
SIAM J. CONTROL OPTIM. c© 2014 Society for Industrial and Applied Mathematics
Vol. 52, No. 5, pp. 3371–3400

SHAPE OPTIMIZATION IN CONTACT PROBLEMS WITH
COULOMB FRICTION AND A SOLUTION-DEPENDENT FRICTION

COEFFICIENT∗

P. BEREMLIJSKI† , J. HASLINGER‡ , J. V. OUTRATA§ , AND R. PATHÓ¶

Abstract. The present paper deals with shape optimization in discretized two-dimensional
(2D) contact problems with Coulomb friction, where the coefficient of friction is assumed to de-
pend on the unknown solution. Discretization of the continuous state problem leads to a system
of finite-dimensional implicit variational inequalities, parametrized by the so-called design variable,
that determines the shape of the underlying domain. It is shown that if the coefficient of friction
is Lipschitz and sufficiently small in the C0,1-norm, then the discrete state problems are uniquely
solvable for all admissible values of the design variable (the admissible set is assumed to be com-
pact), and the state variables are Lipschitzian functions of the design variable. This facilitates the
numerical solution of the discretized shape optimization problem by the so-called implicit program-
ming approach. Our main results concern sensitivity analysis, which is based on the well-developed
generalized differential calculus of B. Mordukhovich and generalizes some of the results obtained in
this context so far. The derived subgradient information is then combined with the bundle trust
method to compute several model examples, demonstrating the applicability and efficiency of the
presented approach.
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1. Introduction. Contact shape optimization is a branch of optimal control
theory in which the control variables, called in this context the design variables, are
linked to the geometry of elastic bodies that are in mutual contact. By changing
their shapes only, one strives to achieve the best possible or some a priori given
properties of the system. A design is evaluated by the so-called cost functional that
is subject to minimization. Common examples include minimizing the normal stress
along the contact surface (related to the minimization of the potential energy) or
attaining a given contact stress profile; see, e.g., [1]. Physical quantities, subject to
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Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
(petr.beremlijski@vsb.cz). This author was supported by the European Regional Development Fund
in the Centre of Excellence project IT4Innovations (CZ.1.05/1.1.00/02.0070) and by the project
SPOMECH - Creating a multidisciplinary R&D team for reliable solution of mechanical problems,
reg. no. CZ.1.07/2.3.00/20.0070 within Operational Programme “Education for competitiveness”
funded by Structural Funds of the European Union and state budget of the Czech Republic.

‡Department of Numerical Mathematics, Charles University in Prague, Sokolovská 83, 186 75
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optimization, are related to the design variables via a state relation, usually modeled
by partial differential equations or inequalities, whose complexity largely depends on
the physical phenomena involved. However, a common feature of various contact
shape optimization problems is their nonsmooth nature, which stems from the fact
that the respective control-to-state map, the mapping assigning to a design variable
the corresponding state variable, is typically nondifferentiable. This is a major source
of complications for sensitivity analysis as well as for numerical realization; see, e.g.,
[25, 10, 13] and the references therein.

Shape optimization problems similar to the type in this paper have been con-
sidered in [3, 2] and [11]. Whereas [3] and [2] were concerned with the standard
Coulomb friction model with a fixed friction coefficient, [11] investigates the Tresca
model with a coefficient of friction that may depend on the unknown solution. The
model from our paper seems to be even more involved; indeed, it is the model from
[3] where, in addition, the friction coefficient depends also on the solution. So the im-
plicit relationship, characteristic for the Coulomb friction, is here substantially more
complicated.

Our main workhorse is the implicit programming approach (ImP) which proved its
efficiency both in deriving optimality conditions for various problems of this type and
in their numerical solutions (e.g., [19, 21, 20]). This tool has already been successfully
used in [3, 2] and [11] in cooperation with a reliable bundle trust method of nonsmooth
optimization from [24]. The computation of the (sub)gradient information, required
by this method, can be conducted essentially in two different ways:

(i) If the underlying control-to-state map is piecewise C1 (PC1), it is convenient
to describe it via the generalized Jacobians of Clarke [5] and to obtain a
desired (sub)gradient completely within the generalized differential calculus
of Clarke. This way has been applied, e.g., in [3].

(ii) If one has to work with nonpolyhedral multifunctions, and hence the PC1

nature of the control-to-state mapping cannot be guaranteed, it seems rea-
sonable to perform the sensitivity analysis via the generalized differential
calculus of Mordukhovich [18], which is richer concerning specialized calculus
rules.

Since in the considered model we are concerned with rather complicated nonsmooth
and set-valued mappings, we have chosen the second approach. However, even some
upper estimates from the Mordukhovich calculus can sometimes be tightened if one
takes into account possible additional structural properties. This is very important,
because the computed (sub)gradient should be as precise as possible. We make use
of these possibilities in two cases in section 4.

The outline of the paper is as follows. We conclude this introductory section with
a review of the notation to be used, and we recall some definitions from variational
analysis that we will extensively use in section 4. Section 2 is devoted to the state
problem, which is first formulated in its continuous, infinite-dimensional setting. The
shape optimization problem is presented, as well. A discretization of the state problem
then leads to a system of parametrized, implicit, algebraic variational inequalities.
In section 3 we study its structural properties, including existence and uniqueness
of solutions, independently of the design parameter. The discrete state problem is
then reformulated as a generalized equation, and we show that it is strongly regular
in the sense of Robinson. Section 4 concerns sensitivity analysis; i.e., we compute a
Clarke’s subgradient of the composite cost functional using techniques from variational
analysis and the theory of generalized differentiation. This subgradient information
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is then supplied to the chosen bundle method for the numerical solution of the shape
optimization problem in section 5, where several numerical examples conclude the
paper.

We use the following notation: the symbol Hk(Ω) (k ≥ 0 integer) stands for the
Sobolev space of functions which are, together with their derivatives, up to order k
square integrable in Ω, i.e., elements of L2(Ω) (we set H0(Ω) := L2(Ω)). The norm in
Hk(Ω) will be denoted by ‖·‖k,Ω. Vector-valued functions and the respective spaces of
vector-valued functions will be denoted by bold characters. Bold characters will also
be used for vectors u = (u1, . . . , un)

�, v = (v1, . . . , vn)
� ∈ R

n, with the Euclidean
scalar product u · v := (u , v)n =

∑n
i=1 uivi and corresponding norm ‖u‖n =

√
u · u .

The open ball centered with center x ∈ R
n and radius R > 0 will be denoted by

BR(x ). Given two matrices A = (aij),B = (bij) ∈ R
n×n, their scalar product is

denoted by A : B =
∑n

i,j=1 aijbij . For a set A ⊂ X , A stands for the closure of A

with respect to the topology of X . For X = R
n and x̄ ∈ A we denote by N̂A(x̄ ) the

regular (Fréchet) normal cone to A at x̄ :

N̂A(x̄ ) :=

{
x ∗ ∈ R

n

∣∣∣∣∣ lim sup
x A−→x̄

(x ∗, x − x̄ )n
‖x − x̄‖n

≤ 0

}
,

whereas the limiting (Mordukhovich) normal cone to A at x̄ will be denoted by NA(x̄ ):

NA(x̄ ) := Lim sup
x A−→x̄

N̂A(x ).

Here the symbol “Lim sup” stands for the Kuratowski–Painlevé outer limit of sets (cf.

[23]). We say that A is normally regular at x̄ , provided N̂A(x̄ ) = NA(x̄ ).
On the basis of these notions, local behavior of multifunctions may be investigated

as follows. First, given a multifunction Q : Rn ⇒ R
m, let us denote its graph by

GrQ := {(x , y) ∈ R
n×R

m | y ∈ Q(x )}. The regular coderivative of the closed-graph

multifunction Q at the point (x̄ , ȳ) ∈ GrQ is given by the multifunction D̂∗Q(x̄ , ȳ) :
R

m ⇒ R
n, which is defined as follows:

D̂∗Q(x̄ , ȳ)(y∗) := {x ∗ ∈ R
n | (x ∗,−y∗) ∈ N̂GrQ(x̄ , ȳ)}.

Analogously, the multifunction D∗Q(x̄ , ȳ) : Rm ⇒ R
n, defined by

D∗Q(x̄ , ȳ)(y∗) := {x ∗ ∈ R
n | (x ∗,−y∗) ∈ NGrQ(x̄ , ȳ)},

is called the limiting (Mordukhovich) coderivative of Q at (x̄ , ȳ). In the case when

Q(x̄ ) is a singleton, one simply writes D̂∗Q(x̄ ) and D∗Q(x̄ ), respectively. More-
over, if Q happens to be continuously differentiable around x̄ , then both coderivative
mappings are single-valued and linear and amount to the adjoint Jacobian (∇Q(x̄ ))�.

Finally, we will need the notion of strong regularity [6], which in the case of a
variational inequality goes back to Robinson [22]. Toward this end, let us consider a
generalized equation (GE) of the form

(1) 0 ∈ G(x , y) +Q(y),

where G : Rn × R
m → R

m is continuously differentiable and Q : Rm ⇒ R
m is a

closed-graph multifunction. Let (1) be satisfied for a pair (x̄ , ȳ). We say that (1) is
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strongly regular at (x̄ , ȳ), provided there exist neighborhoods U of 0 and V of ȳ such
that the mapping

ξ 
→ {y ∈ V | ξ ∈ G(x̄ , ȳ) +∇yG(x̄ , ȳ)(y − ȳ) +Q(y)}

is single-valued and Lipschitz on U .
2. Problem formulation and discretization. The aim of this section is to

present a class of optimal shape design problems in solid mechanics whose discretized
form leads to the algebraic model analyzed in the following sections of this paper.

Let us consider a plane elastic body represented by a bounded domain Ω ⊂ R
2,

with the boundary decomposed into three nonoverlapping parts: ∂Ω = Γu ∪ Γp ∪ Γc.
On Γu the body is fixed; surface tractions of density P ∈ (L2 (Γp))

2 act on Γp. The
body is unilaterally supported by a rigid smooth foundation H along the portion Γc.
In addition to nonpenetration conditions prescribed on Γc, we will take into account
the influence of friction. Friction is involved in the model through the use of the local
Coulomb law, whose coefficient F depends on the solution itself. Finally, Ω is subject
to body forces of density F ∈ (L2(Ω))2. The equilibrium state of Ω is given by a
displacement vector u : Ω → R

2, which satisfies the following system of equations
and boundary conditions:

- equilibrium equations :

(2) div σ(u) + F = 0 in Ω;

- Hooke’s law :

(3) σ(u) = Cε(u), ε(u) :=
1

2

(
∇u + (∇u)T

)
;

- prescribed displacements :

(4) u = 0 on Γu;

- prescribed tractions :

(5) T (u) := σ(u)n = P on Γp;

- nonpenetration conditions :

(6) un := u · n ≤ d, Tn(u) := T (u) · n ≤ 0, Tn(u)(un − d) = 0 on Γc;

- Coulomb’s law of friction:

(7)

|Tt(u)| ≤ −F(|ut|)Tn(u), ut := u · t , Tt(u) := T (u) · t on Γc;

ut(x) �= 0 ⇒ Tt(u)(x) = F(|ut(x)|)Tn(u(x))
ut(x)

|ut(x)|
, x ∈ Γc.

