)) ≤ C, (25a)

‖∇′
εw

η,ε‖Lr (0,T ;Lr (Ω;R3) ≤ C(r) for any r <
5

4
, (25b)

‖ẇη,ε‖M
(
0,T ;(W 1,∞(Ω))

∗) ≤ C (25c)

for the enthalpy.

Note that in (25c) M denotes the set of Radon measures.
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Proof The proof follows a rather standard procedure, cf. [7,8] or [42], of showing that the interpolants of a
particular discrete approximation converge to the sought bulk solution; therefore, a detailed proof is omitted.
Let us, however, sketch its main ingredients.

Step 1: Time discretization of the weak formulation. Define the discrete weak solution of (5) at
time level k, k = 1, . . . , T/τ , as a triple (yτ

k , λτ
k , wτ

k ) ∈ W 2,2(Ω; R
3)× L2q(Ω; R

M+1)×W 1,2(Ω) satisfying

1. Time- incremental minimization problem:

Minimize G ε
η (tk, y, λ,Θ(wτ

k )) +
∫
Ω

τ |λ|2q + η|∇′
ε y − ∇′

ε yτ
k−1|

+ δ∗
S

(
λ − λτ

k−1

τ

)
+ τα

q

∣∣∣∣λ − λτ
k−1

τ

∣∣∣∣
q

dz

subject to (y, λ) ∈ W 2,2(Ω; R
3) × L2q(Ω; R

M+1),

y(z) = 0 for z ∈ ΓD. (26)

2. Enthalpy equation:∫
Ω

wτ
k − wτ

k−1

τ
+ K (λτ

k , wτ
k )∇′

εw
τ
k · ∇′

εζ dz +
∫

∂Ω

bτ
k Θ(wτ

k )ζ − bτ
k θextζ dS

=
∫
Ω

δ∗
S

(
λτ

k − λτ
k−1

τ

)
ζ + α

∣∣∣∣λ
τ
k − λτ

k−1

τ

∣∣∣∣
q

ζ +
∣∣∣∣∇

′
ε yτ

k − ∇′
ε yτ

k−1

τ

∣∣∣∣ζ + Θ(wτ
k )a ·

(λτ
k − λτ

k−1

τ

)
ζ dz

for all ζ ∈ W 1,2(Ω).
3. initial conditions:

yτ
0 = y0,ε, λτ

0 = λτ
0,ε, wτ

0 = wτ
0,ε a.e. in Ω,

where bτ
k , λτ

0,ε, w
τ
0,ε are suitable approximations of the original data (D6).

Notice the added regularization term
∫
Ω

τ |λ|2q dz allows for a rather standard proof of existence of a discrete
weak solution but vanishes as τ → 0. Details are to be found, e.g., in [7].

Step 2: A- priori estimates.Let us outline the proof of the a-priori estimates (23)–(25) merely heuristically,
on the continuum level instead of the discrete setting, where a rigorous proof would follow the same ideas but
be technically more demanding, cf. [7] again.

First, from the energy equality (15) integrated only to some s ∈ [0, T ] (note that we actually need only the
lower inequality—this can be, on the discrete level, got from (26) integrated to any arbitrary s ∈ [0, T ]), we
get by exploiting the coercivity assumptions (D1) on the left-hand side and the bounds (D2)–(D3) as well as
(D6) on the right-hand side∫

Ω

C |∇′
ε yη,ε(s)|p + η

(∣∣∇2
p yη,ε(s)

∣∣2 + 2

∣∣∣∣1

ε
∇p yη,ε

,3 (s)

∣∣∣∣
2

+
∣∣∣∣ 1

ε2 yη,ε
,33 (s)

∣∣∣∣
2)

dz

+ ηVar|·|(∇′
ε yη,ε;Ω × [0, s]) ≤

s∫
0

∫
Ω

(
α

4q
|λ̇η,ε|q + C |∇′

ε yη,ε|p
)

dzdt + C. (27)

Further, by testing the flow rule (16) (after the change of scale) by v = 0 on [0, s] (note that this test
essentially executes the standard test of the strong flow rule by λ̇η,ε) we get

s∫
0

∫
Ω

δ∗
S(λ̇

η,ε) + α

q
|λ̇η,ε|q dz dt + η‖∇′

ελ
η,ε(s)‖2

L2(Ωε;R(M+1)×3)
+ η‖∇pλ0‖2

L2(Ωε;R(M+1)×2)

≤ −2κ

s∫
0

((λη,ε − L (∇′
ε yη,ε), λ̇η,ε))ε dt +

s∫
0

∫
Ω

|Θ(wη,ε) − θext| · |λ̇η,ε| dzdt, (28)
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where we used that [λ0],3 = 0 due to (D6). This, after plugging in the by parts integration formula

2

s∫
0

((λη,ε, λ̇η,ε))ε dt =
∫
Ω

|∇′
ε�−1

ε λη,ε(s)|2 − |∇′
ε�−1

ε λη,ε(0)|2 dz, (29)

yields (with the help of Young’s inequality and (D6) again) the estimate

s∫
0

∫
Ω

(
δ∗

S(λ̇
η,ε) + α

q
|λ̇η,ε|q

)
dzdt +

∫
Ω

κ|∇′
ε�−1

ε λη,ε(s)|2 dz + η|∇′
ελ

η,ε(s)|2 dz

≤
s∫

0

∫
Ω

α

4q
|λ̇η,ε|q + C |w| dzdt + C. (30)

Lastly, testing enthalpy equation (13) by α/ lq , with some l ≥ 8 such that α ≤ lq , and integrating again over
Ω and [0, s] gives (notice that this test can be straightforwardly executed on the discrete level)

α

lq

s∫
0

∫
Ω

ẇη,ε dzdt ≤
s∫

0

∫
Ω

2α

lq
|λ̇η,ε|q + C |wη,ε| dzdt + αε

lq
Var|·|(∇′

ε yη,ε;Ω × [0, s]) + C. (31)

Adding (27), (30) and (31) gives then the bounds (23), (24) and (25a). The estimate (25b) on the scaled
gradient of wη,ε follows by fine technique due to [13,14] from the test of the enthalpy equation in (13) by
1 − 1/(1 + wη,ε)α , while (25c) is a standard dual estimate stemming from the enthalpy equation (17) itself.

Step 3: Convergence τ → 0:The proof of convergence for τ → 0 can be performed similarly as in [7,42],
or the methods exposed in the proof of Theorem 1 are easily applicable to this case, too. ��

4 Dimension reduction in the microscopic thin-film model

Let us now concentrate on the microscopic thin-film model given through the system of inclusion/equations
(8). As mentioned above, particularly the inclusion (8a) is rather formal; therefore, we propose its weak
formulation in the spirit of semi-energetic solutions, due to [42], similarly to the previous section. Also, again,
we transformed the heat equation into a enthalpy equation.

4.1 Weak formulation

To shorten the notation, we shall denote hereinafter Q := [0, T ] × ω, while the in-plane inner product
in the space W−1,2(ω; R

M+1) will be denoted as ((u, v))p := ∫
ω
∇p�−1

p u · ∇p�−1
p v dz p, for all u, v ∈

W−1,2(ω; R
M+1), whereas �−1

p : L2(ω; R
M+1) → W 1,2

0 (ω; R
M+1) is the in-plane inverse Laplace operator,

more precisely, �−1
p g = h whenever

∫
ω

∇ph(z p) · ∇pφ(z p) − g(z p)φ(z p) dz p = 0

for every φ ∈ C∞(ω; R
M+1), i.e., in the classical formulation

∂2hi

∂z2
1

+ ∂2hi

∂z2
2

= gi in ω, for i = 1, . . . , M + 1,

hi = 0 on ∂ω, for i = 1, . . . , M + 1.
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Definition 2 Let us call the quadruple (yη, bη, λη, wη) belonging to

yη ∈ BV (0, T ; W 1,1(ω; R
3)) ∩ L∞(0, T ; W 2,2(ω; R

3)), (32a)

bη ∈ BV (0, T ; L1(ω; R
3)) ∩ L∞(0, T ; W 1,2(ω; R

3)), (32b)

λη ∈ W 1,q(0, T ; Lq(ω; R
M+1)) ∩ L∞(0, T ; W 1,2(ω; R

M+1)), (32c)

wη ∈ L1(0, T ; W 1,1(ω)), (32d)

such that (yη, bη)(t, z1, z2) = 0 for all t ∈ [0, T ] and a.e. on γD, a weak solution of the evolutionary thin-film
problem (8) if it satisfies
1. Semi- stability:

