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VERIFICATION OF FUNCTIONAL A POSTERIORI
ERROR ESTIMATES FOR OBSTACLE PROBLEM IN 1D

Petr Harasim and Jan Valdman

We verify functional a posteriori error estimate for obstacle problem proposed by Repin.
Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact
solution of the obstacle problem can be derived. Quality of a numerical approximation obtained
by the finite element method is compared with the exact solution and the error of approximation
is bounded from above by a majorant error estimate. The sharpness of the majorant error
estimate is discussed.
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1. INTRODUCTION

Obstacle problems are one of the key problems in continuum mechanics. Their mathe-
matical models based on variational inequalities are well established (we refer to classical
works [11, 12, 13]). Numerical treatment of a obstacle problem is obtained by the finite
element method and a solution of a quadratic minimization problems with constrains.
It was traditionally tackled by the Uzawa method, the interior point method, the active
set method with gradient splitting and the semi-smooth Newton method among others
[8, 23].

A priori analysis providing asymptotic estimates of the quality of finite elements ap-
proximations converging toward the exact solution was studied for obstacle problems
e. g. in [5, 9]. For the survey of the most important techniques in a posteriori analysis
(such as residual, gradient averaging or equilibration methods) we refer to the mono-
graphs [1, 2, 3]. Particular a posteriori estimates for variational inequalities including a
obstacle problem are reported e. g. in [4, 7, 25] among others.

Our goal is to verify guaranteed functional a posteriori estimates expressed in terms of
functional majorants derived by Repin [16, 20]. The functional majorant upper bounds
are essentially different with respect to known a posteriori error estimates mentioned
above. The estimates are obtained with the help of variational (duality) method which
was developed in [17, 18] for convex variational problems. The method was applied to
various nonlinear models including those associated with variational inequalities [19], in
particular problems with obstacles [6], problems generated by plasticity theory [10, 22]
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and problems with nonlinear boundary conditions [21].
The obstacle problem is formulated and analyzed in two dimensions, however nu-

merical experiments are considered in one dimension only. Then, we are easily able
to construct an analytical benchmark with an exact solution of the nonlinear obstacle
problem and evaluate integrals in numerical tests exactly.

Outline of the paper is as follows. In Section 2, we formulate a constrained mini-
mization problem and introduce a perturbed minimization problem including its basic
properties. A derivation and further analysis of error estimates in term of a functional
majorant is explained in Section 3. A method of majorant minimization is also included
there. A benchmark with known analytical solution is discussed in Section 4. Numerical
tests performed in Matlab are reported in Section 5.

2. FORMULATION OF OBSTACLE PROBLEM

Let Ω ⊂ R2 is a bounded domain with Lipschitz continuous boundary ∂Ω. Let V stands
for the standard Sobolev space H1(Ω) and V0 denote its subspace H1

0 (Ω), consisting of
functions whose trace on ∂Ω is zero. We consider the obstacle problem, described by
the following minimization problem:

Problem 1. (Minimization problem) Find u ∈ K satisfying

J(u) = inf
v∈K

J(v),

where the energy functional reads

J(v) :=
1
2

∫
Ω

∇v · ∇v dx−
∫

Ω

fv dx (1)

and the admissible set is defined as

K :=
{
v ∈ V0 : v(x) ≥ φ(x) a.e. in Ω},

where f ∈ L2(Ω) and φ ∈ V such that φ 6∈ V0 and φ(x) < 0 a.e. in (Ω).