The meanings of the symbols used in (2)–(7) are the following: σ(u) : Ω → R
2×2 is the

symmetric stress tensor corresponding to a displacement vector u ; ε(u) : Ω → R
2×2

is the respective linearized strain tensor; C is the fourth order elasticity tensor; n , t
are the unit outward normal and tangential vector to ∂Ω, respectively; T (u) is the
stress vector on ∂Ω; Tn(u), Tt(u) are the normal and tangential component of T (u),
respectively (and similarly for u , un, ut). Finally, d is the so-called gap function
characterizing the distance between Γc and H.
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We call any u satisfying (2)–(7) a classical solution to our problem. For the
mathematical analysis of this problem we use its weak form. Toward this end we
introduce the following spaces and sets of functions defined in Ω:

V = {v ∈ H1(Ω) | v = 0 on Γu},
V = V × V,

K = {v ∈ V | vn − d ≤ 0 on Γc}.

Definition 2.1. We call any u ∈ K satisfying the following implicit variational
inequality a weak solution to (2)–(7):

(P) a(u, v− u) + j(u, v)− j(u,u) ≥ L(v− u) ∀v ∈ K.

The bilinear form a, the linear form L, and the convex, nonsmooth functional j
are defined as follows:

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(u , v) :=

∫
Ω

Cε(u) : ε(v) dx ,

L(v) :=

∫
Ω

F · v dx +

∫
ΓP

P · v ds,

j(u , v) := −
∫
Γc

F(|ut|)Tn(u)|vt| ds.

Remark 2.2. Let us mention that the definition of problem (P) is presented only
in a formal manner; for the rigorous setting we refer the reader to [7]. Applying
Green’s formula to integrals in (P), we derive (2)–(7).

In addition to the assumptions on F and P we suppose that the coefficient of
friction F is represented by a nonnegative, continuous, and bounded function in R

1
+:

(9) ∃Fmax > 0 : 0 ≤ F ≤ Fmax in R
1
+, F ∈ C

(
R

1
+

)
.

We will need also a stronger property; namely, F is globally Lipschitz in R
1
+:

(10) ∃Clip > 0 : |F(x1)−F(x2)| ≤ Clip|x1 − x2| ∀x1, x2 ∈ R
1
+.

Finally, the elasticity tensor C is assumed to be symmetric and positive definite
resulting in the V -ellipticity of the bilinear form a on V :

∃γ > 0 : a(v , v) ≥ γ‖v‖21,Ω ∀v ∈ V .

In order to release the unilateral constraint v ∈ K we use the duality approach.
Toward this end we introduce the following spaces and sets defined on Γc:

X = {ϕ ∈ L2(Γc) | ∃v ∈ V : v = ϕ on Γc},
X+ = {ϕ ∈ X | ϕ ≥ 0 on Γc},
X ′

+ = {μ ∈ X ′ | 〈μ, ϕ〉 ≥ 0 ∀ϕ ∈ X+},

where X ′ stands for the topological dual of X .
Next we suppose that Ω is sufficiently smooth so that vn, vt ∈ X for any v ∈ V .

Finally, the symbol 〈·, ·〉 stands for a duality pairing between X and X ′ with the
property

v ∈ K ⇔ v ∈ V and 〈μ, vn − d〉 ≤ 0 ∀μ ∈ X ′
+.
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Definition 2.3. By a mixed formulation of (P) we mean a problem of finding
a pair (u, λ) ∈ V×X ′

+ satisfying

(M)

{
a(u, v− u) + j(u, v)− j(u,u) ≥ L(v− u)− 〈λ, vn − un〉 ∀v ∈ V,

〈μ− λ, un − d〉 ≤ 0 ∀μ ∈ X ′
+.

It can be shown (cf. [8]) that the first component u of the solution to (M) is
the displacement vector which solves (P), while λ is the Lagrange multiplier releasing
the unilateral constraint un − d ≤ 0 on Γc. Moreover, λ = −Tn(u). A suitable
discretization of (M) will play the key role in the sensitivity analysis of discretized
shape optimization problems.

Now we pass to shape optimization problems in which (M) is used as the state
relation. Here and in what follows we will suppose that only the contact part Γc is
the object of optimization. By Uad we denote the set of all admissible contact parts
Γc and by Oad the admissible set of the corresponding Ω’s. Next we suppose that the
data F , P , and C in Ω are the restrictions of functions F̂ , P̂ , and Ĉ, respectively,
defined in a hold all domain Ω̂, i.e., F = F̂ |Ω, P = P̂ |Γp , C = Ĉ|Ω, Ω ∈ Oad . To
emphasize that the previous spaces depend on a particular choice of Γc ∈ Uad , and
hence on Ω ∈ Oad , we write V (Ω), V (Ω), K (Ω), and for the trace spaces X(Γc),
X ′(Γc), etc. in what follows. Similarly, (M(Ω)) stands for the problem (M) defined
on Ω, and (u(Ω), λ(Γc)) stands for its solution.

Since the state problem (M(Ω)) may have more than one solution, the respective
control-to-state mapping Φ : Ω 
→ (u(Ω), λ(Γc)) is multivalued in general. Denote by
G its graph.

Let J : Δ → R
1, where Δ = {(Ω, y , μ) | Ω ∈ Oad , y ∈ V (Ω), μ ∈ X ′(Γc)}, be an

objective functional.
We define the following shape optimization problem:

(P′)

{
Find (Ω∗,u(Ω∗), λ(Γ∗

c)) ∈ G such that

(Ω∗,u(Ω∗), λ(Γ∗
c)) ∈ argmin {J(Ω,u(Ω), λ(Γc)) | (Ω,u(Ω), λ(Γc)) ∈ G} .

If Φ is single-valued, then the previous problem can be written as

(P)

{
Find Ω∗ ∈ Oad such that

Ω∗ ∈ argmin {J (Ω) | Ω ∈ Oad} ,

where J (Ω) := J(Ω,u(Ω), λ(Γc)). This transformation is at the heart of ImP, and
we use this approach for numerical solution of the shape optimization problem.

Now we pass to a discretization of (P′) and (P). It consists of a discretization of
the set Uad and of the state problem. We suppose that the shape of any Γc ∈ Uad is
uniquely determined by s parameters α = (α1, . . . , αs), which belong to a compact
set Uad ⊂ R

s, and s does not depend on Γc ∈ Uad . For instance, the vector α
can be formed by the coordinates of control points of Bézier curves. The number s
then determines the degree of polynomials or is related to the number of segments
if piecewise Bézier curves are used. If α ∈ Uad, then the corresponding domain will
be denoted by Ω(α) and termed the discrete design domain. Computations of the
state problem are usually not done directly on Ω(α) but on the so-called discrete
computational domain denoted as Ωh(α) with the contact part Γch(α). Indeed, in
most cases we use a finite element method. Since any Ω(α) is still a domain with
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the curved boundary, computations of the state problem are usually performed on
polygonal approximations Ωh(α) of Ω(α). Then h is related to the norm of the
triangulation of Ωh(α).

A discretization of our state problem will be based on the formulation (M(Ω(α))),
α ∈ Uad. Toward this end one has to use appropriate finite-dimensional approxi-
mations of V (Ω), X(Γc), X

′(Γc), X
′
+(Γc) denoted by V h(α), Xh(α), X

′
h(α), and

X ′
h+(α), respectively. These spaces contain functions defined on Ωh(α) and Γch(α),

respectively. Let us note that X ′
h(α) ⊆ (Xh(α))

′
; i.e., X ′

h(α) is a subspace of the
dual space to Xh(α) in general.

The approximation of (M(Ω(α))) reads as follows:

(Mh(α))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find (uh(α), λh(α)) ∈ V h(α)×X ′

h+(α) such that

a(uh(α), vh − uh(α)) + jh(uh(α), vh)− jh(uh(α),uh(α))

≥ L(vh − uh(α))− 〈λh(α), vhn − uhn(α)〉h ∀vh ∈ V h(α),

〈μh − λh(α), uhn(α)− d〉h ≤ 0 ∀μh ∈ X ′
h+(α).

The forms a and L are defined by (8) with Ω := Ωh(α), while

(11) jh(uh(α), vh) =

∫
Γch(α)

F(|uht(α)|)λh(α)|vht| ds,

and 〈·, ·〉h stands for a bilinear form on X ′
h(α)×Xh(α).

The discrete optimization problem is defined in a similar way as (P′) and (P),
but using Uad and (Mh(α)) instead of Uad and (M(Ω)), respectively. Assuming that
(Mh(α)) has a unique solution for any α ∈ Uad, the discrete form of (P) reads as
follows:

(Ph)

{
Find α∗ ∈ Uad such that

α∗ ∈ argmin{J (α) | α ∈ Uad} ,

where J (α) := J(Ωh(α),uh(α), λh(α)).
We conclude this section by presenting the algebraic form of (Mh(α)). Suppose

that dimV h(α) = m, dimXh(α) = p, and dimX ′
h(α) = q, where m, p, q do not

depend on α ∈ Uad. These spaces can be identified with R
m, Rp, and R

q, respectively,
andX ′

h+ with R
q
+. The algebraic counterpart of a and L is obvious. For the evaluation

of jh and 〈·, ·〉h given by integrals, we use appropriate integration formulas.
Let [·, ·]h : Rq × R

p → R
1 be a bilinear form which approximates 〈·, ·〉h:

(12) 〈μh, vhn〉h ∼ [μ, vn]h ,

where (μ, vn) ∈ R
q × R

p are the coordinates of (μh, vhn) ∈ X ′
h(α) × Xh(α) with

respect to a basis of X ′
h(α)×Xh(α). In what follows we suppose that this basis and

[·, ·]h are chosen in such a way that

(13) [μ, vn]h = 0 ∀vn ∈ R
p ⇔ μ = 0 in R

q

and

(14) [μ, vn]h ≤ 0 ∀μ ∈ R
q
+ ⇔ vn ≤ 0 in R

p.
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From (13)–(14) it easily follows that p = q so that X ′
h(α) = (Xh(α))

′. As a conse-
quence of (14), the nonpenetration condition 〈μh, vhn − d〉h ≤ 0 ∀μh ∈ X ′

+(α) from
(Mh(α)) can be expressed in the componentwise form for vn ∈ R

p:

(15) vn −ψ(α) ≤ 0 in R
p,

where ψ = (ψ1, . . . , ψp) : R
s → R

p is a new discrete gap-function which depends on
the discrete design variable α ∈ Uad and the distance function d. The frictional term
jh will be approximated as follows:

jh(uh(α), vh) =

∫
Γch(α)

F(|uht(α)|)λh(α)|vht| ds

≈
p∑

i=1

ωi(α)F(|(u t(α))i|)λi(α)|(v t)i|,(16)

where v t ∈ R
p, λ(α) ∈ R

p is the vector of coordinates of vht ∈ Xh(α), and λh(α) ∈
X ′

h+(α), with respect to the corresponding basis. Further, (a)i stands for the ith
coordinate of a ∈ R

p, and ωi(α), i = 1, . . . , p, are weights of the used integration
formula. We will suppose that ωi(α) > 0 ∀i = 1, . . . , p, ∀α ∈ Uad.