Gη(t) ≤ Gη(t, ȳ, b̄, λη(t), Θ(wη(t))) +
∫
ω

η
∣∣(∇p yη(t)|bη(t)

) − (∇p ȳ|b̄)∣∣ dz p (33)

for every (ȳ, b̄) ∈ W 2,2(ω; R
3) × W 1,2(ω; R

3) such that (ȳ, b̄) = 0 a.e. on γD (recall the definition (6a)
of the Gibbs free energy Gη(t));

2. Deformation- related energy equality:

Gη(T ) − Gη(0) + ηVar|·|((∇p yη|bη);Q) =
T∫

0

[Gη]′t (t) + 2κ((λη − L (∇p yη(t)|bη(t)), λ̇η))p dt (34)

where Gη(t) is defined as

Gη(t) :=
∫
ω

W (∇p yη|bη) + η
(
|∇2

p yη|2 + 2|∇pbη|2
)

dz p + κ
∥∥λη − L (∇p yη|bη)

∥∥2
W−1,2(ω;RM+1)

−
∫
ω

f 0 · yη dz p −
∫
γN

g0 · yη dSp; (35)

3. Flow rule:

s∫
0

2κ((λη − L (∇p yη(t)|bη(t)), v − λ̇η))p dt

+
s∫

0

∫
ω

(Θ(wη) − θtr)a · (v − λ̇η) + 2η∇pλ
η · ∇pv + α

q
|v|q + δ∗

S(v) dz pdt

≥ η‖∇pλ
η(T )‖2

L2(ω;R(M+1)×2)
− η‖∇pλ

η(0)‖2
L2(ω;R(M+1)×2)

+
s∫

0

∫
ω

α

q
|λ̇η|q + δ∗

S(λ̇
η) dz pdt (36)

for all test functions v ∈ Lq(0, T ; Lq(ω; R
M+1)) ∩ L∞(0, T ; W 1,2(ω; R

M+1) and every s ∈ [0, T ].
4. Enthalpy equation:

∫
Q

K (λη, wη)∇pw
η · ∇pζ − wηζ̇ dz pdt +

T∫
0

∫
∂ω

bΘ(wη)ζ dSpdt =
∫
ω

w0ζ(0) dz p

+
∫
Q

(
δ∗

S(λ̇
η) + α|λ̇η|q + (Θ(wη) − θtr)a · λ̇η

)
ζ dz pdt + η

∫
Q

ζH η( dz pdt) +
T∫

0

∫
∂ω

bθextζ dSpdt (37)

for all ζ ∈ C1(Q) such that ζ(T ) = 0. Analogously to (37), here again the Radon measure H η ∈
M (Q), η > 0 represents the heat production due to η|(∇p ẏ|ḃ)| and is defined for any closed set A =
[t, s] × B, where [t, s] ⊆ [0, T ] and B ⊂ ω a Borel set, as

H η(A) := Var|·|((∇p yη|bη); [t, s] × B).
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5. Initial conditions:

yη(0, z p) = y0,0(z p) := y0(z p, 0),

bη(0, z p) = b0(z p) := (y0),3(z p, 0), (38)

λη(0, z p) = λ0,0(z p) := λ0(z p, 0),

4.2 Existence of weak solutions

Theorem 1 Let (D1)–(D6) hold. Then, there exists a quadruple (yη, bη, λη, wη) belonging to the spaces (32)
such that (yη, bη)(t, z1, z2) = 0 for all t ∈ [0, T ] and a.e. on γD and a (not relabeled) subsequence ε → 0+
such that the following holds

yη,ε(t) → yη(t) in W 2,2(Ω; R
3) for all t ∈ [0, T ], (39a)

1

ε
yη,ε
,3 (t) → bη(t) in W 1,2(Ω; R

3) for all t ∈ [0, T ], (39b)

λη,ε → λη in W 1,q(0, T ; Lq(Ω; R
M+1)), (39c)

∇′
ελ

η,ε → (∇pλ
η|0) in L2(Ω; R

(M+1)×3) for all t ∈ [0, T ] (39d)

∇pw
η,ε ⇀∇pw

η in Lr (0, T ; Lr (Ω)) for any 1 ≤ r <
5

4
(39e)

wη,ε → wη in Ls(Q) for any 1 ≤ s <
5

3
, (39f)

with {(yη,ε, λη,ε, wη,ε)}ε>0 a family of weak solutions of (5) obtained in Proposition 1; (yη, bη, λη, wη) is
then a weak solution to (8) in the spirit of Definition 2.

Proof For the sake of transparency, let us divide the proof into separate distinct steps.

Step 1: Selection of subsequences.The a-priori estimates (23) ensure—by Helly’s selection principle—
the existence of two vector fields yη ∈ BV (0, T ; W 1,1(Ω; R

3)), bη ∈ BV (0, T ; L1(Ω; R
3)) such that

yη,ε(t)⇀ yη(t) in W 2,2(Ω; R
3) for all t ∈ [0, T ], (40a)

1

ε
yη,ε
,3 (t)⇀ bη(t) in W 1,2(Ω; R

3) for all t ∈ [0, T ]. (40b)

Similarly, using standard selection and embedding theorems, estimate (24a) ensures the existence of a limit
phase field λη such that

λη,ε ⇀ λη in W 1,q(0, T ; Lq(Ω; R
M+1)). (40c)

By exploiting further the estimate (24b) and the continuous embedding of the Sobolev space
W 1,q(0, T ; Lq(Ω; R

M+1)) into C(0, T ; Lq(Ω; R
M+1), we get that

∇pλ
η,ε(t)⇀∇pλ

η(t) in L2(Ω; R
(M+1)×2) for all t in [0, T ]. (40d)

The situation is more complicated for the third component of ∇′
ελ

η,ε, we shall return to it later in Step 3, where
also the strong convergence (39d) will be shown. The strong convergences (39a)–(39b) will be obtained in
Step 5.

Lastly, we may extract a (not relabeled) subsequence of {wη,ε}ε>0 such that (39e) and (39f) are satisfied;
notice that the latter convergence stems from the dual estimate (25c) and the generalized Aubin–Lions lemma,
cf. [41, Corollary 7.8 and 7.9] and [42, equation (4.55)]. Moreover, (39f) yields, together with the assumption
(D4), the strong convergence

Θ(wη,ε) → Θ(wη) in Lq ′
(Q). (41)
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In order to see this, we exploit the first inequality in assumption (D4)

wη,ε =
θη,ε∫
0

cv(r) dr ≥ c1

Θ(wη,ε)∫
0

(1 + r)ς1−1 dr ≥ c1
(
(1 + Θ(wη,ε))ς1 − 1

)
,

where we used that θη,ε ≥ 0, together with the assumption ς1 ≥ q ′ to get the bound

|Θ(wη,ε)| ≤ C
(

1 + |wη,ε|1/q ′)
.

Hence, by the continuity of the Nemytskii mapping induced by Θ , one arrives to (41).

Step 2: Independence of z3. It follows from the estimates (23d) and the weak lower semicontinuity of the
norm that

0 = lim inf
ε→0+

cε ≥ lim inf
ε→0+

‖yη,ε
,3 (t)‖W 1,2(Ω;R3) ≥ ‖yη

,3(t)‖W 1,2(Ω;R3) ≥ 0.

This means that yη is independent of z3 for all t ∈ [0, T ]. Analogously, the independence of λη and bη of z3
follows from the estimate (24b), resp. (23c). For wη, we get that it is independent of z3 only for a.a. t ∈ [0, T ]
from (25b).