Problem 1 is a quadratic minimization problem with a convex constrain and the
existence of its minimizer is guaranteed by the Lions- Stampacchia Theorem [15]. It is
equivalent to the following variational inequality: Find u ∈ K such that∫

Ω

∇u · ∇(v − u)dx ≥
∫

Ω

f(v − u)dx for all v ∈ K. (2)

The convex constrain v ∈ K can be transformed into a linear term containing a new
(Lagrange) variable in

Problem 2. (Perturbed problem) Let W := {v + tφ : v ∈ V0 and t ∈ R} ⊂ V . For
given

µ ∈ Λ := {µ ∈W ∗ : 〈µ, v − φ〉 ≥ 0 for all v ∈ K} (3)

find uµ ∈ V0 such that
Jµ(uµ) = inf

v∈V0
Jµ(v), (4)
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where 〈·, ·〉 denote the duality pairing of W and W ∗ and the perturbed functional Jµ is
defined as

Jµ(v) := J(v)− 〈µ, v − φ〉 . (5)

Problems 1 and 2 are related and it obviously holds

Jµ(uµ) ≤ J(u) for all µ ∈ Λ. (6)

Lemma 2.1. (Existence of optimal multiplier) There exists λ ∈ Λ such that

uλ = u (7)

and
Jλ(u) = J(u). (8)

P r o o f . Let w ∈W is arbitrary. We decompose

w = v + tφ, (9)

where v ∈ V0 and t ∈ R and this decomposition can be shown to be unique. Now, we
define a functional λ as follows:

〈λ,w〉 :=
∫

Ω

∇u · ∇v dx−
∫

Ω

fvdx+ t

[∫
Ω

∇u · ∇u dx−
∫

Ω

fudx
]
. (10)

We assert that the functional defined by (10) has required properties (7) and (8). Ap-
parently, λ is a linear functional on W . The functional λ is also continuous. It is a
consequence of continuity of decomposition (9), which can be proved as follows. Let
w ∈ W is arbitrary and wn → w in W , where wn ∈ W . With respect of (9), we can
write wn = vn + tnφ and w = v + tφ, where vn, v ∈ V0 and tn, t ∈ R. If we use the
unique orthogonal decomposition of element φ ∈ V , we infer that

|tn − t|‖φ⊥‖V ≤ ‖wn − w‖V , (11)

where φ⊥ is the component of φ orthogonal to subspace V0. Moreover, it follows from
the triangle inequality that

‖vn − v‖V ≤ ‖wn − w‖V + |tn − t|‖φ‖V . (12)

As a consequence of (11) and (12), tn → t and vn → v in W . Thus, the decomposition
(9) is continuous. Now, if we restrict the space W to the origin V0, we obtain

〈λ,w〉 :=
∫

Ω

∇u · ∇w dx−
∫

Ω

fwdx for all w ∈ V0, (13)

which is equivalent to inf
w∈V0

Jλ(w) = Jλ(u), i. e., the property (7) is fulfilled. Furthermore,

if we take w = u− φ, it follows from (10) that

〈λ, u− φ〉 = 〈λ, u〉 − 〈λ, φ〉 = 0
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and consequently the property (8) is fulfilled. Finally, we should verify the condition of
nonnegativity from definition (3). Let v ∈ K is arbitrary. It follows from (2) and (10)
that

〈λ, v − φ〉 = 〈λ, v − u〉 ≥ 0.

�

Remark 2.2. (Existence of optimal multiplier in the case φ ∈ V0) In the case
of a nonpositive obstacle φ ∈ V0, the existence of optimal multiplier could be proved as
follows. Once again, the relation (13) defines a linear continuous functional λ in V0 such
that u minimizes the perturbed functional Jµ defined by (5) with µ = λ. Since φ ∈ K,
we can apply the inequality (2) to v = φ and v = 2u − φ. Consequently, we obtain
that 〈λ, u− φ〉 = 0. Subsequently, it follows from (5) that the property (8) is fulfilled.
The condition of nonnegativity from definition (3) is also fulfilled. It follows from the
inequality (2) if we put v = u+ w, where w ∈ V0, w ≥ 0 a.e. in (Ω).