To simplify notation, the last term in (16) will be written as (ω(α) •F(|u t(α)|) •
λ(α), |v t|)p, where a • b := (a1b1, . . . , apbp) ∈ R

p, a = (a1, . . . , ap), b = (b1, . . . , bp).
On the basis of (12)–(16) the algebraic form of (Mh(α)) reads as follows:

(M̃(α))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find (u(α),λ(α),λalg(α)) ∈ R

m × R
p
+ × R

p
+ :

(A(α)u(α), v − u(α))m + (ω(α) • F(|u t(α)|) • λ(α), |v t| − |u t(α)|)p
≥ (L(α), v − u(α))m + (λalg(α), vn − un(α))p ∀v ∈ R

m,

(μ− λalg(α),un(α)−ψ(α))p ≤ 0 ∀μ ∈ R
p
+,

where λalg(α) ∈ R
p
+ is the algebraic Lagrange multiplier releasing the unilateral

constraint (15). In the present form, problem (M̃(α)) has too many unknowns.
On the other hand, there exists a relation between λalg(α) and λ(α) which enables
us to eliminate one of them. If, for example, X ′

h(α) consists of piecewise constant
functions on a specific partition of Γch(α), then it can be shown that ωi(α)λi(α) =
(λalg(α))i (see [12]). Using this result, problem (M̃(α)) can be expressed in terms of
(u(α),λalg(α)). For simplicity of notation we write λ(α) instead of λalg(α). Thus
the new problem reads as follows:

(M(α))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find (u ,λ) := (u(α),λ(α)) ∈ R

m × R
p
+ :

(A(α)u , v − u)m + (F(|T (α)u |) • λ(α), |T (α)v | − |T (α)u |)p
≥ (L(α), v − u)m + (λ,N (α)v −N (α)u)p ∀v ∈ R

m,

(μ− λ,N (α)u −ψ(α))p ≤ 0 ∀μ ∈ R
p
+,

where A(α) ∈ R
m×m is a symmetric, positive definite matrix, N (α),T (α) ∈ R

p×m

are matrices representing the linear mappings v 
→ vn and v 
→ v t, respectively, and
L(α) is a discretization of L on Ωh(α), α ∈ Uad.

3. Analysis of the discrete state problem (M(α)). In this section we study
the existence and uniqueness of the solution to (M(α)) and its properties as a function
of the discrete design variable α ∈ Uad.
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In addition to (9) and (10) we will need the following assumptions on the data of
(M(α)):

The matrices A(α) are symmetric ∀α ∈ Uad and uniformly positive definite

with respect to α ∈ Uad:

∃γ > 0 : (A(α)x , x )m ≥ γ‖x‖2m ∀x ∈ R
m ∀α ∈ Uad;(17)

the mappings α 
→ Z(α) ∈ {A(α),L(α),ψ(α),N (α),T (α)} are(18)

continuously differentiable in Uad;

the discrete gap function ψ is nonnegative in Uad;(19)

∃β > 0 : sup
v∈Rm

(μ,N (α)v )p
‖v‖m

≥ β‖μ‖p ∀μ ∈ R
p ∀α ∈ Uad;(20)

the Euclidean norm of each row of N (α) and T (α) is 1 ∀α ∈ Uad;(21)

each column of N (α) and T (α) contains at most one nonzero element(22)

for every α ∈ Uad;

N (α)(Rm) = N (α)(kerT (α)) ∀α ∈ Uad.(23)

Let α ∈ Uad be fixed. To prove the existence of a solution to (M(α)) we use
a fixed-point approach. For any (ϕ, g) ∈ R

p
+ × R

p
+ we define the following auxiliary

problem (since α ∈ Uad is fixed, it will be omitted in arguments of functions):

(M(ϕ, g))

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find (u ,λ) := (u(ϕ, g),λ(ϕ, g)) ∈ R

m × R
p
+ such that

(Au , v − u)m + (F(ϕ) • g , |Tv | − |Tu |)p
≥ (L, v − u)m + (λ,Nv −Nu)p ∀v ∈ R

m,

(μ− λ,Nu −ψ)p ≤ 0 ∀μ ∈ R
p
+.

It is well known that (M(ϕ, g)) has a unique solution for any (ϕ, g) ∈ R
p
+ × R

p
+. In

addition, u ∈ K, and it satisfies the variational inequality

(24) (Au , v − u)m + (F(ϕ) • g , |Tv | − |Tu |)p ≥ (L, v − u)m ∀v ∈ K,

where

(25) K = {x ∈ R
m | Nx −ψ ≤ 0}.

The vector λ ∈ R
p
+ in (M(ϕ, g)) is the Lagrange multiplier releasing the inequality

constraint in K.
Define a mapping Ξ : Rp

+ × R
p
+ → R

p
+ × R

p
+ by

Ξ(ϕ, g) := (|Tu |,λ) ∀(ϕ, g) ∈ R
p
+ × R

p
+,

where (u ,λ) solves (M(ϕ, g)). Comparing the definitions of (M(ϕ, g)) and (M(α))
we see that the solution to (M(|Tu |,λ)) is a solution of (M(α)), too. In other
words, (|Tu |,λ) is a fixed-point of Ξ in R

p
+ × R

p
+. For the proof of the existence

and uniqueness of a fixed-point we use the Brouwer and Banach fixed-point theorems,
respectively.

In [2] it has been shown that if (9), (17), (20), (21), and (23) are satisfied, then
the solutions (u ,λ) of (M(ϕ, g)) are bounded:

(26) ‖u‖m ≤ 1

γ
‖L‖m, ‖λ‖p ≤ 1

β

(
‖A‖
γ

+ 1

)
‖L‖m,
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where ‖A‖ := sup{‖A(α)‖ | α ∈ Uad}, and γ and β are the constants from (17) and
(20), respectively. From (21) and (26) it follows that

(27) ‖Ξ(ϕ, g)‖p+p ≤ ‖u‖m + ‖λ‖p ≤
[
1

γ
+

1

β

(
‖A‖
γ

+ 1

)]
‖L‖m =: R.

Remark 3.1. Since γ and β do not depend on α ∈ Uad, neither does the constant
R in (27).

It is readily seen that the mapping Ξ is continuous in R
p
+ ×R

p
+. From this, (27),

and the Brouwer fixed-point theorem, we obtain the following existence result.
Theorem 3.2. Let (9), (17), (20), (21), and (23) be satisfied. Then problem

(M(α)) has at least one solution for any α ∈ Uad. In addition, all solutions (u,λ)
lie in (Rm × R

p
+) ∩ BR(0), where R is defined as in (27) and does not depend on

α ∈ Uad.
Next we show that if, in addition to (9), F satisfies (10), then Ξ is Lipschitz in

(Rp
+ × R

p
+) ∩ BR(0 ) and the modulus of Lipschitz continuity will be estimated.

Let (ϕ(i), g (i)) ∈ (Rp
+ × R

p
+) ∩ BR(0 ) be given and denote by (u (i),λ(i)) the

solutions of (M(ϕ(i), g (i))), i = 1, 2. From (24) we know that u (i) ∈ K solves the
following variational inequality:

(A(i))

{(
Au(i), v (i) − u(i)

)
m
+
(
F(ϕ(i)) • g (i), |Tv | − |Tu(i)|

)
p

≥
(
L, v − u(i)

)
m

∀v ∈ K,

i = 1, 2. Inserting v = u (2) into (A(1)) and v = u (1) into (A(2)), adding these
inequalities, and using (17), we obtain

(28) γ‖u(1) − u(2)‖2m ≤
(
F(ϕ(1)) • g (1) −F(ϕ(2)) • g (2), |Tu (2)| − |Tu(1)|

)
p
.

Adding and subtracting the term F(ϕ(1)) • g (2) on the right of (28) and using (9),
(10), the Cauchy–Schwarz inequality, and (21), we get

γ‖u(1) −u(2)‖2m ≤
(
Fmax‖g (2) − g (1)‖p +Clip‖g (2)‖∞‖ϕ(1) −ϕ(2)‖p

)
‖u(1) −u(2)‖m.

Thus

‖Tu(1) −Tu(2)‖p ≤ ‖u(1) − u (2)‖m

≤ 1

γ

(
Fmax‖g (1) − g (2)‖p + ClipR‖ϕ(1) −ϕ(2)‖p

)
≤ 1

γ
max{Fmax, ClipR}‖(ϕ(1) −ϕ(2), g (1) − g (2))‖p+p.(29)

It remains to estimate ‖λ(1)−λ(2)‖p. From the definition of (M(ϕ(i), g (i))) it follows
that (

Au (i), v
)
m

= (L, v)m +
(
λ(i),Nv

)
p

∀v ∈ kerT , i = 1, 2,

and consequently,(
λ(1) − λ(2),Nv

)
p
=
(
A(u(1) − u(2)), v

)
m

∀v ∈ kerT .

From this and (23) we get

β‖λ(1) − λ(2)‖p ≤ ‖A‖‖u(1) − u(2)‖m.
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This, and (29) give the following estimate:

(30) ‖Ξ(ϕ(1), g (1))− Ξ(ϕ(2), g (2))‖p+p ≤ ‖u(1) − u (2)‖m + ‖λ(1) − λ(2)‖p

≤ β + ‖A‖
βγ

max{Fmax, ClipR}‖(ϕ(1) −ϕ(2), g (1) − g (2))‖p+p.