Step 3: Thin- film flow rule.Recall the bulk flow (16) which we rescale and in which we expand the
matrix ∇′

ε into its planar and normal components, namely

s∫
0

∫
Ω

(Θ(wη,ε) − θtr)a·(v − λ̇η,ε) + α

q
|v|q + δ∗

S(v) dzdt +
s∫

0

2κ((λη,ε − L (∇′
ε yη,ε), v − λ̇η,ε))ε dt

+
s∫

0

∫
Ω

2η∇pλ
η,ε·∇pv + 2η

ε2 λ
η,ε
,3 ·v,3 dzdt + η‖∇pλ0‖2

L2(Ω;R(M+1)×2)

≥ η‖∇pλ
η,ε(s)‖2

L2(Ω;R(M+1)×2)
+ η

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)
+

s∫
0

∫
Ω

α

q
|λ̇η,ε|q + δ∗

S(λ̇
η,ε) dzdt

where we used that, due to (D6), λ0 does not depend on the third component. Let us admit only test functions
independent of z3 which simplifies the flow rule to

s∫
0

∫
Ω

(Θ(wη,ε) − θtr)a · (v − λ̇η,ε) + α

q
|v|q + δ∗

S(v) dzdt +
s∫

0

2κ((λη,ε − L (∇′
ε yη,ε), v − λ̇η,ε))ε dt

+
s∫

0

∫
Ω

2η∇pλ
η,ε·∇pv dzdt + η‖∇pλ0‖2

L2(Ω;R(M+1)×2)

≥ η‖∇pλ
η,ε(s)‖2

L2(Ω;R(M+1)×2)
+ η

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)
+

s∫
0

∫
Ω

α

q
|λ̇η,ε|q + δ∗

S(λ̇
η,ε) dzdt. (42)

Let us take an s ∈ [0, T ] arbitrary but fixed. Then, from (24b), we can choose a further subsequence of ε’s
dependent on s, labeled εk(s), such that

1

εk(s)
2 ‖λη,εk(s)

,3 (s)‖2
L2(Ω;R(M+1))

→ ds ∈ R
M+1.



Mesoscopic thermomechanically-coupled model for thin-film SMAs 699

Let us work, for the moment, only with this special subsequence and pass to the limit εk(s) → 0+ in (42) to
obtain

s∫
0

∫
ω

(Θ(wη) − θtr)a · (v − λ̇η) + α

q
|v|q + δ∗

S(v) dz pdt +
s∫

0

2κ((λη − L (∇p yη|bη), v − λ̇η))p dt

+
s∫

0

∫
ω

2η∇pλ
η·∇pv dz pdt + η‖∇pλ0‖2

L2(ω;R(M+1)×2)

≥ η‖∇pλ
η(s)‖2

L2(ω;R(M+1)×2)
+ ηds +

s∫
0

∫
ω

α

q
|λ̇η|q + δ∗

S(λ̇
η) dz pdt, (43)

for all v ∈ Lq(0, T ; Lq(ω; R
M+1)) ∩ L∞(0, T ; W 1,2(ω; R

(M+1)×2).
To see this, we employ (40c) and (41) on the left-hand side to pass to the limit (even for the whole sequence

ε → 0+) in
∫ s

0

∫
Ω

(Θ(wη,ε) − θtr)a · (v − λ̇η,ε) dzdt .
Further, let us choose t ∈ [0, T ] arbitrarily but fixed, and denote, for the sake of simplicity, Λ

η,ε
t :=

λη,ε(t) − L (∇′
ε yη,ε(t)). Then, the weak convergences (40a)–(40b), shown in Step 1, yield that ∇′

ε yη,ε(t) →
(∇p yη|bη)(t) strongly in L2(Ω; R

3×3). Thus, by (D3), Nemytskii continuity and the estimate (24b), we also
get that Λ

η,ε
t → λη(t) − L (∇p yη(t)|bη(t)) =: Λ

η
t strongly in L2(Ω; R

M+1).
Let us show that in such a case, for ε → 0+,

∇′
ε�−1

ε Λ
η,ε
t → ∇p�−1

p Λ
η
t in L2(Ω; R

M+1).

Indeed, denote hε
t = �−1

ε Λ
η,ε
t ; then hε

t solves∫
Ω

∇phε
t ·∇pφ + 1

ε2 hε
t,3 φ,3 − Λ

η,ε
t φ dz = 0 ∀φ ∈ W 1,2

0 (Ω; R
M+1). (44)

Taking φ independent of z3 this simplifies to∫
Ω

∇phε
t ·∇pφ − Λ

η,ε
t φ dz = 0 ∀φ ∈ W 1,2

0 (ω; R
M+1). (45)

Since ‖∇phε
t ‖L2(Ω;R(M+1)×2) is uniformly bounded (owing to the bounds on Λ

η,ε
t ), we pass to the limit ε → 0+

in (45) and get that ∇phε
t ⇀∇pht in L2(Ω; R

(M+1)×2) where ht solves∫
ω

∇pht ·∇pφ − Λ
η
t φ dz p = 0 ∀φ ∈ W 1,2

0 (ω; R
M+1). (46)

Here, we relied on the fact that the limit difference Λ
η
t does not depend on z3, i.e., h = �−1

p Λ
η
t .

Next, test (44) by εφ and notice that 1
ε
‖hε

t,3‖L2(Ω;RM+1) is uniformly bounded (owing to the bounds on

Λ
η,ε
t ) to get 1

ε
hε

t,3 ⇀ 0 in L2(Ω; R
M+1). Finally, by testing the difference of (44) and (46) with hε

t − ht , we

obtain even that ∇′
εhε

t → (∇pht |0) strongly in L2(Ω; R
(M+1)×3). Note that all the above would stay valid

even if we had only Λ
η,ε
t ⇀ Λ

η
t in L2(Ω; R

M+1) at hand.
Thus, relying on Lebegue’s dominated convergence theorem, we have that

s∫
0

2κ((λη,ε − L (∇′
ε yη,ε), v − λ̇η,ε))ε dt →

s∫
0

2κ((λη − L (∇p yη|bη), v − λ̇η))p dt.

Finally, on the left-hand side of (42) in term
∫ s

0

∫
Ω

2η∇pλ
η,ε·∇pv dzdt , we use (40d) again combined with

Lebegue’s dominated convergence; on the right-hand side of (42), we rely on the weak lower semicontinuity
of the involved convex terms to obtain (43).
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Next, we aim to show that ds ≡ 0. Clearly, d ≥ 0 and the opposite inequality could be immediately
seen if we were allowed to put v = λ̇η in (43). Yet, λ̇η does not need to have the required regularity. So we
introduce a sequence of smooth functions {λη

�}�>0 such that λ
η
� → λη strongly in W 1,q(0, T ; Lq(ω; R

M+1))

and ∇pλ
η
�(t) → ∇pλ

η(t) strongly in L2(ω; R
M+1) for � → 0+ for all t ∈ [0, T ]. Putting then v = λ̇

η
� in (43)

yields

s∫
0

∫
ω

(Θ(wη) − θtr)a · (λ̇η
� − λ̇η) + α

q
|λ̇η

� |q + δ∗
S(λ̇

η
�) dz pdt +

s∫
0

2κ((λη − L (∇p yη|bη), λ̇
η
� − λ̇η))p dt

+
s∫

0

∫
ω

2η∇pλ
η·∇pλ̇

η
� dz pdt + η‖∇pλ0‖2

L2(ω;R(M+1)×2)

≥ η‖∇pλ
η(s)‖2

L2(ω;R(M+1)×2)
+ ηds +

s∫
0

∫
ω

α

q
|λ̇η|q + δ∗

S(λ̇
η) dz pdt. (47)

Reformulating, by means of by parts integration,
∫ s

0

∫
ω

2η∇pλ
η·∇pλ̇

η
� dz pdt as

s∫
0

∫
ω

2η∇pλ
η·∇pλ̇

η
� dz pdt =

s∫
0

∫
ω

2η(∇pλ
η − ∇pλ

η
�)·∇pλ̇

η
� dz pdt +

s∫
0

∫
Ω

2η∇pλ
η
� ·∇pλ̇

η
� dz pdt

=
s∫

0

∫
ω

2η(∇pλ
η − ∇pλ

η
�)·∇pλ̇

η
� dz pdt

+ η
(‖∇pλ

η
�(s)‖2

L2(ω;R(M+1)×2)
− ‖∇pλ

η
�(0)‖2

L2(ω;R(M+1)×2)

)
(48)

and passing to the limit � → 0+ yields that

s∫
0

∫
ω

2η∇pλ
η·∇pλ̇

η
� dz pdt → η

(‖∇pλ
η(s)‖2

L2(ω;R(M+1)×2)
− ‖∇pλ0‖2

L2(ω;R(M+1)×2)

)
.

Therefore, passing � → 0+ in (47) gives that ds ≤ 0.
Last but not least, note that the s-dependent subsequence εk(s) was used to pass at the limit merely in the

term 1
ε2 ‖λη,ε

,3 (s)‖2
L2(Ω;R(M+1))

, all other limit passages hold in the whole sequence of ε’s. Hence, we arrive at the

relation 1
εk(s)

2 ‖λη,εk(s)
,3 (s)‖2

L2(Ω;R(M+1))
→ 0 for all subsequences εk(s) in which the left-hand side converges,

and, by uniqueness of the limit, we conclude that

1

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;R(M+1))
→ 0 (49)

in the original sequence of ε’s, independently of the chosen s ∈ [0, T ]. Thus, we conclude that the normal part
of (39d) and (36) hold.