Remark 2.3. (Representation of (10) by a nonnegative function λ ∈ L2(Ω))
If u has a higher regularity,

u ∈ V0 ∩H2(Ω), (14)

then integration by parts yields

〈λ,w〉 = −
∫

Ω

∆u vdx−
∫

Ω

fvdx+ t

[
−

∫
Ω

∆uudx−
∫

Ω

fudx
]

=
∫

Ω

λvdx+ t

∫
Ω

λudx

for all w ∈W , where
λ = −(∆u + f). (15)

We show additionaly that
λ ≥ 0 a.e. in Ω (16)

by choosing w ∈ V0, w ≥ 0 a.e. in Ω. Then v := u+ w ∈ K and inequality (2) rewrites
as ∫

Ω

λwdx =
∫

Ω

∇u · ∇w dx−
∫

Ω

fwdx ≥ 0,

which implies (16).

3. FUNCTIONAL A POSTERIORI ERROR ESTIMATE

We are interested in analysis and numerical properties of the a posteriori error estimate
in the energetic norm

‖v‖E :=
(∫

Ω

∇v · ∇v dx
) 1

2

.

This section is based on results of S. Repin et al. [6, 16, 19]. It is simple to see that

J(v)− J(u) =
1
2

∫
Ω

∇(v − u) · ∇(v − u) dx+
∫

Ω

∇u · ∇(v − u) dx−
∫

Ω

f(v − u)dx (17)

for all v ∈ K and (2) implies the energy estimate

1
2
‖v − u‖2

E ≤ J(v)− J(u) for all v ∈ K. (18)
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Remark 3.1. (Sharpness of estimate (18)) It is clear from (17), the estimate (18)
turns into equality if

〈λ, v − u〉 =
∫

Ω

∇u · ∇(v − u) dx−
∫

Ω

f(v − u)dx = 0 for all v ∈ K. (19)

This situation always occurs if λ = 0. Then, (13) implies that u is a solution of Problem
1 in the whole space V0. This corresponds to a linear problem without any obstacle.
However, the estimate (18) can turn into equality also for the active obstacle. We discuss
it further in Section 4.

Estimate (18) can only be tested for problems with known exact solution u ∈ K. By
using (6), we obtain the estimate

J(v)− J(u) ≤ J(v)− Jµ(uµ) for all µ ∈ Λ. (20)

In practical computations, uµ ∈ V0 will be approximated by uµ,h ∈ V0,h from some finite
dimensional subspace V0,h ⊂ V0 (see Section 5 for details). Therefore, it holds

Jµ(uµ,h) ≥ Jµ(uµ)

and Jµ(uµ,h) can not replace J(u) in (20) so that the inequality holds. To avoid this
difficulty, we establish the following dual problem:

Problem 3. (Dual perturbed problem) Find τ∗µ ∈ Q∗
fµ ⊂ [L2(Ω)]2 such that

J∗µ(τ∗µ) = sup
q∗∈Q∗

fµ

J∗µ(q∗),

where
J∗µ(q∗) = −1

2

∫
Ω

q∗ · q∗dx+ 〈µ, φ〉

and

Q∗
fµ :=

{
q∗ ∈ [L2(Ω)]2 : 〈µ, v〉 =

∫
Ω

q∗ · ∇v dx−
∫

Ω

fvdx for all v ∈ V0

}
.

Lemma 3.2. It holds

sup
q∗∈Q∗

fµ

J∗µ(q∗) = J∗µ(∇uµ) = Jµ(uµ).

P r o o f . As a consequence of (4), it holds that ∇uµ ∈ Q∗
fµ. Let w ∈ Q∗

fµ is arbitrary.
Since

J∗µ(w) = J∗µ(∇uµ)−
∫

Ω

∇uµ · (w −∇uµ)dx− 1
2

∫
Ω

(w −∇uµ) · (w −∇uµ)dx

and
∫
Ω
∇uµ · (w − ∇uµ)dx = 0 in consequence of ∇uµ, w ∈ Q∗

fµ, we deduce that
J∗µ(∇uµ) is supremum of dual perturbed functional J∗µ. Finally, it is not difficult to
verify that J∗µ(∇uµ) = Jµ(uµ). �
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Corollary 3.3. If we choose
µ = λ,

it holds
Jλ(u) = inf

v∈V0
Jλ(v) = sup

q∗∈Q∗
fλ

J∗λ(q∗) = J∗λ(∇u) = J(u).