Theorem 3.3. In addition to the assumptions of Theorem 3.2, let (10) be sat-
isfied. Then the mapping Ξ is Lipschitz in (Rp

+ × R
p
+) ∩ BR(0) with the Lipschitz

modulus equal to
β + ‖A‖
βγ

max{Fmax, ClipR}, where Fmax, Clip and R are as in (9),

(10) and (27), respectively.
A direct consequence of this theorem is the following uniqueness result.
Theorem 3.4. Let all the assumptions of Theorem 3.3 be satisfied. If

(31) max{Fmax, ClipR} <
βγ

β + ‖A‖ ,

then Ξ is contractive in (Rp
+ ×R

p
+)∩BR(0). Consequently Ξ has a unique fixed-point

or, equivalently, (M(α)) has a unique solution for any α ∈ Uad. Moreover, the upper
bound (31) does not depend on α ∈ Uad.

Let us comment briefly on the assumptions (17)–(23). Since A(α) is positive
definite for any α ∈ Uad, the matrix function A is continuous in Uad, and Uad is
compact, we get (17). Next we will suppose that the finite-dimensional space V h(α)
consists of piecewise polynomial functions constructed over a triangulation Th(α) of
Ωh(α). In addition to the requirement that dimV h(α) does not depend on α ∈ Uad,
we suppose that the position of the nodes of Th(α) depends solely on the position
of α in a smooth way and that the nodes themselves do not change their neighbors
when changing α. If this is so, then (18) is satisfied (cf. [9]). The condition ψ ≥ 0
in Uad will be included as a constraint in the definition of Uad. Hence (19) is fulfilled.
The remaining assumptions (20)–(23) will be easily satisfied when the Lagrange type
spaces V h(α) are used. In this case the vector v of the coordinates of vh ∈ V h(α)
consists of the values of vh at the nodal points (see [4]). Then each row of the matrices
N (α), T (α) contains at least one and at most two nonzero elements ∀α ∈ Uad,
namely the coordinates of n , and t , respectively, at the corresponding contact node,
i.e., the node of Th(α) lying on Γch(α) \ Γu(α). From this, (21) follows. Moreover,
the inequality constraint (15) can be split into m inequality constraints imposed just
on two components of v which represent the displacement at the individual contact
nodes. Thus (22) is satisfied. Clearly, N (α) has the full row rank ∀α ∈ Uad. From
this (20) follows, making use of the compactness of Uad. Finally, it is also readily seen
that (23) is satisfied.

In the rest of the paper we will assume that all assumptions of Theorem 3.4 are
satisfied, ensuring in particular that the state problems (M(α)), α ∈ Uad are uniquely
solvable. In the next part of this section we introduce a reduced version of (M(α)),
formulated as a generalized equation, and show that its solution is a Lipschitz function
of the design variable α ∈ Uad. Although this fact could be proven directly, in our
presentation it will be a consequence of the strong regularity condition that will play
an important role in sensitivity analysis, too.

We start with an auxiliary result. Keeping α ∈ Uad fixed, we show in the next
theorem that the solution of (M(α)) is a locally Lipschitzian function of the load
vector L. Since the domain, corresponding to the design vector α ∈ Uad, will be
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fixed and L will be variable, let us relabel the problem (M(α)) as (M(L)) and the
auxiliary problems (M(ϕ, g)) as (M(L,ϕ, g)). Also, α in the argument of functions
will be omitted.

Denote the modulus of Lipschitz continuity of Ξ (cf. (30)) by

δ(‖L‖m) :=
β + ‖A‖
βγ

max{Fmax, R(‖L‖m)Clip},

where (cf. (27))

(32) R(‖L‖m) =

[
1

γ
+

1

β

(
‖A‖
γ

+ 1

)]
‖L‖m =: κ‖L‖m.

Recall that the function δ and the constant κ do not depend on α ∈ Uad. Using this
notation, we may rewrite Proposition 3.5 from [2] as follows.

Lemma 3.5. Let (u(i),λ(i)) be the solutions of (M(L(i),ϕ, g)), i = 1, 2. Then

(33) ‖(u(1),λ(1))− (u(2),λ(2))‖m+p ≤ κ‖L(1) − L(2)‖m

with κ from (32).
Remark 3.6. It is worth noticing that (33) holds for any (ϕ, g) ∈ R

p
+ × R

p
+ and

any α ∈ Uad. Now we may prove the announced Lipschitz continuity result.
Proposition 3.7. Let α ∈ Uad be fixed and let the assumptions of Theorem 3.4

be satisfied, i.e., δ(‖L‖m) < 1 for some L ∈ R
m. Then there exist positive constants

ε and K := K(L, ε) such that

‖(u,λ)− (ũ, λ̃)‖m+p ≤ K‖L− L̃‖m ∀L, L̃ ∈ Bε(L),

where (u,λ), (ũ, λ̃) denote the unique solutions of (M(L)) and (M(L̃)), respectively.
Proof. Existence of ε > 0 satisfying

(34) δ(‖L′‖m) < 1 ∀L′ ∈ Bε(L)

follows immediately by continuity of the function δ : R1
+ → R

1
+. We choose such ε and

denote r := max{δ(‖L′‖m) | L′ ∈ Bε(L)}. From (34) it holds that 0 < r < 1. Further,

let L, L̃ ∈ Bε(L) and (ϕ, g) ∈ R
p
+ × R

p
+ be arbitrary. Then we build recurrently the

following sequences:

• Let (u(0),λ
(0)

) denote the solution of the auxiliary problem (M(L,ϕ, g)).

For each k ∈ N then denote by (u (k),λ
(k)

) ∈ R
m × R

p
+ the unique solution

to the problem
(
M

(
L, |Tu(k−1)|,λ(k−1)))

.

• Let (ũ (0), λ̃
(0)

) stand for the solution of (M(L̃,ϕ, g)). Analogously, for each

k ∈ N denote by (ũ(k), λ̃
(k)

) ∈ R
m × R

p
+ the solution of the contact problem(

M
(
L̃, |Tũ(k−1)|, λ̃

(k−1)))
.

• Finally, for every k ∈ N let (U (k),Λ(k)) stand for the unique solution of

problem
(
M

(
L, |Tũ(k−1)|, λ̃(k−1)))

.

It follows from the contractivity of Ξ that the sequences
{(

|Tu (k)|,λ(k))}
k∈N

and{(
|Tũ (k)|, λ̃(k))}

k∈N
of elements from R

p
+ × R

p
+ tend to the unique fixed-points of

Ξ in R
p
+ × R

p
+; i.e., the sequences

{
(u(k),λ

(k)
)
}
k∈N

and
{
(ũ(k), λ̃

(k)
)
}
k∈N

converge
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to the unique solutions (u ,λ) and (ũ , λ̃) of (M(L)) and (M(L̃)), respectively. Now,
one has

‖(u (k),λ
(k)

)− (ũ(k), λ̃
(k)

)‖m+p

≤ ‖(u(k),λ
(k)

)− (U (k),Λ(k))‖m+p + ‖(U (k),Λ(k))− (ũ(k), λ̃
(k)

)‖m+p

≤ δ(‖L‖m)
∥∥(|Tu(k−1)|,λ(k−1))− (

|Tũ(k−1)|, λ̃(k−1))‖p+p + κ‖L− L̃‖m

≤ r‖(u (k−1),λ
(k−1)

)− (ũ (k−1), λ̃
(k−1)

)‖m+p + κ‖L− L̃‖m,

making use of (30) and (33). Since the above estimate holds for every k ∈ N, we
obtain by induction

‖(u(k),λ
(k)

)− (ũ (k), λ̃
(k)

)‖m+p

≤ rk‖(u(0),λ
(0)

)− (ũ (0), λ̃
(0)

)‖m+p + (rk−1 + · · ·+ r + 1)κ‖L− L̃‖m
≤ rkκ‖L− L̃‖m + (rk−1 + · · ·+ r + 1)κ‖L− L̃‖m
≤ κ

1− r
‖L− L̃‖m.

Finally, letting k → ∞ we finish the proof.
Next, we present a reduced version of the state problem (M(α)), α ∈ Uad, that

involves only variables defined on the contact boundary, i.e., ut(α) = T (α)u(α),
un(α) = N (α)u(α), and λ(α). The following generalizes the procedure described
in section 3 of [3] (see also [2]).

Let α ∈ Uad be fixed. Observe that conditions (21) and (22) yield matrices N (α)
and T (α) with orthonormal rows, respectively. Moreover, it is easy to check that
(23) implies N (α)�T (α) = 0 ∈ R

p×p. In other words, assuming (21)–(23), the rows
of N (α) and T (α) form a system of 2p orthonormal vectors for each α ∈ Uad. We
complete this set by (m−2p) vectors into an orthonormal basis and define the matrix
I (α) ∈ R

(m−2p)×m as the one containing these vectors in its rows. Thus, for any
displacement field v ∈ R

m, the vector v int(α) := I (α)v ∈ R
(m−2p)×m contains the

nodal values of v at the noncontact nodes of Th(α), and the following decomposition
holds true:

(35) v = I�(α)v int +T�(α)v t +N�(α)vn.

Further, let us define the matrices (to unburden the notation, we skip the argument
α)AII := IAI�, AIT := IAT�, AIN := IAN�, AS := A − I�A−1

II IA, Atn :=

TASN
� (analogously for Att, Ant, Ann), and the vectors LS := L −AI�A−1

II IL,
Lt := TLS , Ln := NLS . Employing this notation and inserting appropriate test
vectors v ∈ R

m into (M(ϕ, g)) ((ϕ, g) ∈ R
p
+ × R

p
+ fixed), one may easily derive

the following equivalent system of equations and generalized equations for the new
unknowns (u int,u t,un,λ) := (u int(α),un(α),u t(α),λ(α)):

(36) AII(α)u int = I (α)L(α)−AIT (α)u t −AIN (α)un

and

(37)

⎧⎪⎨⎪⎩
0 ∈ Att(α)u t +Atn(α)un − Lt(α) + ∂j(u t),

0 = Ant(α)u t +Ann(α)un − λ− Ln(α),

0 ∈ −un +ψ(α) +NR
p
+
(λ),
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where

j(u t) := (F(ϕ) • g , |u t|)p
and the symbols ∂, NR

p
+
denote the standard convex subdifferential and normal cone

mapping, respectively. Finally, dropping (36) and inserting the fixed-point of Ξ into
(37), we arrive at the reduced state problem

(38)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find (un,u t,λ) := (un(α),u t(α),λ(α)) ∈ R

3p such that

0 ∈ Att(α)u t +Atn(α)un − Lt(α) +Qt(u t,λ),

0 = Ant(α)u t +Ann(α)un − λ− Ln(α),

0 ∈ −un +ψ(α) +NR
p
+
(λ).