Step 4: Phase- field- related energy equality and strong convergence of λ̇η,ε
. In this step,

let us deduce an energy equality that is related to the phase field. To this end, we reformulate the flow rule (16)
(exploiting the convexity of | · |q ) into the following equivalent form
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s∫
0

∫
Ω

α|λ̇η,ε|q−2λ̇η,ε·(v − λ̇η,ε) + (Θ(wη,ε) − θtr)a·(v − λ̇η,ε) + δ∗
S(v) dzdt

+
s∫

0

2κ((λη,ε − L (∇′
ε yη,ε), v − λ̇η,ε))ε dt +

s∫
0

∫
Ω

2η∇pλ
η,ε·∇pv + 2η

ε2 λ
η,ε
,3 ·v,3 dzdt

≥ η‖∇pλ
η,ε(s)‖2

L2(Ω;R(M+1)×2)
− η‖∇pλ0‖2

L2(Ω;R(M+1)×2)
+ η

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)
+

s∫
0

∫
Ω

δ∗
S(λ̇

η,ε) dzdt

(50)

and test (50) by v = 0 to get

−
( s∫

0

∫
Ω

α|λ̇η,ε|q−2λ̇η,ε·λ̇η,ε + (Θ(wη,ε) − θtr)a·λ̇η,ε dzdt +
s∫

0

2κ((λη,ε − L (∇′
ε yη,ε), λ̇η,ε))ε dt

)

≥ η

(
‖∇pλ

η,ε(s)‖2
L2(Ω;R(M+1)×2)

− ‖∇pλ0‖2
L2(Ω;R(M+1)×2 + 1

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)

)
+

s∫
0

∫
Ω

δ∗
S(λ̇

η,ε) dzdt

(51)

and also by v = 2λ̇η,ε to get (if λ̇η,ε does not have the required regularity we can proceed as in Step 3
above, namely we can smoothen λ̇η,ε, perform by parts integration analogous to (48) and pass to limit with
the mollifying parameter which gives the desired result)

( s∫
0

∫
Ω

α|λ̇η,ε|q−2λ̇η,ε·λ̇η,ε + (Θ(wη,ε) − θtr)a·λ̇η,ε dzdt +
s∫

0

2κ((λη,ε − L (∇′
ε yη,ε), λ̇η,ε))ε dt

)

+2η

(
‖∇pλ

η,ε(s)‖2
L2(Ω;R(M+1)×2)

− ‖∇pλ0‖2
L2(Ω;R(M+1)×2)

+ 1

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)

)

≥ η

(
‖∇pλ

η,ε(s)‖2
L2(Ω;R(M+1)×2)

−‖∇pλ0‖2
L2(Ω;R(M+1)×2)

+ 1

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)

)
−

s∫
0

∫
Ω

δ∗
S(λ̇

η,ε) dzdt,

where we relied on the one-homogeneity of δ∗
S(·). In other words,

−
( s∫

0

∫
Ω

α|λ̇η,ε|q−2λ̇η,ε·λ̇η,ε + (Θ(wη,ε) − θtr)a·λ̇η,ε dzdt +
s∫

0

2κ((λη,ε − L (∇′
ε yη,ε), λ̇η,ε))ε dt

)

≤η

(
‖∇pλ

η,ε(s)‖2
L2(Ω;R(M+1)×2)

−‖∇pλ0‖2
L2(Ω;R(M+1)×2)

+ 1

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)

)
+

s∫
0

∫
Ω

δ∗
S(λ̇

η,ε) dzdt;

(52)

combining this with (51), we obtain the phase-field-related energy equality in the bulk, more precisely

s∫
0

∫
Ω

α|λ̇η,ε|q dzdt = −
s∫

0

∫
Ω

(Θ(wη,ε) − θtr)a·λ̇η,ε dzdt −
s∫

0

2κ((λη,ε − L (∇′
ε yη,ε), λ̇η,ε))ε dt

−η

(
‖∇pλ

η,ε(s)‖2
L2(Ω;R(M+1)×2)

− ‖∇pλ0‖2
L2(Ω;R(M+1)×2)

+ 1

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)

)
−

s∫
0

∫
Ω

δ∗
S(λ̇

η,ε) dzdt.

(53)
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By an analogous procedure, we get from (36) the phase-field-related energy equality in the thin film

s∫
0

∫
ω

α|λ̇η|q dz pdt = −
s∫

0

∫
ω

(Θ(wη) − θtr)a·λ̇η dz pdt −
s∫

0

2κ((λη − L (∇p yη|bη), λ̇η))p dt

−η
(‖∇pλ

η(s)‖2
L2(ω;R(M+1)×2)

− ‖∇pλ0‖2
L2(ω;R(M+1)×2)

) −
s∫

0

∫
ω

δ∗
S(λ̇

η) dz pdt.(54)

Having (53) and (54) at hand, we prove the strong convergences (39c) and the in-plane part of (39d). Indeed,
we have

s∫
0

∫
ω

α|λ̇η|q dz pdt ≤ lim inf
ε→0+

s∫
0

∫
Ω

α|λ̇η,ε|q dzdt ≤ lim sup
ε→0+

s∫
0

∫
Ω

α|λ̇η,ε|q dzdt

(I)= lim sup
ε→0+

(
−

s∫
0

∫
Ω

(Θ(wη,ε) − θtr)a·λ̇η,ε + δ∗
S(λ̇η,ε) dzdt −

s∫
0

2κ((λη,ε − L (∇′
ε yη,ε), λ̇η,ε))ε dt

+ η

(
‖∇pλ0‖2

L2(Ω;R(M+1)×2)
− ‖∇pλ

η,ε(s)‖2
L2(Ω;R(M+1)×2)

− 1

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)

))

(II)= − lim
ε→0+

( s∫
0

∫
Ω

(Θ(wη,ε)−θtr)a·λ̇η,ε dzdt +
s∫

0

2κ((λη,ε−L (∇′
ε yη,ε), λ̇η,ε))ε dt + η

ε2 ‖λη,ε
,3 (s)‖2

L2(Ω;RM+1)

)

+ η
(‖∇pλ0‖2

L2(Ω;R(M+1)×2)
− lim inf

ε→0+
‖∇pλ

η,ε(s)‖2
L2(Ω;R(M+1)×2)

) − lim inf
ε→0+

s∫
0

∫
Ω

δ∗
S(λ̇η,ε) dzdt

(III)= ≤ −
s∫

0

∫
ω

(Θ(wη) − θtr)a·λ̇η dz pdt −
s∫

0

2κ((λη−L (∇p yη|bη), λ̇η))p dt

‖∇pλ0‖2
L2(ω;R(M+1)×2)

− ‖∇pλ
η(s)‖2

L2(ω;R(M+1)×2)
−

s∫
0

∫
ω

δ∗
S(λ̇η) dz pdt

(IV)=
s∫

0

∫
ω

α|λ̇η|q dz pdt,

where the inequalities on the first line follow from the weak lower semicontinuity of the norm and a general
lim inf ≤ lim sup relation, the equality (I) is due to (53), the equality (II) follows from general lim sup, lim inf
relation, the inequality (III) was obtained by lower semicontinuity of the convex terms and (40c) and (40d),
the limit ε → 0+ uses (41), (49) and similar techniques as when passing to the limit in the flow rule in Step 3.
Finally, (IV) is due to (54).