It follows from Lemma 3.2, we can replace inequality (20) by

J(v)− J(u) ≤ J(v)− sup
q∗∈Q∗

fµ

J∗µ(q∗) ≤ J(v)− J∗µ(q∗), (21)

where q∗ ∈ Q∗
fµ is arbitrary. The practical limitation of estimate (21) is to satisfy the

constrain q∗ ∈ Q∗
fµ. From now, we consider a special case of the multiplier defined as

〈µ,w〉 :=
∫

Ω

µw dx, (22)

where
µ ∈ Λ :=

{
µ ∈ L2(Ω) : µ ≥ 0 a.e. in Ω

}
. (23)

S. Repin transformed (21) in the so called majorant estimate

J(v)− J(u) ≤M(v, f, φ;β, µ, τ∗), (24)

where the right-hand side of (24) denotes the functional majorant

M(v, f, φ;β, µ, τ∗) :=
1 + β

2

∫
Ω

(∇v − τ∗) · (∇v − τ∗)dx

+
1
2

(
1 +

1
β

)
C2

Ω‖div τ∗ + f + µ‖2
L2(Ω) +

∫
Ω

µ(v − φ)dx, (25)

where a constant CΩ > 0 originates from the Friedrichs inequality∫
Ω

u2dx ≤ C2
Ω

∫
Ω

∇u · ∇udx ∀u ∈ V0.

Estimate (24) is valid for β > 0, µ ∈ Λ and τ∗ ∈ H(Ω,div), where

H(Ω,div) := {τ∗ ∈ [L2(Ω)]2 : div τ∗ ∈ L2(Ω)}.

Lemma 3.4. (Optimal majorant parameters) Suppose (22) – (23) and, let the as-
sumption (14) is fulfilled. If we choose τ∗ = ∇u, µ = λ ∈ L2(Ω) and β → 0, then,
the inequality in (24) changes to equality, i. e. the majorant on right-hand side of (24)
defines the difference of energies J(v)− J(u) exactly.
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P r o o f . If µ = λ and τ∗ = ∇u, it is consequence of (15) that the second term on the
right-hand side of (25) vanishes. Moreover, the last term can be written as∫

Ω

λ(v − φ)dx =
∫

Ω

λ(v − u)dx =
∫

Ω

∇u · ∇(v − u)dx−
∫

Ω

f(v − u)dx

and consequently, if β = 0, it follows from (17) that the majorant with optimal param-
eters estimates the difference of energies J(v) and J(u) exactly. �

Practically, optimal parameters are unknown. For given solution approximation v,
loading f and the obstacle φ, the majorant M represents a convex functional in each of
variables β, µ ,τ∗. Our goal is to find, at least approximately, such variables βopt, µopt

and τ∗opt that minimize the majorant M.

Problem 4. (Majorant minimization problem) Let v ∈ K, f ∈ L2(Ω), φ < 0 be
given. Find optimal βopt > 0, µopt ∈ Λ and τ∗opt ∈ H(Ω,div) such that

(βopt, µopt, τ
∗
opt) = argmin

β,µ,τ∗
M(v, f, φ;β, µ, τ∗).

To this end, we use the following minimization algorithm:

Algorithm 1. (Majorant minimization algorithm) Let k := 0 and let βk > 0 and
µk ∈ Λ be given. Then:

(i) find τ∗k+1 ∈ H(Ω,div) such that

τ∗k+1 = argmin
τ∗∈H(Ω,div)

M(v, f, φ;βk, µk, τ
∗),

(ii) find µk+1 ∈ Λ such that

µk+1 = argmin
µ∈Λ

M(v, f, φ;βk, µ, τ
∗
k+1),

(iii) find βk+1 > 0 such that

βk+1 = argmin
β>0

M(v, f, φ;β, µk+1, τ
∗
k+1),

(iv) set k := k + 1 are repeat (i) – (iii) until convergence.