Here the multivalued mapping Qt : R
p × R

p ⇒ R
p takes the following form:(

Qt(x , z )
)
i
:= F(|xi|)zi∂|xi| ∀i = 1, . . . , p, ∀x , z ∈ R

p.

As we already know, this system has a unique solution (ut,un,λ) which, together
with u int := u int(α) computed from (36), gives the unique solution to (M(α)),
provided the assumptions of Theorem 3.4 are satisfied.

Introducing the state vector y := (ut,un,λ) we may rewrite (38) in a more
compact form

(39)

{
Find y ∈ R

3p such that

0 ∈ F (α, y) +Q(y),

where for each α ∈ Uad and z = (z 1, z 2, z 3) ∈ (Rp)3,

F (α, z ) =

⎡⎣Att(α) Atn(α) 0
Ant(α) Ann(α) −E

0 −E 0

⎤⎦⎡⎣z 1

z 2

z 3

⎤⎦−

⎡⎣ Lt(α)
Ln(α)
−ψ(α)

⎤⎦ , Q(z ) =

⎡⎣Qt(z 1, z 3)
0

NR
p
+
(z 3)

⎤⎦ ,
and E ∈ R

p×p stands for the (p× p) identity matrix.
With the generalized equation (39) we associate the control-to-state mapping

S : Uad � α 
→ {y ∈ R
3p | 0 ∈ F (α, y) +Q(y)}

and denote by GrS its graph. By Theorem 3.4 we know that S is single-valued in
Uad. Its Lipschitz continuity follows from the next result.

Proposition 3.8. Let the assumptions of Theorem 3.4 be satisfied. Then the
generalized equation (39) is strongly regular at each (α, y) ∈ GrS.

Proof. Let a pair (α, y) ∈ GrS and a parameter ξ ∈ R
3p be fixed and observe

that F is linear in the second variable. Hence we need to verify that the mapping

(40) ξ 
→ {y ′ ∈ R
3p | ξ ∈ F (α, y ′) +Q(y ′)}

is single-valued and Lipschitz in some neighborhood of 0 . The generalized equation
in (40), written componentwise for y ′ = (u ′

t,u
′
n,λ

′), ξ = (ξt, ξn, ξλ), reads

(41)

⎧⎪⎨⎪⎩
ξt ∈ Att(α)u

′
t +Atn(α)u

′
n − Lt(α) +Qt(u

′
t,λ

′),
ξn = Ant(α)u

′
t +Ann(α)u

′
n − λ′ − Ln(α),

ξλ ∈ −u ′
n +ψ(α) +NR

p
+
(λ′).
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Now, we rewrite the system (41) as follows:
(42)⎧⎪⎪⎪⎨⎪⎪⎪⎩

Find (u ′
t,u

′
n,λ

′) ∈ R
3p such that

0 ∈ Att(α)u
′
t +Atn(α)(u

′
n + ξλ)− (Lt(α) + ξt +Atn(α)ξλ) +Qt(u

′
t,λ

′),
0 = Ant(α)u

′
t +Ann(α)(u

′
n + ξλ)− λ′ − (Ln(α) + ξn +Ann(α)ξλ),

0 ∈ −(u ′
n + ξλ) +ψ(α) +NR

p
+
(λ′).

Observe that (42) represents the Signorini problem with Coulomb friction and a
solution-dependent coefficient of friction on the domain given by α ∈ Uad and with
load vector

(43) Lξ =

⎡⎣ Lt(α) + ξt +Atn(α)ξλ
Ln(α) + ξn +Ann(α)ξλ

−ψ(α)

⎤⎦
having the solution y ′ = (u ′

t,u
′
n + ξλ,λ

′). From Proposition 3.7 we know that for
sufficiently small ε > 0 and ξ ∈ V := Bε(0 ) contact problem (M(α)) with the
load vector Lξ has exactly one solution, i.e., (41) is uniquely solvable. Thus the
mapping defined in (40) is single-valued. To see that it is Lipschitz on V as well, let
ξ(1), ξ(2) ∈ V be arbitrary and denote the corresponding solutions of (41) by y (1),
y (2). Then, employing Proposition 3.7 (here, c > 0 stands for a generic constant
independent of ξ(i), y (i)) we have

‖y (1) − y (2)‖3p ≤ ‖u(1)
t − u

(2)
t ‖p + ‖(u(1)

n + ξ
(1)
λ )− (u(2)

n + ξ
(2)
λ )‖p

+ ‖λ(1) − λ(2)‖p + ‖ξ(1)λ − ξ(2)λ ‖p
≤ c‖Lξ(1) − Lξ(2)‖3p + ‖ξ(1)λ − ξ(2)λ ‖p
≤ c‖ξ(1) − ξ(2)‖3p,

and the proof is complete.
The next statements are immediate consequences of Proposition 3.8.
Corollary 3.9. Let the assumptions of Theorem 3.4 be satisfied. Then
(i) S is Lipschitz in Uad;
(ii) for every continuous cost functional J : Uad×R

3p → R, the shape optimization
problem

(P̂)

{
Find α∗ ∈ Uad such that

α∗ ∈ argmin{J (α) := J(α, S(α)) | α ∈ Uad}

has at least one solution.
Proof. Assertion (i) follows from Theorem 2.1 in [6]; assertion (ii) is an easy

consequence of (i) and the compactness of Uad.

4. Sensitivity analysis. In what follows, we assume that a continuously differ-
entiable1 cost functional J : Uad × R

3p → R is given. The composite cost functional
J , resulting from ImP is only locally Lipschitz. Therefore the minimization problem

1This smoothness assumption is unnecessarily strong and is imposed only to avoid unimportant
technical issues in the presentation. From a theoretical point of view, a locally Lipschitz J would
work as well.



3386 BEREMLIJSKI, HASLINGER, OUTRATA, AND PATHÓ

(P̂) has to be solved by an algorithm of nondifferentiable optimization. Each evalua-
tion of the function J is costly because it involves solving the contact problem (39).
Hence, derivative-free methods are not preferred. To the bundle methods, however,
which proved to be rather efficient in this context, one has to supply a subgradient
ξ ∈ ∂J (ᾱ) at each step ᾱ ∈ Uad. This section is devoted to its computation.

Let us start with the following observation. From the chain rule in [5, Theo-
rem 2.6.6], Lipschitz continuity of S, and [17, Corollary 3.3.2], the following holds:

∂J (ᾱ) = ∇αJ(ᾱ, ȳ) +
(
∂S(ᾱ)

)T∇yJ(ᾱ, ȳ)

⊃ ∇αJ(ᾱ, ȳ) +D∗S(ᾱ)(∇yJ(ᾱ, ȳ)).

Therefore, it is sufficient to determine an element v∗ ∈ D∗S(ᾱ)(∇yJ(ᾱ, ȳ)) and to set
ξ := ∇αJ(ᾱ, ȳ) + v∗, which yields a desired Clarke’s subgradient. The computation
of one such v∗ is described in the next theorem.

Theorem 4.1. Let (ᾱ, ȳ) ∈ GrS be given. Then for each v∗ ∈ D∗S(ᾱ)(∇yJ(ᾱ, ȳ))
there exists an adjoint variable p∗ ∈ R

3p such that

(44) v∗ = ∇αF (ᾱ, ȳ)
Tp∗

and p∗ is a solution to the adjoint GE (AGE):

(45) 0 ∈ ∇yJ(ᾱ, ȳ) +∇yF (ᾱ, ȳ)
Tp∗ +D∗Q(ȳ,−F (ᾱ, ȳ))(p∗).

Proof. Due to the strong regularity condition (see Proposition 3.8) the assump-
tions of [14, Theorem 5] are satisfied. See also [2, Theorem 4.1].

Note that Theorem 4.1, in general, provides only an upper approximation
of ∂J (ᾱ) since the vector v∗ constructed using (44) and (45) may lie outside of
D∗S(ᾱ)(∇yJ(ᾱ, ȳ)). However, this can happen only at points where GrQ is not
normally regular, and even if it does happen (at a nonregular point), the used bundle
method may not inevitably collapse. In this case a recovery step has to be made in
which the bundle method is provided with a correct subgradient. Nevertheless, com-
putational experience shows that this occurs very rarely; therefore we will rely on the
construction of subgradients via the AGE (45) as described in Theorem 4.1.

The rest of this section is devoted to expressing the coderivative D∗Q in terms
of the problem data, as D∗Q is the only unknown quantity remaining in (45). In
doing so, we follow closely [2] and begin with reordering the equations in (39) so that
y ∈ (R3)p, with y i = ((u t)i, (un)i, λi)

T comprising all state variables associated with
the ith contact node (i = 1, . . . , p). This way the multifunction Q takes the form

(46) Q(y) =

⎡⎢⎢⎢⎣
Φ(y1)
Φ(y2)

...
Φ(yp)

⎤⎥⎥⎥⎦ ,
where Φ : R2 × R+ ⇒ R

3 is defined as

(47) Φ(a) :=

⎡⎣F(|a1|)a3∂|a1|
0

NR+(a3)

⎤⎦ ∀a ∈ R
2 × R+.
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Due to the above reordering (46) and [23, Example 6.10], one has for every (ȳ , q̄) ∈
GrQ and p∗ ∈ (R3)p

(48) D∗Q(ȳ , q̄)(p∗) =

⎡⎢⎢⎢⎣
D∗Φ(ȳ1, q̄1)(p

∗
1)

D∗Φ(ȳ2, q̄2)(p
∗
2)

...
D∗Φ(ȳp, q̄p)(p

∗
p)

⎤⎥⎥⎥⎦ .
Therefore, we will consider arbitrary (ā , b̄) ∈ GrΦ, b∗ ∈ R

3 and compute the
coderivative D∗Φ(ā , b̄)(b∗) according to the position of (ā , b̄) as given by the fol-
lowing partition of GrΦ:

(49) GrΦ = L ∪M1 ∪M2 ∪M+
3 ∪M−

3 ∪M4,

where the sets on the right-hand side of (49) are defined as in Table 4.1. From a
mechanical point of view, partition (49) represents all possible contact and sliding
modes of a point on the contact boundary.

Table 4.1

Contact and sliding modes of (a, b) ∈ GrΦ.

No contact: Weak contact: Strong contact:
a3 = 0, b3 < 0 a3 = 0, b3 = 0 a3 > 0, b3 = 0

Sliding:

L

M2 M1a1 �= 0,
b1 = sgn(a1)F(|a1|)a3

Weak sticking:
M4 M−

3a1 = 0,
|b1| = F(0)a3
Strong sticking:

××× ××× M+
3a1 = 0,

|b1| < F(0)a3

As easily seen from their definitions, the sets L, M1, and M+
3 are open in the

relative topology of GrΦ; i.e., each Σ ∈ {L,M1,M
+
3 } satisfies

(50) ∀(ā , b̄) ∈ Σ ∃ neighborhood O : GrΦ ∩ O ⊂ Σ.