So, we conclude that ‖λ̇η,ε‖Lq (Q;RM+1) → ‖λ̇η‖Lq (Q;RM+1) and, as the space Lq(Q; R
M+1) is uniformly

convex, also

λ̇η,ε → λ̇η in Lq(Q; R
M+1). (55)

Moreover, using (55) and passing to the limit ε → 0+ in (53) and comparing to (54) yields that

‖∇pλ
η,ε(s)‖2

L2(Ω;R(M+1)×2)
→ ‖∇pλ

η(s)‖2
L2(Ω;R(M+1)×2)

∀s ∈ [0, T ]. (56)

Step 5: Thin- film semi- stability.Fix again some t ∈ [0, T ] arbitrarily. Then, we test (14) (formulated
only in the deformation-related energy) by ȳε

δ (z) := ỹ(z p) + εz3bδ(z p) with some arbitrary ỹ ∈ W 2,2(ω; R
3)

and a smooth approximation {bδ}δ>0 of an arbitrary b̃ ∈ W 1,2(ω; R
3) (the smoothing is required in order to
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obtain the test function in W 2,2(Ω; R
3)) such that ỹ(z p) + εz3bδ(z p) = 0 a.e. on ΓD. Then, by taking first

lim infε→0 then lim infδ→0+ one arrives to

Gη(t) ≤ lim inf
ε→0+

Gε
η(t)

≤ lim
δ→0+

⎛
⎝lim inf

ε→0+
Gε

η(t, ȳε
δ , λ

η,ε(t)) +
∫
Ω

η
∣∣∇′

ε ȳε
δ − ∇′

ε yη,ε(t)
∣∣ dz

⎞
⎠

≤ lim
δ→0+

⎛
⎝lim sup

ε→0+
Gε

η(t, ȳε
δ , λ

η,ε(t)) +
∫
Ω

η
∣∣∇′

ε ȳε
δ − ∇′

ε yη,ε(t)
∣∣ dz

⎞
⎠

= Gη(t, ỹ, b̃, λη(t)) +
∫
ω

η

∣∣∣(∇p ỹ|b̃) − (∇p yη(t)|bη(t))
∣∣∣ dz p,

where we used (39c), (39d) and the compact embedding Lq(Ω; R
M+1) � W−1,2(Ω; R

M+1) (recall that
q ≥ 2) to pass to the limit in Gε

η(t, ȳε
δ , λ

η,ε(t)) while (40a), (40b) was used to pass to the limit in∫
Ω

η
∣∣∇′

ε ȳε
δ − ∇′

ε yη,ε(t)
∣∣ dz. Observe that this is equivalent to (33).

Moreover, letting ỹ := yη(t) and b̃ := bη(t) yields

lim
ε→0+

Gε
η(t) = Gη(t) for all t ∈ [0, T ]. (57)

From this we may, similarly as in [11], deduce that

∇2
p yη,ε(t) → ∇2

p yη(t) in L2(Ω; R
3×2×2),

∇p
1

ε
yη,ε
,3 (t) → ∇pbη(t) in L2(Ω; R

3×2),

1

ε2 yη,ε
,33 (t) → 0 in L2(Ω; R

3),

thus showing (39a)–(39b). As we will not need this improved convergence in the following, we omit a detailed
proof.

Step 6: Thin- film deformation- related energy equality.We show the deformation-related energy
equality (34) as two inequalities. One follows from the bulk inequality by taking lim infε→0+ with the aid of
the convergences (39a)–(39d), the data qualification (D2) as

Gη(T ) − Gη(0) + ηVar|·|(∇p yη|bη)

≤ lim inf
ε→0+

(
Gε

η(T ) − Gε
η(0) + ηVar|·|(∇′

ε yη,ε)
)

≤ lim sup
ε→0+

T∫
0

[Gε
η]′t (t) +

〈
[Gε

η]′λ(t), λ̇η,ε(t)
〉

dt

≤
T∫

0

[Gη]′t (t) + 〈[Gη]′λ(t), λ̇η(t)
〉

dt (58)

as far as the first inequality is concerned, recall that Var|·| is lower-semicontinuous under the convergences
(39a)–(39b).

The opposite inequality is a consequence of the thin-film semi-stability (33) (cf. [24,30,42] and [8] for
an analogous (and more detailed) proof as the one given below). To see this, we introduce a partition of
[0, T ], 0 = t0 < t1 < · · · < tN (β) = T , such that max{|tβi−1 − tβi | : i = 1, . . . , N (β)} ≤ β and test (33) at

the time tβi−1 by (yη(tβi ), bη(tβi )), i = 1, . . . , N (β). Summing from 0 to N (β) reveals that
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Gη(T ) − Gη(0) + ηVar|·|(∇p yη|bη) ≥
N (β)∑
i=1

tβi∫
tβi−1

[Gη]′t (t, yη(tβi )) dt

+
N (β)∑
i=1

tβi∫
tβi−1

〈
[Gη]′λ(yη(tβi ), bη(tβi ), λη(t)), λ̇η(t)

〉
dt, (59)

where

N (β)∑
i=1

tβi∫
tβi−1

〈
[Gη]′λ(yη(tβi ), bη(tβi ), λη(t)), λ̇η(t)

〉
dt = 2κ

N (β)∑
i=1

tβi∫
tβi−1

((λη(t) − L (∇p yη(tβi )|bη(tβi )), λ̇η(t)))p dt

+
N (β)∑
i=1

tβi∫
tβi−1

((λη(t) − λη(tβi ), λ̇η))p

︸ ︷︷ ︸
(i)

dt +
N (β)∑
i=1

tβi∫
tβi−1

((λη(tβi ) − L (∇p yη(tβi )|bη(tβi )), λ̇η(tβi )))p

︸ ︷︷ ︸
(ii)

dt

+
N (β)∑
i=1

tβi∫
tβi−1

((λ̇η(tβi ) − L (∇p yη(tβi )|bη(tβi )), λ̇η(t) − λ̇η(tβi )))p

︸ ︷︷ ︸
(iii)

dt (60)

To make the limit passage for β → 0+, one makes use of the fact (cf. [16]) that for every Bochner integrable
h : [0, T ] → X , with X a Banach space, there is a sequence of partitions of [0, T ] such that h can be approached
by its piecewise constant interpolants hβ defined on [0, T ] as hβ |[tβi−1,t

β
i )

:= h(tβi ), i = 1, . . . , N (β) strongly

to h in L1(0, T ; X); more precisely

lim
β→0+

N (β)∑
i=1

tβi∫
tβi−1

‖hβ(t) − h(t)‖X dt = 0.

Hence, one may assume that we always take partitions for which this approximation result holds and we may
assume that

λ
η
β ⇀λη in Lq(0, T ; Lq(ω; R

M+1)), (61a)

yη
β ⇀ yη in L p(0, T ; W 1,p(ω; R

3)), (61b)

bη
β ⇀ bη in L2(0, T ; L2(ω; R

3)), (61c)

λ̇
η
β → λ̇η in L1(0, T ; Lq(ω; R

M+1)), (61d)[
((λη − L (∇p yη|bη), λ̇η))p

]
β

→ ((λη − L (∇p yη|bη), λ̇η))p in L1(0, T ). (61e)

Using (61b) we establish that
∑N (β)

i=1

∫ tβi
tβi−1

[Gη]′t (t, yη(tβi )) dt → ∫ T
0 [Gη]′t (t, yη(t)) dt ; moreover, (61a)

assures that (i) in (60) converges to 0, by (61e) we immediately see that (ii) in (60) converges to∫ T
0 ((λη − L (∇p yη|bη), λ̇η))p dt and, finally, by the uniform boundedness of λ̇η(tβi ) − L (∇p yη(tβi )|bη(tβi ))

in L∞(0, T ; W−1,2(ω; R
M+1)) and (61d) the term (iii) in (60) converges to 0.
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Thus, we got that

Gε
η(T ) − Gε

η(0) + ηVar|·|(∇′
ε yη,ε) ≥

T∫
0

[Gη]′t (t) + 〈[Gη]′λ(t), λ̇η(t)
〉

dt

and combining this with (58) as well as (57) we obtain that

Var|·|(∇′
ε yη,ε) → Var|·|(∇p yη|bη) (62)

Step 7: Thin- film enthalpy equation.Recall that the bulk enthalpy equation reads as

∫
Q

K (λη,ε, wη,ε)∇′
εw

η,ε · ∇′
εζ − wη,εζ̇ dzdt +

∫
Σ

bΘ(wη,ε)ζ dSdt

=
∫
Q

(
δ∗

S(λ̇
η,ε) + α|λ̇η,ε|q + Θ(wη,ε)a · λ̇η,ε

)
ζ dzdt + η

∫
Q

ζHε( dxdt)

+
∫
Ω

w
η,ε
0 ζ(0) dz +

∫
Σ

bθextζ dSdt (63)

with ζ̄ ∈ C1(Q) and ζ̄ (T ) = 0. Let us restrict ourselves to test functions independent of z3. When taking
ε → 0+ in (63), we aim to get (37).