Remark 3.5. (Functional majorant in 1D) The goal is to verify the majorant error
estimate for obstacle problem in 1D. In this simplified case, the former domain Ω reduces
to one-dimensional interval (0, 1). We set V := H1(0, 1) and V0 := H1

0 (0, 1), the energy
functional (1) reads

J(v) =
1
2

∫ 1

0

(v′)2dx−
∫ 1

0

fv dx
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and the admissible set is defined as

K :=
{
v ∈ V0 : v(x) ≥ φ(x) a.e. in (0, 1)},

where f ∈ L2(0, 1) and φ ∈ V such that φ 6∈ V0 and φ(x) < 0 a.e. in (0, 1). Then, the
functional majorant M takes the form

M(v, f, φ;β, µ, τ∗) =
1 + β

2

∫ 1

0

(v′ − τ∗)2dx

+
1
2

(
1 +

1
β

)
‖(τ∗)′ + f + µ‖2

L2(0,1) +
∫ 1

0

µ(v − φ)dx,

where β > 0, τ∗ ∈ V and µ ∈ Λ =
{
µ ∈ L2(0, 1) : µ ≥ 0 a.e. in (0, 1)

}
.

Remark 3.6. (Majorant minimization in 1D) In 1D case, the minimization in step
(i) is equivalent to the following variational equation : Find τ∗k+1 ∈ V such that

(1 + βk)
∫ 1

0

τ∗k+1wdx+
(

1 +
1
βk

) ∫ 1

0

(τ∗k+1)
′w′dx

= (1 + βk)
∫ 1

0

v′wdx−
(

1 +
1
βk

) ∫ 1

0

(f + µk)w′dx (26)

for all w ∈ V . The minimization in step (ii) is equivalent to the variational inequality:
Find µk+1 ∈ Λ such that∫ 1

0

[(
1 +

1
βk

) [
µk+1 + (τ∗k+1)

′ + f
]
+ v − φ

]
(w − µk+1)dx ≥ 0 for all w ∈ Λ.

βk+1 =
‖(τ∗k+1)

′ + f + µk+1‖L2(0,1)

‖v′ − τ∗k+1‖L2(0,1)
.

4. 1D BENCHMARK WITH KNOWN ANALYTICAL SOLUTION

We derive an exact solution of Problem 1 – modified to 1D problem (see Remark 3.5)
– assuming negative constant functions f and φ . The resulting solution is displayed in
Figure 1 for the case of active obstacle. A mechanical intuition suggests that for small
values (considered in absolute value) of acting force f , there will be no contact with the
obstacle and there will be a contact on a subset of interval (0, 1) located symmetrically
around the value x = 1/2 for higher values of f . The solution of Problem 1 with inactive
obstacle reads

u(x) =
f

2
(x− x2).

The minimal value of u on interval (0,1) is attained at x = 1/2 and the inactive obstacle
condition u(1/2) > φ is satisfied for

|f | < 8|φ|. (27)
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Fig. 1. Benchmark setup: Constant forces f pressing continuum

against a constant lower obstacle φ, exact displacement u (left) and

construction of exact displacement u in detail (right).

Then, the corresponding energy reads

J(u) := −f
2

24
.