This makes the analysis in these cases substantially easier, since

(51) NGrΦ(ā , b̄) = NΣ(ā , b̄) = Lim sup
(a ,b)

Σ→(ā ,
¯b)

N̂Σ(a , b),

as will be used frequently below.
Proposition 4.2. Let (ā, b̄) ∈ L and b∗ ∈ R

3 be given. Then

(52) D∗Φ(ā, b̄)(b∗) =

{
{0} × {0} × R if b∗3 = 0,

∅ otherwise.

Proof. Let (a , b) ∈ L be arbitrary. Then there exists a neighborhood O of (a , b)
such that

GrΦ ∩O =
(
R× R× {0}

)
×
(
{0} × {0} × R

)
∩ O.
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Therefore,

(53) N̂GrΦ(a , b) =
(
{0} × {0} × R

)
×
(
R× R× {0}

)
,

and the assertion follows directly from (51) and the definition of D∗Φ.
Proposition 4.3. Let (ā, b̄) ∈M+

3 and b∗ ∈ R
3 be given. Then

(54) D∗Φ(ā, b̄)(b∗) =

{
R× {0} × {0} if b∗1 = 0,

∅ otherwise.

Proof. In this case, for every (a , b) ∈ M+
3 one can find a suitable neighborhood

O such that

GrΦ ∩O =
(
{0} × R× R

)
×
(
R× {0} × {0}

)
∩ O,

whence

(55) N̂GrΦ(a , b) =
(
R× {0} × {0}

)
×
(
{0} × R× R

)
.

The rest follows again from (51) and the definition of the coderivative.
Convention. For convenience, in what follows F will signify the even extension

of the coefficient of friction to the whole R, i.e., F(x) := F(−x) ∀x < 0, so that
F(|x|) = F(x) ∀x ∈ R. Clearly, F is (globally) Lipschitz in R.

Proposition 4.4. Let (ā, b̄) ∈M1 and b∗ ∈ R
3 be given. Then

(56) D∗Φ(ā, b̄)(b∗) =

⎡⎣D∗F(ā1)(sgn(ā1)ā3b
∗
1)

0
sgn(ā1)F(ā1)b

∗
1

⎤⎦ .
Proof. There exists a neighborhood Õ of ā such that Φ is single-valued on Õ and

equals

Φ(a) =

⎡⎣sgn(ā1)F(a1)a3
0
0

⎤⎦ ∀a ∈ Õ.

From the definition of the regular coderivative,

N̂GrΦ(a ,Φ(a)) = {(a∗, b∗) ∈ R
3 × R

3 |
〈a∗, x − a〉3 + 〈b∗,Φ(x )− Φ(a)〉3 ≤ o(‖x − a‖) ∀x},

employing the Lipschitz continuity of F . A straightforward calculation yields

(57) N̂GrΦ(a ,Φ(a)) = {(a∗, b∗) | a∗2 = 0, a∗3 = − sgn(ā1)F(a1)b
∗
1,

(a∗1, sgn(ā1)b
∗
1a3) ∈ N̂GrF(a1,F(a1))}.

Hence (see (51))

NGrΦ(ā , b̄) = {(a∗, b∗) | a∗2 = 0, a∗3 = − sgn(ā1)F(ā1)b
∗
1,

(a∗1, sgn(ā1)b
∗
1ā3) ∈ NGrF(ā1,F(ā1))}

and the proof is complete.
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Remark 4.5.

(i) If F happens to be smooth around ā1, then Φ is smooth in Õ and (56) reduces
to the adjoint Jacobian of Φ, as expected:

D∗Φ(ā, b̄)(b∗) = sgn(ā1)

⎡⎣F ′(ā1)ā3 0 0
0 0 0

F(ā1) 0 0

⎤⎦ b∗.

(ii) It can be seen from the proofs of Propositions 4.2 and 4.3 that GrΦ is normally
regular at each point of L and M+

3 . It is normally regular at those points
(ā, b̄) ∈M1 for which GrF is normally regular at (ā1,F(ā1)). In particular,
if F is smooth, then GrΦ is normally regular also on M1.

Unfortunately, the situation becomes more involved when dealing with the sets
M2 and M−

3 , since they lie on the boundary of two open sets,

(58) M2 = relint(∂L ∩ ∂M1) and M−
3 = relint(∂M1 ∩ ∂M+

3 ),

where relint(A) denotes the relative interior of the set A.
In order to compute D∗Φ at points belonging to M2, we will use a slightly gener-

alized version of [2, Lemma 4.6]. In particular, we show that its assertion holds with
equality under less restrictive conditions.

Lemma 4.6. Consider a multifunction F : Rn × R
m × R

o ⇒ R
l × R

p given by

F (x, y, z) =

[
G(x, y)
H(y, z)

]
,

where G : Rn×R
m ⇒ R

l, H : Rm×R
o ⇒ R

p are closed-graph multifunctions. Assume
that the point (x̄, ȳ, z̄, f̄1, f̄2) belongs to GrF and that the qualification condition

(59)

[
0
w2

]
∈ D∗G(x̄, ȳ, f̄1)(0)[

−w2

0

]
∈ D∗H(ȳ, z̄, f̄2)(0)

⎫⎪⎪⎬⎪⎪⎭ ⇒ w2 = 0

holds. Then one has

(60) D∗F (x̄, ȳ, z̄, f̄1, f̄2)(d
∗
1,d

∗
2) ⊂ {(u1,u2 + v1, v2) |

(u1,u2) ∈ D∗G(x̄, ȳ, f̄1)(d
∗
1), (v1, v2) ∈ D∗H(ȳ, z̄, f̄2)(d

∗
2)}.

Assume, in addition, that for each sequence y(i) → ȳ and each η ∈ D∗G(x̄, ȳ, f̄1)(d
∗
1)

there exist sequences {x(i)}, {f (i)1 } such that (x(i), y(i), f
(i)
1 )

GrG−→ (x̄, ȳ, f̄1) and d
∗(i)
1 →

d∗
1 such that

(61) η ∈ Lim sup
i→∞

D̂∗G(x(i), y(i), f
(i)
1 )(d

∗(i)
1 ).

Then (60) holds as equality.
Proof. The first assertion has already been proved in [2]. To prove the second,

let η be an element of the right-hand side of (60), i.e.,

η = (u1,u2 + v1, v2) ,
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for some (u1,u2) ∈ D∗G(x̄ , ȳ , f̄ 1)(d
∗
1) and (v1, v2) ∈ D∗H(ȳ , z̄ , f̄ 2)(d

∗
2). Thus,

there exist sequences (y (i), z (i), f
(i)
2 )

GrH−→ (ȳ , z̄ , f̄ 2), d
∗(i)
2 → d∗

2, (v
(i)
1 , v

(i)
2 ) → (v1, v2)

such that (v
(i)
1 , v

(i)
2 ) ∈ D̂∗H(x (i), y (i), f

(i)
2 )(d

∗(i)
2 ). By virtue of our additional as-

sumption, there are sequences x (i) → x̄ , f
(i)
1 → f̄ 1, d

∗(i)
1 → d∗

1, and (u
(i)
1 ,u

(i)
2 ) ∈

D̂∗G(x (i), y (i), f
(i)
1 )(d

∗(i)
1 ) such that

(u
(i)
1 ,u

(i)
2 ) → (u1,u2).

It follows from [23, Theorem 10.40] that for all i ∈ N,

(u
(i)
1 ,u

(i)
2 + v

(i)
1 , v

(i)
2 ) ∈ D̂∗F (x (i), y (i), z (i), f

(i)
1 , f

(i)
2 )(d

∗(i)
1 ,d

∗(i)
2 ),

and consequently η ∈ D∗F (x̄ , ȳ , z̄ , f̄ 1, f̄ 2)(d
∗
1,d

∗
2).

Next we show that the second assumption of Lemma 4.6, ensuring equality in (60),
is fulfilled in the following case:

(62) G : Rn × R
m → R

l is given by G(x , y) = f(x )g(y),

where f : Rn → R is locally Lipschitz and g : Rm → R
l is continuously differentiable.

Lemma 4.7. Let G be as in (62) with f : Rn → R and g : Rm → R
l Lipschitz

around x̄ ∈ R
n and ȳ ∈ R

m, respectively. Then

(63) D̂∗G(x̄, ȳ)(d∗) =

[
D̂∗f(x̄)(g(ȳ)Td∗)
D̂∗g(ȳ)(f(x̄)d∗)

]
∀d∗ ∈ R

l.

Proof. From the definition of the regular coderivative we have

D̂∗G(x̄ , ȳ)(d∗) = {(x ∗, y∗) ∈ R
n × R

m |
〈x ∗, x − x̄ 〉n + 〈y∗, y − ȳ〉m − 〈d∗, f(x )g(y)− f(x̄ )g(ȳ)〉l

≤ o(‖x − x̄‖n + ‖y − ȳ‖m) ∀(x , y)}.

In particular, for (x , ȳ) and (x̄ , y) we get the following two relations:

〈x ∗, x − x̄ 〉n − 〈d∗, (f(x )− f(x̄ ))g(ȳ)〉l ≤ o(‖x − x̄‖n) ∀x ,(64)

〈y∗, y − ȳ〉m − 〈d∗, f(x̄ )(g(y)− g(ȳ))〉l ≤ o(‖y − ȳ‖m) ∀y ,(65)

yielding the inclusion ⊂ in (63). To prove the converse inclusion, let x ∗ ∈ R
n and

y∗ ∈ R
m satisfy (64) and (65), respectively. Summing both equations, one has

〈x ∗, x − x̄ 〉n + 〈y∗, y − ȳ〉m − 〈d∗, f(x )g(y)− f(x̄ )g(ȳ)〉l
≤ 〈d∗, (f(x )− f(x̄))(g (y)− g(ȳ))〉l + o(‖x − x̄‖n) + o(‖y − ȳ‖m).

It remains to realize that the right-hand side is o(‖x − x̄‖n + ‖y − ȳ‖m). Let us only
show how its first term can be estimated:

〈d∗, (f(x )− f(x̄ ))(g (y)− g(ȳ))〉l
‖x − x̄‖n + ‖y − ȳ‖m

≤ ‖d∗‖l
|f(x )− f(x̄ )|
‖x − x̄‖n

‖g(y)− g(ȳ)‖l
‖y − ȳ‖m

‖x − x̄‖n
‖x − x̄‖n + ‖y − ȳ‖m

‖y − ȳ‖m.
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Exploiting the Lipschitz continuity of f and g we conclude that the first four factors
in the expression on the right-hand side are bounded, whereas the last term on the
right converges to zero if (x , y) → (x̄ , ȳ).