First, let us show that

lim
ε→0+

∫
Q

ζH η
ε (dzdt) =

∫
Q

ζH η(dzdt). (64)

To this end, recall that from the a-priori estimates, (23) follows the existence of a limit measure H such that

H η
ε

*
⇀ H in M (Q), (65)

while, on the other hand, (62) ensures that

lim
ε→0

H η
ε (Q) = H η(Q). (66)

Now, the contradiction argument in [42, Proposition 4.3] supports that (65)–(66) indeed yield (64). More
precisely, if, by contradiction, it held that H η �= H , we could define the Borel set B := supp (H η−H ) ⊂ Q
and (66) would imply that

∫
B

(H η − H ) dzdt > 0

(otherwise (66) would be violated), which immediately contradicts the weak∗ lower semicontinuity of the map
ε �→ ∫

BH
η

ε ( dzdt).
For the other terms in (63), we use λη,ε → λη in Lq(0, T ; Lq(Ω; R

M+1)), wη,ε → wη in Ls(0, T ; Ls(Ω)),
for any 1 ≤ s < 5/3; the latter convergence ensures also thatwη,ε → wη in L1(0, T ; L1(Σ))which allows us to
pass to the limit in the boundary terms on the left-hand side of (63) as well as that K (λη,ε, wη,ε) → K (λη, wη)
in Lβ(0, T ; Lβ(Ω; R

3×3)) for any 1 ≤ β < +∞. Hence, we obtain (37). ��
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5 Relaxation in the microscopic thin-film model

In this section, we surpass scales to rigorously obtain the mesoscopic model formally given by (10a)–(10c).
As mentioned in Sect. 2, this upscaling lets the interfacial energy vanish; this may lead to fast spatial

oscillations of the deformation gradient, on one hand, as well as of the Cosserat vector, on the other hand. A
standard tool to capture these oscillations is the theory of (gradient) Young measures [29,37,51].

Let O ⊂ R
l be a Lebesgue measurable subset with finite measure. Young measures are weakly measurable

and essentially bounded mappings ν ∈ L1(O; C0(R
d))∗ ∼= L∞

w (O;M (Rd)); here, C0(R
d) denotes the space

of continuous functions on R
d vanishing at infinity, so that M (Rd) denotes the space of Radon measures on

R
d . Having a bounded sequence {uk}k∈N ⊂ L p(O; R

d) for 1 ≤ p < +∞ then there is a subsequence (not
relabeled) and a Young measure ν such that limk→∞

∫
O h(x, uk(x)) dx = ∫

O

∫
Rd h(x, F) νx (dF)dx whenever

{h(·, uk)}k∈N ⊂ L1(O) is uniformly integrable, where h : O × R
d → R is a Carathéodory integrand. We

then say that ν is generated by {uk}k∈N. The set of mappings from L∞
w (O;M (Rd)) generated by bounded

sequences in L p(O; R
d) is denoted by Y p(O; R

d).
An important subset of Y p(O; R

d) is the set of so-called p-gradient Young measures (1 < p < +∞) which
consists of measures generated by {∇ yk}k∈N of a bounded sequence of mappings {yk}k∈N ⊂ W 1,p(O; R

d). The
set of p-gradient Young measures (shortly gradient Young measures) is denoted by G p(O; R

d×l). Occasionally,
we may write G

p
γD(O; R

d×l) to indicate that yk = 0 on γD ⊂ ∂O .
Further, we use the shorthand notation (momentum operator) “ • ” defined through

[ f •ν](x) :=
∫

Rd×l

f (s)νx (ds).

Denoting id : R
d×l → R

d×l the identity mapping, we speak of id•ν as the mean value of the gradient
Young measure ν ∈ G p(O; R

d×l). It can be proved, cf. [29], that whenever ν ∈ G p(O; R
d×l) there exists

y ∈ W 1,p(O; R) such that ∇ y = id•ν a.e. on O . Additionally, ν is an element of G
p

γD(O; R
d×l) if and only if

y = 0 on γD.

5.1 Weak formulation

Let us now state the weak formulation of (10a)–(10c).

Definition 3 We call the quintuple (y, ν, μ, λ,w), where

y ∈ B(0, T ; W 1,p(ω; R
3)), (67a)

ν ∈ (G p
γD

(ω; R
3×2))[0,T ], (67b)

μ ∈ (Y p(ω; R
3))[0,T ], (67c)

λ ∈ W 1,q(0, T ; Lq( R
M+1)), (67d)

w ∈ L∞(0, T ; L1(ω)), (67e)

such that y(t) = id•νz p (t) for a.a. z p ∈ ω and all t ∈ [0, T ] a weak solution of (10a)–(10c) if it satisfies

1. Minimization property:

G (t, y(t), ν(t), μ(t), λ(t), Θ(w(t))) ≤ G (t, ȳ, ν̄, μ̄, λ(t),Θ(w(t))) (68)

for every (ȳ, ν̄, μ̄) ∈ W 1,p(ω; R
3) × G

p
γD(ω; R

3×2) × Y p(ω; R
3) such that ȳ = id•ν̄z p for almost all

z p ∈ ω and G defined in (9).
2. Flow rule:

T∫
0

2κ((λ − L •(ν, μ), v − λ̇))p dt +
T∫

0

∫
ω

(Θ(wη,ε) − θtr)a·(v − λ̇)+α

q
|v|q + δ∗

S(v) dz pdt

≥
T∫

0

∫
ω

α

q
|λ̇|q + δ∗

S(λ̇) dz pdt (69)

for all test functions v ∈ Lq(0, T ; Lq(ω; R
M+1)).
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3. Enthalpy equation:

∫
Q

K (λ,w)∇pw·∇pζ − wζ̇ dz pdt +
T∫

0

∫
∂ω

bΘ(w)ζ dSpdt

=
∫
Q

(
δ∗

S(λ̇) + α|λ̇|q + (Θ(w))a·λ̇)
ζ dz pdt +

∫
ω

w0ζ(0) dz p +
T∫

0

∫
∂ω

bθextζ dSpdt (70)

for every ζ ∈ C1(Q) such that ζ(T ) = 0.
4. remaining initial conditions:

νz p (0) = δy0,0(z p), μz p (0) = δb0(z p), λ(0) = λ0,0, (71)

with y0,0(z p), b0(z p) and λ0,0 referring to (38).

Notice that in this formulation, we used the (not completely standard) notation B(0, T ; X) for the space
of function [0, T ] �→ X, X a Banach space, that are bounded but not necessarily Lebesgue measurable. Also,
we used the notation

Ψ •(ν, μ)(z p) :=
∫

R3×2

∫
R3

Ψ (A|b) dνz p (A) dμz p (b),

with Ψ a continuous function with at most p-growth.

Remark 6 (Deformation-related energy equality) Note that we omit a deformation-related energy equality
analogous to (34). Since we scale down the rate-independent dissipation due to η|(∇p ẏη|bη)| to zero, such an
equality is a direct consequence of (68) and, hence, becomes redundant. To see this, we may proceed as Step
6 of the proof of Theorem 1 and introduce a partition of the interval [0, T ], 0 = tβ0 ≤ tβ1 . . . tβK (β) = T and

test (68) at t = tβi−1 by (y(tβi ), ν(tβi ), μ(tβi )); summing and passing to the limit β → 0 leads, as in Step 6 of
the proof of Theorem 1, to the inequality

G(T ) − G(0) ≥
T∫

0

G′
t (t) + 〈

G′
λ(t), λ̇(t)

〉
dt, (72)

where

G(t) = G(t, y(t), ν(t), μ(t), λ(t)) :=
∫
ω

W•(ν, μ) dz p + κ‖λ − L •(ν, μ)‖2
W−1,2(ω;R3×3)

−
∫
ω

f 0 · y dz p −
∫
γN

g0 · y dSp, (73)

is the deformation-related part of the mesoscopic Gibbs free energy.
The other inequality is then obtained by an analogous procedure. We test the Eq. (68) at t = tβi by

(y(tβi−1), ν(tβi−1), μ(tβi−1)). We obtain an “energy-related” inequality because the dissipation component related
to η|(∇p ẏη|bη)| is not present in (68) anymore.

5.2 Existence of weak solutions

Theorem 2 Let {(yη, bη, λη, wη)}η>0 be a family of weak solutions of the thin-film problem (8a)–(8c) as found
in Theorem 1. Then, there exists a quintuple (y, ν, μ, λ,w), satisfying (67), and a sequence η → 0+ such that
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λη → λ in W 1,q(0, T ; Lq(ω; R
M+1)), (74)

and

wη ⇀ w in Lr (0, T ; W 1,r (ω)), for every r <
5

4
, (75a)

wη → w in Ls(0, T ; Ls(ω)), for every s <
5

3
. (75b)

Moreover, for each t ∈ [0, T ], there exists a subsequence ηk(t) such that ∇ yηk(t) (t) generates a gradient Young
measure ν(t), yηk(t) (t) ⇀ y(t) in W 1,p(ω; R

3) and bηk(t) (t) generates a Young measure μ(t).
At least one cluster point found in this way is then a weak solution to (10a)–(10c) in the sense of

Definition 3.