The obstacle is active if
|f | ≥ 8|φ|, (28)

and the solution has the following form

u(x) =


− f

2x
2 + φ+ f

2 ( 1
2−r)2

1
2−r

x if x ∈ [0, 1
2 − r)

φ if x ∈ [ 12 − r, 1
2 + r]

− f
2 (x− 1)2 − φ+ f

2 ( 1
2−r)2

1
2−r

(x− 1) if x ∈ ( 1
2 + r, 1]

for unknown parameter r ∈ [0, 1
2 ]. The parameter r determines the active contact set

[ 12 − r, 1
2 + r] and its value can be determined from the minimum of energy

J(u) =
[φ+ f

2 ( 1
2 − r)2]2

1
2 − r

− 2[φ+
f

2
(
1
2
− r)2]f(

1
2
− r) +

2f2

3
(
1
2
− r)3 − 2frφ

over all value of r ∈ [0, 1
2 ]. The minimal energy

J(u) = fφ(
4
3

√
2φ
f
− 1)

is achieved for the argument

r =
1
2
−

√
2φ
f
.
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Therefore, the solution of the problem with the active obstacle reads

u(x) =



− f
2x

2 −
√

2φfx if x ∈
[
0,

√
2φ
f

)
φ if x ∈

[√
2φ
f , 1−

√
2φ
f

]
− f

2 (x− 1)2 +
√

2φf(x− 1) if x ∈
(
1−

√
2φ
f , 1

] (29)

Figure 2 provides few numerical approximations of u, see Section 5 for details. The
first-order derivative

u′(x) =



−fx−
√

2φf if x ∈
[
0,

√
2φ
f

)
0 if x ∈

[√
2φ
f , 1−

√
2φ
f

]
−f(x− 1) +

√
2φf if x ∈

(
1−

√
2φ
f , 1

]
is continuous everywhere. It is not difficult to show that

u′′(x) =



−f if x ∈
(
0,

√
2φ
f

)
0 if x ∈

(√
2φ
f , 1−

√
2φ
f

)
−f if x ∈

(
1−

√
2φ
f , 1

)
is the second-order weak derivative of (29). With respect to (15), the optimal multiplier
for our 1D benchmark problem reads

λ(x) =



0 if x ∈
(
0,

√
2φ
f

)
−f if x ∈

(√
2φ
f , 1−

√
2φ
f

)
0 if x ∈

(
1−

√
2φ
f , 1

)
so that it is a piecewise constant function.

Remark 4.1. (Sharpness of estimate (18) for 1D benchmark) It is easy to show
that the estimate (18) can turn into equality for the active obstacle. Indeed, in our 1D
benchmark, the condition (19) rewrites as

〈λ, v − u〉 = −f
∫ 1−

q
2φ
fq

2φ
f

(v − u)dx = 0,

if the contact zone of an approximate solution v ∈ K includes whole contact zone[√
2φ
f , 1−

√
2φ
f

]
of exact solution u.
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Fig. 2. Solutions for problems with loadings f ∈ {−6,−8,−10} and

φ = −1.

5. NUMERICAL EXPERIMENTS

A MATLAB software is available as a package Obstacle problem in 1D and its a poste-
riori error estimate at Matlab Central under http://www.mathworks.com/matlabcentral/

fileexchange/authors/37756.
Assuming the interval partition T with n nodes

0 = x1 < x2 < . . . < xn = 1,

we define Vh ⊂ V as the finite dimensional space of nodal linear functions with a basis ψj ,
j = 1 . . . n and its subspace V0,h of functions satisfying homogeneous Dirichlet boundary
conditions. Using these basis functions, a stiffness matrix A = (aij) and a mass matrix
M = (mij) are defined as

aij :=
∫ 1

0

ψ′iψ
′
jdx mij =

∫ 1

0

ψiψjdx.

A numerical approximation v ∈ V0,h of the exact solution u ∈ V0 is constructed by the
Uzawa algorithm.

http://www.mathworks.com/matlabcentral/fileexchange/authors/37756
http://www.mathworks.com/matlabcentral/fileexchange/authors/37756
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Algorithm 2. (Uzawa algorithm)

1. Set the initial Lagrange multiplier µ0 = 0.

2. Start of the loop: for k = 1, 2, . . . do until convergence:

3. Find an approximation vk ∈ V0,h such that Jµk
(vk) → min.

4. Set a Lagrange multiplier µk = (µk−1 + ρ(vk − φ))+.

5. End of the loop.

6. Output v = vk and µ = µk.

The approximation vk =
∑n−1

j=2 vk,jψj in step 3. of Algorithm 2 is computed from the
equivalent variational equation∫ 1