Lemma 4.8. Let the assumptions of Lemma 4.7 hold, with g : Rm → R
l continu-

ously differentiable around ȳ ∈ R
m. Then G satisfies (61), i.e., ∀η ∈ D∗G(x̄, ȳ)(d∗)

∀y(i) → ȳ ∃x(i) → x̄ ∃d(i) → d∗ ∃η(i) ∈ D̂∗G(x(i), y(i))(d(i)) : η(i) → η.
Proof. Let η ∈ D∗G(x̄ , ȳ)(d∗) and y (i) → ȳ be arbitrary. From the scalarization

formula and [18, Corollary 1.111(i)] it follows easily that

(66) η =

[
π

f(x̄ )∇g (ȳ)Td∗

]
for some π ∈ D∗f(x̄ )(g(ȳ)Td∗).

By the definition of the (limiting) coderivative,

(67) ∃x (i) → x̄ ∃r(i) → g(ȳ)Td∗ ∃π(i) ∈ D̂∗f(x (i))(r(i)) : π(i) → π.

Let us distinguish between the following two situations.
(i) g(ȳ)Td∗ �= 0. Then, clearly, g(y (i)) �= 0 for i sufficiently large. For these

indices we may select any sequence {d (i)} satisfying the conditions

d (i) → d∗ and g(y (i))Td (i) = r(i).

Observe that such choice of {d (i)} is always possible. By Lemma 4.7,

(68) η(i) :=

[
π(i)

f(x (i))∇g (y (i))Td (i)

]
∈ D̂∗G(x (i), y (i))(d (i))

and so the assertion follows.
(ii) g(ȳ)Td∗ = 0. It follows that π = 0 , since D∗f(x̄)(g (ȳ)Td∗) = {0} by virtue

of the Mordukhovich criterion [23, Theorem 9.40]. Consider now arbitrary sequences

x (i) → x̄ , d (i) → d∗, and π(i) ∈ D̂∗f(x (i))(g (y (i))Td (i)) = D∗f(x (i))(g(y (i))Td (i)) �=
∅. Such sequences do exist because f is differentiable on a dense subset of its domain
(Rademacher theorem) and at these points

D̂∗f(x (i))(r) = D∗f(x (i))(r) �= ∅ ∀r ∈ R.

Clearly, π(i) → 0 by the outer semicontinuity of the limiting coderivative, and the
statement follows again from Lemma 4.7.

Proposition 4.9. Let (ā, b̄) ∈M2 and b∗ ∈ R
3 be given. Then

(69) D∗Φ(ā, b̄)(b∗) =

⎧⎪⎨⎪⎩
⎡⎣ 0

0
sgn(ā1)F(ā1)b

∗
1 + w

⎤⎦
∣∣∣∣∣∣∣w ∈

⎧⎪⎨⎪⎩
R if b∗3 = 0,

R− if b∗3 < 0,

{0} if b∗3 > 0.

⎫⎪⎬⎪⎭
Proof. Consider a reference point (ā , b̄) = (ā1, ā2, 0, 0, 0, 0) ∈ M2, where ā1 �= 0

by the definition of M2. Then Φ attains the form

Φ(a) =

⎡⎣sgn(ā1)F(a1)a3
0

NR+(a3)

⎤⎦ ∀a ∈ Õ
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for a sufficiently small neighborhood Õ of ā . Defining the function G(x, y) :=
F(x)g(y), where g(y) := sgn(ā1)y and the closed-graphmultifunctionH(y) = NR+(y),
Lemma 4.6 yields

(70)
D∗Φ(ā , b̄)(b∗) = {(u1, 0, u2 + v) | (u1, u2) ∈ D∗G(ā1, 0)(b∗1),

v ∈ D∗H(0, 0)(b∗3)}

because G is of the form (62), and thus the second assumption of Lemma 4.6 is
satisfied. Since g(0) = 0 and g′(0) = sgn(ā1), it follows from (66) that

(71) D∗G(ā1, 0)(b∗1) =
{[

0
sgn(ā1)F(ā1)b

∗
1

]}
.

For the coderivative of the normal cone mapping H at (0, 0) ∈ GrH one has

(72) D∗H(0, 0)(b∗3) =

⎧⎪⎨⎪⎩
R if b∗3 = 0,

R− if b∗3 < 0,

{0} if b∗3 > 0.

Finally, the assertion follows by collecting (70), (71), and (72).
In order to give a formula for the coderivative D∗Φ at points in M−

3 we will, in
addition, assume that the coefficient of friction F is weakly semismooth at 0 (cf. [16]),
implying that

(73) ∃F ′
+(0) ∈ R and Lim sup

x→0+

∂F(x) = {F ′
+(0)},

where F ′
+ stands for the right-hand derivative of F . Now the following result holds.

Proposition 4.10. Let (ā, b̄) ∈M−
3 and b∗ ∈ R

3 be given. Then

(74) D∗Φ(ā, b̄)(b∗) =

⎧⎪⎨⎪⎩
⎡⎣F ′

+(0)ā3b
∗
1 + w

0
sgn(b̄1)F(0)b∗1

⎤⎦
∣∣∣∣∣∣∣w ∈

⎧⎪⎨⎪⎩
R if b∗1 = 0,

sgn(b̄1)R+ if b∗1 sgn(b̄1) < 0,

{0} otherwise.

⎫⎪⎬⎪⎭
Proof. Let (ā , b̄) ∈M−

3 be given, i.e., (ā , b̄) = (0, ā2, ā3, b̄1, 0, 0) ∈ R
3×R

3, where
ā3 > 0 and |b̄1| = F(0)ā3. It can be easily seen that there exists a neighborhood O
of (ā , b̄) such that

(75) sgn(b1) = sgn(b̄1) and sgn(a1) sgn(b̄1) ≥ 0 ∀(a , b) ∈ GrΦ ∩O.

Moreover (cf. (58) and Table 4.1)

(76) NGrΦ(ā , b̄) = N1 ∪ N2 ∪ N3,

where

N1 := Lim sup

(a ,b)
M1−→(ā ,

¯b)

N̂M1(a , b),

N2 := Lim sup

(a ,b)
M

+
3−→(ā ,

¯b)

N̂M+
3
(a , b),

N3 := Lim sup

(a ,b)
M

−
3−→(ā ,

¯b)

N̂GrΦ(a , b).
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Let us first calculateN1. From (57), (75), and the definition of the regular coderivative
it follows that

(77)
N̂M1(a , b) = {(x ∗, y∗) | x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y∗1 ,

x∗1 ∈ D̂∗F(a1)(− sgn(b̄1)a3y
∗
1)}

for each (a , b) ∈M1. Using the scalarization formula and [17, Corollary 3.3.2] we get

(78) D̂∗F(a1)(− sgn(b̄1)a3y
∗
1) ⊂ D∗F(a1)(− sgn(b̄1)a3y

∗
1)

= ∂(− sgn(b̄1)a3y
∗
1F)(a1) ⊂ − sgn(b̄1)a3y

∗
1∂F(a1).

Note, that N1 is nonempty (it follows easily from the Lipschitz continuity of F and
the Rademacher theorem). In light of this fact, (77) and (78), together with the
semismoothness assumption (73) and (75), yield

(79)
N1 = {(a∗, b∗) | a∗2 = 0, a∗3 = − sgn(b̄1)F(0)b∗1,

a∗1 = −F ′
+(0)ā3b

∗
1}.

Concerning N2, from (55) one has immediately

(80) N2 =
(
R× {0} × {0}

)
×
(
{0} × R× R

)
.

However, the computation of the cone N3 is more involved. In particular, let (a , b) ∈
M−

3 be given, and observe that GrΦ locally around (a , b) can be written as the union
of the following two disjoint sets (cf. Table 4.1 and (75)):

G1 := {(x , y) | sgn(x1) = sgn(b̄1), x3 > 0, y1 = sgn(b̄1)F(x1)x3, y2 = y3 = 0},
G2 := {(x , y) | x1 = 0, x3 > 0, sgn(b̄1)y1 ≤ F(0)x3, y2 = y3 = 0}.

This way one has

(81) TGrΦ(a , b) = TG1(a , b) ∪ TG2(a , b),

and hence,

(82) N̂GrΦ(a , b) =
(
TGrΦ(a , b)

)0
= N̂G1(a , b) ∩ N̂G2(a , b).

The contingent cone to G1 can be determined as follows:

TG1(a , b) = {(h , k ) | ∃h (i) → h , k (i) → k , λ(i) → 0+, ∀i :
(a + λ(i)h (i), b + λ(i)k (i)) ∈ G1}

= {(h , k ) | ∃h (i) → h , k (i) → k , λ(i) → 0+, ∀i :

sgn(λ(i)h
(i)
1 ) = sgn(b̄1), a3 + λ(i)h

(i)
3 > 0,

sgn(b̄1)F(0)a3 + λ(i)k
(i)
1 = sgn(b̄1)F(λ(i)h

(i)
1 )(a3 + λ(i)h

(i)
3 ),

λ(i)k
(i)
2 = 0, λ(i)k

(i)
3 = 0},

from which

k
(i)
1 = sgn(b̄1)

F(λ(i)h
(i)
1 )−F(0)

λ(i)h
(i)
1

h
(i)
1 a3 + sgn(b̄1)F(λ(i)h

(i)
1 )h

(i)
3

=
F(λ(i)|h(i)1 |)−F(0)

λ(i)|h(i)1 |
h
(i)
1 a3 + sgn(b̄1)F(λ(i)h

(i)
1 )h

(i)
3

−→ F ′
+(0)h1a3 + sgn(b̄1)F(0)h3 for i→ ∞,
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as follows from (73). Thus we get

(83)
TG1(a , b) = {(h , k ) | sgn(b̄1)h1 ≥ 0, k2 = k3 = 0,

k1 = F ′
+(0)a3h1 + sgn(b̄1)F(0)h3}.

An analogous computation yields

(84) TG2(a , b) = {(h , k) | h1 = 0, k2 = k3 = 0, sgn(b̄1)k1 ≤ F(0)h3}.

Now, the negative polars to the cones (83), (84) can be easily calculated as

N̂G1(a , b) = {(x ∗, y∗) | (x∗1 + F ′
+(0)a3y

∗
1) sgn(b̄1) ≤ 0,

x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y∗1}

and

N̂G2(a , b) = {(x∗, y∗) | x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y∗1 , y
∗
1 sgn(b̄1) ≥ 0},

so that

(85)
N̂G1(a , b) ∩ N̂G2(a , b) = {(x ∗, y∗) | (x∗1 + F ′

+(0)a3y
∗
1) sgn(b̄1) ≤ 0,

x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y∗1 , y
∗
1 sgn(b̄1) ≥ 0}.