Proof For lucidity, let us divide the proof into several steps. Let us note that the idea of the proof, in particular
the technique of selecting a suitable cluster point, roughly follows [8].

Step 1: Selection of subsequences and reformulation of the flow rule.Similarly as in Step
1 of the proof of Theorem 1, we choose, owing to the a-priori estimates (24)–(25) (and the Aubin–Lions
theorem), a (not relabeled) subsequence of η → 0+ and find (λ,w) such that

λη ⇀ λ in W 1,q(0, T ; Lq(ω; R
M+1)) (76)

and (75) hold as well as the limit limη→0+ Gη(T ) is well defined. Recall that, again as in Step 1 in the proof
of Theorem 1, we have the additional convergences λη(t) ⇀ λ(t) in Lq(ω; R

M+1) for all t ∈ [0, T ] and
Θ(wη) → Θ(w) in Lq ′

(Q).
Now, let us turn our attention to the flow rule (36), more specifically to the penalty term

T∫
0

2κ((λη(t) − L (∇p yη(t)|bη(t)), v − λ̇η))p dt (77)

involved in
∫ T

0 〈[Gη]′t , v − λ̇η〉 dt , which turns out to be the most troublesome. Indeed, note that since the limit
for (∇ yη, bη) is evaluated pointwise in t ∈ [0, T ], the limit of L (∇p yη(t)|bη(t)) (taken again pointwise) is
not guaranteed to be measurable in time. Moreover, λ̇η converges only weakly in Lq(Q; R

M+1), and, thus,
convergence of this term for a.a. t ∈ [0, T ] cannot be expected. To handle the latter obstacle, we plug the
energy equality (34) into (36) with s = T to obtain a weaker reformulated flow rule:

Gη(T ) + ηVar|·|(∇p yη|bη) + η‖∇pλ
η(T )‖2

L2(ω;R(M+1)×2)
+

∫
Q

α

q
|λ̇η|q + δ∗

S(λ̇
η) dz pdt

≤ Gη(0) +
T∫

0

[Gη]′t (t, yη(t)) dt +
∫
Q

(Θ(wη)−θtr)a·(ṽ−λ̇η) + 2η∇pλ
η·∇pṽ + α

q
|ṽ|q + δ∗

S(ṽ) dz pdt

+
T∫

0

2κ((λη − L (∇p yη|bη), ṽ))p dt + η‖∇pλ0‖2
L2(ω;R(M+1)×2)

. (78)

Indeed, the term
∫ T

0 2κ((λη(t) − L (∇p yη(t)|bη(t)), λ̇))p dt is no longer present in (78).
Further, inspired by [8,16,24], we define

Pv(t) = lim sup
η→0

2κ((λη(t) − L (∇p yη(t)|bη(t)), v(t)))p and F (t) = lim sup
η→0

[Gη]′t (t, yη(t))
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for any v ∈ Lq(Q; R
M+1) and every t ∈ [0, T ]; notice that both Pv and F are measurable. Moreover, by

Fatou’s lemma, we have

T∫
0

Pv(t) dt ≥ lim sup
η→0+

T∫
0

2κ((λη(t) − L (∇p yη(t)|bη(t)), v(t)))p dt,

T∫
0

F (t) dt ≥ lim sup
η→0+

T∫
0

[Gη]′t (t, yη(t)) dt.

Since Lq(Q; R
M+1) is separable, we consider, for now, the test functions v = v� only from a countable dense

subset of Lq(Q; R
M+1), denoted by V . Next, we fix t ∈ [0, T ] and choose a subsequence of η’s labeled ηt,v�

such that

Pv�

(t) = lim
ηt,v�→0+

2κ((λ
ηt,v� (t) − L (∇p yηt,v� (t)|bηt,v� (t)), v�(t)))p, (79a)

F (t) = lim
ηt,v�→0+

[Gη]′t
(
t, yηt,v� (t)

)
. (79b)

By a diagonal selection, we can find a further subsequence labeled ηt such that (79) holds for all v�. Note that
the chosen subsequence remains to be time-dependent.

Now, owing to the a-priori estimates (23b) and (23c), we choose yet another subsequence of ηk(t) (not
relabeled) such that {∇p yηk(t) (t)}k∈N generates the gradient Young measure νz p (t) and {bηk(t) (t)}k∈N generates
the Young measure μz p (t); so,

Pv(t) = lim
ηk(t)→0+

2κ((ληk(t) (t) − L (∇p yηk(t) (t)|bηk(t) (t)), v(t)))p dt = 2κ((λ(t) − L •(ν, μ), v(t)))p,

F (t) = lim
ηk(t)→0+

[Gη]′t (t, yηk(t) (t)) = G′
t (t, y(t)).

Thus, when passing to the limit η → 0+ in (78), using weak lower semicontinuity of the convex terms and
non-negativity of ηVar|·|(∇p yη|bη)+ η‖∇pλ

η(T )‖2
W−1,2(ω;R(M+1)×2)

we get, similarly as in Step 3 of the proof
of Theorem 1, the reformulated mesoscopic flow rule

G(T ) +
∫
Q

α

q
|λ̇|q + δ∗

S(λ̇) dz pdt ≤ G(0) +
T∫

0

G′
t (t, y(t)) dt

+
∫
Q

(Θ(w) − θtr)a·(v − λ̇) + α

q
|v|q + δ∗

S(v) dz pdt +
T∫

0

2κ((λ − L •(ν, μ), v))p dt, (80)

where, by density, the test functions can be taken from the whole space Lq(Q; R
M+1).

Step 2: Minimization principle, back to the original flow rule.First, we notice that (68) is
equivalent to

G(t, y, ν, μ, λ(t)) ≤ G(t, ȳ, ν̄, μ̄, λ(t))

for every (ȳ, ν̄, μ̄) ∈ W 1,p(ω; R
3) × G

p
ΓD

(ω; R
3×2) × Y p(ω; R

3) such that ȳ = id•ν̄z p for a.a. z p ∈ ω.
Thus, thanks to (33), we have

G(t, y, ν, μ, λ(t)) ≤ lim inf
ηk(t)→0+

Gηk(t) (t, yηk(t) (t), bηk(t) (t), ληk(t) (t))

≤ lim inf
ηk(t)→0+

Gηk(t) (t, ỹ, b̃, ληk(t) (t)) +
∫
ω

ηk(t)|(∇p yηk(t) (t)|bηk(t) (t)) − (∇p ỹ|b̃)| dz p

=
∫
ω

W (∇p ỹ|b̃) dz p + κ‖λ(t) − L (∇p ỹ|b̃)‖2
W−1,2(ω;RM+1)

−
∫
ω

f 0 · ỹ dz p −
∫
γN

g0 · ỹ dSp
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for every ỹ ∈ W 2,2(ω; R
3) and b̃ ∈ W 1,2(ω; R

3), such that y = 0 on γD. By density, we have that

G(t, y, ν, μ, λ(t))≤
∫
ω

W (∇p ỹ|b̃) dz p + κ‖λ(t)−L (∇p ỹ|b̃)|2W−1,2(ω;RM+1)
−

∫
ω

f 0 · ỹ dz p−
∫
γN

g0 · ỹ dSp

even for all ỹ ∈ W 1,2(ω; R
3) satisfying y = 0 on γD and all b̃ ∈ L2(ω; R

3). Take an arbitrary pair of
admissible Young measure (ν̃, μ̃) ∈ G

p
γD(ω; R

3×2) × Y p(Ω; R
3), then we can always find its bounded

generating sequence {(∇p ỹk, b̃k)}k∈N ⊂ L p(ω; R
3×2) × L p(ω; R

3) such that {|∇p ỹk |p + |b̃k |p}k∈N is equi-
integrable [23], the sequence {yk}k∈N ⊂ W 1,p(ω; R

3) is bounded and yk(z1, z2) = 0 for z ∈ γD for all k ∈ N.
Passing to the limit for k → ∞ in the previous inequality with ỹk and b̃k in place of ỹ and b̃ we get that
G(t, y, ν, μ, λ(t)) ≤ G(t, ỹ, ν̃, μ̃, λ(t)) where ỹ is the weak limit of ỹk . Hence, Eq. (68) is shown.