0

v′kw
′dx =

∫ 1

0

(f + µk)w dx for all w ∈ V0,h

leading to a linear system of equations for coefficients vk,2, . . . , vk,n−1. The convergence
of Algorithm 2 depends on the choice of the scalar parameter ρ and it can be shown,
see e. g. [11], that is alway converges for ρ ∈ (0, ρ1) for some ρ1 > 0. Some iterations
of Algorithm 2 with ρ = 10 are displayed in Figure 3. Algorithm 2 converges slowly
and therefore lower number of its iterations provides a poor approximation v of the
exact solution u. In the following, we consider three particular sets of approximations v
obtained by Algorithm 2 with different numbers of iterations:

a) 100 iterations, b) 1000 iterations, c) 10000 iterations.

The sets of solutions a), b), c) will be constructed for the uniform mesh T with 641
nodes (which corresponds to 6 uniform refinements of an initial uniform mesh with 10
elements) and for various loadings

f ∈ {−5,−6, . . . , ,−17,−18}.

It follows from (27) and (28), the obstacle is inactive for f ∈ {−5, . . . ,−7} and active
for f ∈ {−8, . . . ,−18}. Therefore, Algorithm 2 converges in a continuous setup for f ∈
{−5, . . . ,−7} after one iteration and approximations a), b), c) coincide. A verification
of the energy estimate (18) is reported in Tables 1, 2, 3. We notice that the gap between
the energy error 1

2‖v − u‖2
E and the difference of energies J(v) − J(u) is very small

for approximations c) and becomes larger for approximations b) and a). In the case of
inactive contact, the gap is apparently zero, see Remark 3.1.

For the verification of the majorant estimate (24), we run a discretized version of
Algorithm 1. The minimal argument τ∗k+1 ∈ Vh in step (i) of Algorithm 1 is searched in
the form τ∗k+1 =

∑n
j=1 yjψj , where coefficients y = (y1, . . . , yn) ∈ Rn follow (see (26))

from a linear system of equations[
(1 + βk)M +

(
1 +

1
βk

)
A

]
y = (1 + βk)b−

(
1 +

1
βk

)
c,
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Fig. 3. The first, the second and the final (the 10000th) iterations of

the Uzawa algorithm run on an uniform mesh with 641 nodes for the

loading f = −14 and the obstacle φ = −1.

Fig. 4. The first, the twentieth and the final (the 10000th) iterations

of the majorant minimization algorithm run on an uniform mesh with

641 nodes for the loading f = −14 and the obstacle φ = −1. We

assume the initial setup β0 = 1, µ0 = 0 and the approximation v

obtained after 100 iterations of the Uzawa algorithm.
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where b and c are n- dimensional vectors defined as

bi =
∫ 1

0

v′ψidx, ci =
∫ 1

0

(f + µk)ψ′idx

for i, j = 1 . . . n. The minimal argument µk+1 ∈ Λh in step (ii) of Algorithm 1 is
searched in the finite dimensional space Λh ⊂ Λ of piecewise constant functions on T .
Then, under the assumption of φ ∈ Vh, f ∈ Λh with given values

φ(xj), φ(xj+1), v(xj), v(xj+1), f(xj+ 1
2
), (τ∗k+1)

′(xj+ 1
2
)

for j = 1 . . . n− 1, we obtain the formula

µk+1(xj+ 1
2
) =

−(τ∗k+1)
′(xj+ 1

2
)− f(xj+ 1

2
)− v(xj) + v(xj+1)− φ(xj)− φ(xj+1)