Finally, from (82) and (85) we get

(86)
N3 = {(a∗, b∗) | (a∗1 + F ′

+(0)ā3b
∗
1) sgn(b̄1) ≤ 0,

a∗2 = 0, a∗3 = − sgn(b̄1)F(0)b∗1, b
∗
1 sgn(b̄1) ≥ 0}.

The assertion of the proposition follows now from (79), (80), (86), and the definition
of the coderivative.

5. Numerical results. The theoretical results on sensitivity analysis proven in
the previous section now will be used for solving two model examples. Cost function-
als will be continuously differentiable so that the resulting composite function J to
be minimized is locally Lipschitz. Therefore one can use the implicit programming
approach (cf. [21]) to solve the shape optimization problem (P̂). Minimization itself
was realized by the MATLAB implementation of the bundle trust method due to
Schramm and Zowe [24]. Each step of this method requires the value of J and one
arbitrary Clarke’s subgradient at the current point (for details see [5]). The latter
has been discussed in the foregoing section. Let us briefly comment on the former
issue. To get the value of J one has to solve the state problem (M(α)) for each
admissible α. Since solutions to this problem are defined by means of fixed-points of
a certain mapping (see section 3), the method of successive approximations is used
as a natural approach. Each iterative step is represented by the Signorini problem
with given friction and a given coefficient of friction updated from the previous step.
This is equivalent to the minimization problem for a quadratic function augmented
by a nondifferentiable sublinear term over a convex set defined by linear inequality
constraints. Computations were performed by the MatSol library [15] developed in
the MATLAB environment.

The setting of the state problem is the same for both model examples. The
geometry is shown in Figure 1: the body Ω is represented by a “rectangle” having one
curved side Γc along which Ω is supported by the half plane H := R

2
− = {(x1, x2) |
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Fig. 1. The elastic body and applied loads.

Fig. 2. The definition of the friction coefficient.

x2 ≤ 0}. We suppose that Γc is the graph of a nonnegative Lipschitz function α :
[0, a] → R

1
+ which determines the final shape of Ω. To emphasize that Γc and Ω

depend on a particular choice of α, we will write Γc(α) and Ω(α), where

Γc(α) = {(x1, x2) ∈ R
2 | x2 = α(x1), x1 ∈ (0, a)},

Ω(α) = {(x1, x2) ∈ R
2 | α(x1) < x2 < b, x1 ∈ (0, a)}

and 0 < a, 0 < b are given. In our examples we use a = 2, b = 1. The body is
fixed along the left vertical side Γu, while surface tractions of density P1, P2 act
on the top and the right vertical side, respectively. Their exact specifications will
be done in each example. The body forces are neglected. Finally, Ω is made of a
homogeneous, isotropic material characterized by the Young modulus E = 1 GPa,
the Poisson constant σ = 0.3. The coefficient of friction F (see Figure 2) is defined
by

F(t) :=

⎧⎪⎨⎪⎩
0.25 for t ∈ [0, 0.01],

0.25 · (−60t+ 1.6) for t ∈ (0.01, 0.02),

0.1 for t ∈ [0.02,∞).

Due to the particular shape of the foundationH and the parametrization of Γc(α),
the nonpenetration conditions (6) can be written in the following form:

u2 ≥ −α, T2(u) ≥ 0, T2(u)(u2 + α) = 0 on Γc(α),

where u i, Ti(u), i = 1, 2, are the ith component of the displacement vector u , and
the stress vector T (u), respectively. In a similar way one can modify the friction
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conditions (7) by setting ut := u1, Tt(u) := T 1(u). This means that instead of un,
ut, Tn(u), Tt(u) which depend explicitly on α, we use ui, Ti(u), i = 1, 2, which do
not. This fact simplifies computations.

Now we describe the discretization of the shape optimization problem (P). Con-
tact part Γc, which is the object of optimization, is modeled by Bézier functions ξα
of order d on [0, a], i.e., ξα =

∑d
i=0 αiB

(i)
d , where B

(i)
d , i = 0, . . . , d, are the Bernstein

polynomials of order d:

B
(i)
d (x) =

1

ad

(
d
i

)
xi(a− x)d−i, i = 0, . . . , d, x ∈ [0, a],

and the coefficients αi of the linear combination are the x2-coordinates of control
points {Ai}di=0 of ξα, Ai = (ih, αi), i = 0, 1, . . . , d, h = a/d. The shape of Γc (and
hence of Ω) is uniquely determined by the vector α = (α0, . . . , αd). The discretization
of the state problem uses a polygonal approximation Ωh(α) of Ω(α) obtained by a
piecewise linear approximation ξhα of ξα on a partition of [0, a]. The finite-dimensional
spaceV h(α) consists ofQ1-isoparametric elements considered on a partition of Ωh(α)
into quadrilaterals.

The admissible set Uad of the discrete design variables is defined as follows:

Uad = {α ∈ R
d+1 | 0 ≤ αi ≤ C0, i = 0, 1, . . . , d;

|αi+1 − αi| ≤ C1h, i = 0, 1, . . . , d− 1;

|αi+1 − 2αi + αi−1| ≤ C2h
2, i = 1, 2, . . . , d− 1;

C31 ≤ measΩh(α) ≤ C32},

where C0, C1, C2, C31, and C32 are given positive constants chosen in such a way
that Uad �= ∅. The second and third inequality constraints control the first and second
derivatives of ξα. To avoid trivial solutions, the volume constraint imposed on Ωh(α)
is present. In computations, the constants in Uad are specified as follows: C0 = 0.75,
C1 = 3, C2 = 10, C31 = 1.8, C32 = 2. The total number of the nodes of Th ∀α ∈ Uad

is 1800, including 60 on the contact part. Finally, the Bézier functions of order d = 20
are used.

Example 1. Our aim is to find a shape of the contact part which minimizes
peaks of normal contact stresses represented by the vector of the Lagrange multipliers
λ(α) or, equivalently, to find α ∈ Uad minimizing the max-norm of λ(α). Since
this norm is not continuously differentiable, we will use the p-norm ‖ · ‖p of vectors
instead, taking p large enough (p = 6 in our case). The density of surface tractions
is set as follows: P1 = (0;−60 MPa) on (0, 1.8) × {1} and zero on (1.8, 2) × {1},
P2 = (50 MPa; 30 MPa) on {2}× (0, 1). We consider the shape optimization problem

(P̂1)
minimize ‖λ(α)‖66 .
α ∈ Uad

Let us observe that if α ∈ Uad is such that u(α) ∈ intK, where K is defined
by (25), i.e., all linear inequality constraints are inactive, then λ = 0 and such α

automatically solves (P̂1). To prevent this trivial case, the admissible set Uad involves
also the volume constraint imposed on the computational domains with an appropriate
choice of the constants C31 and C32. Figure 3 shows the initial shape Ω(αin) with
a finite element partition before (left) and after (right) the deformation. The same
is depicted for the computed optimal shape Ω(αopt) in Figure 4. The solid line in
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Fig. 3. Example 1, initial design.

Fig. 4. Example 1, optimal design.

Fig. 5. Example 1, normal stress distribution for initial (left) and optimal (right) design.

Figure 5 shows the distribution of the vector of normal contact stresses λ(α) along the
contact part of Ω(αin) (left) and Ω(αopt) (right), respectively. It is readily seen from
here that the peak of stresses is considerably suppressed and, in addition, λ(αopt) is
evenly distributed along the contact part. The value of the objective function at αin

is 2.1159 · 1011 and 4.5492 · 107 at αopt.

Example 2. The purpose of this shape optimization problem is to find a shape
of the contact part such that the vector λ(α) is as close as possible to a given target
vector λtar. The density of surface tractions P1 acting on the top of the body is
the same as in Example 1, while P2 = (30 MPa; 10 MPa) on {2} × (0, 1). The shape
optimization problem reads as follows:

(P̂2)
minimize ‖λ(α)− λtar‖66 .
α ∈ Uad

Figures 6 and 7 are analogous to Figures 3 and 4. The dotted lines in Figure 8
correspond to the distribution of the target λtar, while the solid lines represent the
distribution of λ(αin) (left) and λ(αopt) (right) along the corresponding contact
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Fig. 6. Example 2, initial design.

Fig. 7. Example 2, optimal design.
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Fig. 8. Example 2; normal stress distribution for initial (left) and optimal (right) design.

parts. Again we see a considerable improvement. The value of the objective function
at αin is 1.0746 · 1014 and 4.7879 · 109 at αopt.

Example 3. To show that the final result strongly depends on the choice of
the model of friction, Example 2 was recomputed using the state problem with a
simpler Tresca model of friction whose coefficient depends on the solution (for detailed
analysis we refer the reader to [11]). Unlike Coulomb’s law of friction, the unknown
contact stress Tn(u) in (7) is now replaced by a slip bound g given a priori. We set
g = 100. Starting from the same initial configuration Ω(αin) as in Example 2, we
arrive at the optimal shape Ω(ᾱopt) depicted in Figure 9. The resulting normal stress
distribution along Γc(ᾱopt) is shown in Figure 10 (left). Then Ω(ᾱopt) was used as the
computational domain for the direct contact problem with Coulomb friction yielding
the normal stress as in Figure 10 (right). Comparing Figures 10 and 8 (right) one can
see that the optimal shape Ω(ᾱopt) for the Tresca model of friction is not optimal for
friction obeying Coulomb’s law.

Conclusion. In the present paper we have considered shape optimization in
discretized two-dimensional contact problems with Coulomb friction and a solution-
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Fig. 9. Example 3 for the Tresca model; optimal design Ω(ᾱopt).
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Fig. 10. Example 3; normal stress distribution on Γc(ᾱopt).

dependent coefficient of friction. It was shown that if the coefficient of friction is
sufficiently small in the C0,1-norm, then the state problems are uniquely solvable
and their solutions are Lipschitzian with respect to the design variable. Sensitivity
analysis was carried out using the generalized differential calculus of B. Mordukhovich,
enabling us to solve the shape optimization problems via the implicit programming
approach. The obtained results were illustrated in several examples.

Extending the present results into the three-dimensional setting seems a challenge
and is currently being investigated. From the theoretical point of view, it would be
beneficial to show convergence of the bundle trust method in our context. This is
linked to the semismoothness of the control-to-state mapping and will be the subject
of future research.

Acknowledgments. The authors would like to thank the anonymous referees
for their constructive comments.
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[9] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approxi-
mation and Computation, Adv. Des. Control 7, SIAM, Philadelphia, 2003.
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