Note that as a side product of the above procedure we obtained also that

G(0) := G(0, y(0), ν(0), μ(0), λ(0)) = lim
η→0+

Gη(0), (81a)

G(T ) := G(T, y(T ), ν(T ), μ(T ), λ(T )) = lim
η→0+

Gη(T ). (81b)

Hence, the reformulated flow rule reads as

G(T ) +
∫
Q

α

q
|λ̇|q + δ∗

S(λ̇) dz pdt ≤ G(0) +
T∫

0

G′
t (t, y(t)) dt

+
∫
Q

(Θ(w) − θtr)a·(v − λ̇) + α

q
|v|q + δ∗

S(v) dz pdt +
T∫

0

2κ((λ − L •(ν, μ), v))p dt, (82)

and exploiting the balance of the mesoscopic deformation-related energy equality—cf. Remark 6 and (73)—we
also get the mesoscopic flow rule (69).

Step 3: Strong convergence of λ̇η
.This convergence is obtained from the monotonicity properties of

the dissipation term | · |q in the reformulated flow rule. Indeed, let us rewrite (78) (relying on the convexity of
|·|q) as

Gη(T ) + ηVar|·|(∇p yη|bη) + η‖∇pλ
η(T )‖2

L2(ω;R(M+1)×2)
+

∫
Q

δ∗
S(λ̇

η) dz pdt ≤
T∫

0

[Gη]′t (t, yη(t)) dt

+Gη(0) +
∫
Q

α|λ̇η|q−2λ̇η·(ṽ − λ̇η) + (Θ(wη)−θtr)a·(ṽ−λ̇η) + δ∗
S(ṽ) + 2η∇pλ

η·∇pṽ dz pdt

+
T∫

0

2κ((λη − L (∇p yη|bη), ṽ))p dt + η‖∇pλ0‖2
L2(ω;R(M+1)×2)

; (83)

similarly, (82) is rewritten as

G(T ) +
∫
Q

α

q
|λ̇|q + δ∗

S(λ̇) dz pdt ≤ G(0) +
T∫

0

G′
t (t, y(t)) dt +

T∫
0

2κ((λ − L •(ν, μ), v))p dt

+
∫
Q

α|λ̇|q−2λ̇·(v − λ̇) + (Θ(w) − θtr)a·(v − λ̇) + δ∗
S(v) dz pdt. (84)

Then, having a sequence {λ′
j } j∈N ⊂ V ∩ C(0, T ; W 1,2(ω; R

M+1)) such that λ′
j → λ̇ in Lq(Q; R

M+1)

for j → ∞ (recall that V is the dense countable subset of Lq(Q; R
M+1) used in Step 1), let us test (84) by λ̇η
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and, symmetrically, (83) by λ′
j , as λ̇ does not have the required smoothness to be used as a test function in (83)

and, moreover, we wish to use (79) (as well as the resulting convergences in Step 1) which is only available
for test functions from V .

Let us add (83) and (84) and apply lim j→∞ lim supη→0 to get

α lim
η→0

(
‖λ̇η‖q−1

Lq (Q;RM+1)
−‖λ̇‖q−1

Lq (Q;RM+1)

)(
‖λ̇η‖Lq (Q;RM+1)−‖λ̇‖Lq (Q;RM+1)

)

≤ lim sup
η→0

α

T∫
0

∫
ω

(
|λ̇η|q−2λ̇η−|λ̇|q−2λ̇

)
·(λ̇η−λ̇) dz pdt

≤ lim
j→∞ lim sup

η→0

(
G(0)−G(T )+Gη(0)−Gη(T )︸ ︷︷ ︸

(I)

−η Var|·|(∇p yη|bη)︸ ︷︷ ︸
(II)1

+η

∫
ω

|∇pλ0|2 − |∇pλ
η(T )|2︸ ︷︷ ︸

(II)2

dz p

+
T∫

0

G′
t (t, y) + [Gη]′t (t, yη)︸ ︷︷ ︸

(III)

dt +
∫
Q

α |λ̇η|q−2λ̇η(λ′
j − λ̇) + δ∗

S(λ
′
j ) − δ∗

S(λ̇)︸ ︷︷ ︸
(IV)

dz pdt

+
T∫

0

2κ((λη − L (∇p yη|bη), λ′
j ))p︸ ︷︷ ︸

(V)

+ 2κ((λ − L •(ν, μ), λ̇η))p︸ ︷︷ ︸
(VI)

dt

+
∫
Q

(Θ(wη) − θtr)(λ
′
j − λ̇η) + (Θ(w) − θtr)(λ̇

η − λ̇) dzdt︸ ︷︷ ︸
(VII)

+ 2η∇pλ
η·∇pλ

′
j︸ ︷︷ ︸

(VIII)

dz pdt

)

≤ 2G(0) − 2G(T ) +
T∫

0

2G′
t (t, y) + 4κ((λ − L •(ν, μ), λ̇))p dt = 0.

Here, the first inequality is due to Hölder’s inequality. Further, we used that term (I) is not smaller than
G(0)−G(T ) by (81) and the non-negativity of (II)1 and (II)2. The convergence of the term between them to
0 is obvious. Term (III) is, owing to Step 1, bounded from above by G′

t (t, y). Now, as j → ∞ term (IV)
converges to 0 as λ̇η is bounded uniformly in Lq(Q; R

M+1). The limsup of the term (V), again by Step 1, is
bounded from above by ((λ − L •(ν, μ), λ̇))p; for the terms (VI) and (VII) we proceed analogously as in Step
1, while the term (VIII) converges to 0 as the limit η → 0+ is executed first.

Finally, note that the last equality is due to the balance of the deformation-related energy; cf. Remark
6. Hence, we obtained ‖λ̇η‖Lq (Q;RM+1) → ‖λ̇‖Lq (Q;RM+1) and from (76) by the uniform convexity of
Lq(Q; R

M+1) also (74).

Step 4: Enthalpy equation. It only remains to prove the enthalpy equation (70); to obtain it, we pass to
the limit η → 0+ in (37) following ideas of Step 7 in the proof of Theorem 1. In order to pass to the limit in
the terms expressing the heating due to dissipation, however, we need to show that η

∫
Q̄ ζ H η( dz pdt) → 0.

To see this, we actually need only to show that limη→0 ηVar|·|(∇p yη|bη) = 0 which we obtain by passing to
the limit in (34). Indeed,

lim sup
η→0

ηVar|·|(∇p yη|bη)

≤ lim sup
η→0

(
− Gη(T ) + Gη(0) +

T∫
0

〈[Gη]′λ(yη(t), bη(t), λη(t)), λ̇η
〉 + [Gη]′t (t, yη(t)) dt

)
. (85)

To pass to the limit on the right-hand side, we rewrite〈[Gη]′λ(yη(t), bη(t), λη(t)), λ̇η
〉 = 〈[Gη]′λ(yη(t), bη(t), λη(t)), λ̇

〉 + 〈[Gη]′λ(yη(t), λη(t)), λ̇η − λ̇
〉
. (86)
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Note that for the first term we get by Step 1 (if necessary, we can approximate λ̇ by {λ̇�}�∈N belonging to the
dense countable subset of Lq(Q; R

M+1) used in Step 1)

〈[Gη]′λ(yη(t), bη(t), λη(t)), λ̇
〉 ≤

T∫
0

〈
G′

λ(ν(t), μ(t), λ(t)), λ̇
〉

dt, (87)

while the second term converges to 0 in L1([0, T ]) owing to Step 3. Thus, we get

0 ≤ lim sup
η→0+

ηVar|·|(∇p yη|bη) ≤ G(0) − G(T ) +
T∫

0

〈
G′

λ(ν(t), μ(t), λ(t)), λ̇
〉 + G′

t (t, y(t)) dt ≤ 0, (88)

where the last inequality follows from Remark 6. ��
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ČR), and GP was supported by the grants P105/11/0411 (GA ČR) and 41110 (GA UK—Grant Agency of Charles University).

References

1. Abeyaratne, R., Chu, C., James, R.D.: Kinetics of materials with wiggle energies: theory and application to the evolution of
twinning microstructures in a Cu–Al–Ni shape memory alloy. Philos. Mag. A 73, 457–497 (1996)

2. Anza Hafsa, O., Mandallena, J.-P.: Relaxation theorems in nonlinear elasticity. Ann. I.H. Poincaré-AN 25, 135–148 (2008)
3. Anza Hafsa, O., Mandallena, J.-P.: Relaxation and 3D–2D passage theorems in hyperelasticity. J. Convex Anal. 19, 759–

794 (2012)
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