2
(
1 + 1

βk

)
+

,

where (·)+ = max{0, ·}. Some iterations of Algorithm 1 are displayed in Figure 4.
We use a high (10000 in all experiments) number of iterations in order to achieve the
sharpest possible estimate (24). Algorithm 1 provides a high quality approximations
τ∗ ∈ Vh and λ ∈ Λh in accordance with Remark 3.4. We note that Algorithm 1 provides
a sharp estimate (24) for all types a), b), c) of approximations v ∈ V0,h. It corresponds
to values around 1.00 in the last column of Tables 1, 2, 3.

f 1
2
‖v − u‖2E J(v)− J(u)

q
J(v)−J(u)
1
2 ‖v−u‖2

E

M(v, . . . )
q

M(v,... )
J(v)−J(u)

-5 2.54e-006 2.54e-006 1.00 2.55e-006 1.00
-6 3.66e-006 3.66e-006 1.00 3.67e-006 1.00
-7 4.98e-006 4.98e-006 1.00 4.99e-006 1.00
-8 6.51e-006 6.51e-006 1.00 6.52e-006 1.00
-9 2.27e-005 2.27e-005 1.00 2.39e-005 1.03

-10 6.49e-005 6.86e-005 1.03 7.41e-005 1.04
-11 8.25e-005 9.91e-005 1.10 1.06e-004 1.04
-12 8.57e-005 9.99e-005 1.08 1.07e-004 1.04
-13 8.42e-005 1.13e-004 1.16 1.20e-004 1.03
-14 8.73e-005 3.69e-004 2.06 3.75e-004 1.01
-15 8.86e-005 6.44e-004 2.70 6.51e-004 1.00
-16 1.02e-004 9.91e-004 3.11 9.98e-004 1.00
-17 1.13e-004 1.26e-003 3.34 1.27e-003 1.00
-18 1.24e-004 1.54e-003 3.53 1.55e-003 1.00
-19 1.36e-004 1.73e-003 3.57 1.74e-003 1.00
-20 1.56e-004 1.98e-003 3.55 1.99e-003 1.00

Tab. 1. Verification of majorant and energy estimates for problems

with various f computed on an uniform mesh with 641 nodes.

Discrete solutions v is computed by 100 iterations of the Uzawa

algorithm.

Remark 5.1. (Update of β) The experiments showed that the update of β in the
step (iii) of Algorithm 1 should not be called in every iteration. It turns out useful to
call steps (i) and (ii) repeatedly and run step (iii) only after variables τ∗ and µ stabilize.
We updated β during the 5000th and the final 10000th iterations.
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f 1
2
‖v − u‖2E J(v)− J(u)

q
J(v)−J(u)
1
2 ‖v−u‖2

E

M(v, . . . )
q

M(v,... )
J(v)−J(u)

-5 2.54e-006 2.54e-006 1.00 2.55e-006 1.00
-6 3.66e-006 3.66e-006 1.00 3.67e-006 1.00
-7 4.98e-006 4.98e-006 1.00 4.99e-006 1.00
-8 6.51e-006 6.51e-006 1.00 6.52e-006 1.00
-9 9.04e-006 9.49e-006 1.02 9.83e-006 1.02

-10 1.00e-005 2.36e-005 1.53 2.39e-005 1.01
-11 1.19e-005 2.72e-005 1.51 2.76e-005 1.01
-12 1.33e-005 2.90e-005 1.48 2.94e-005 1.01
-13 1.53e-005 3.96e-005 1.61 4.01e-005 1.01
-14 1.73e-005 4.79e-005 1.66 4.85e-005 1.01
-15 1.88e-005 5.61e-005 1.73 5.69e-005 1.01
-16 2.07e-005 5.51e-005 1.63 5.59e-005 1.01
-17 2.24e-005 6.01e-005 1.64 6.10e-005 1.01
-18 2.48e-005 6.94e-005 1.67 7.03e-005 1.01
-19 2.70e-005 9.06e-005 1.83 9.17e-005 1.01
-20 2.91e-005 8.52e-005 1.71 8.63e-005 1.01

Tab. 2. Verification of majorant and energy estimates for problems

with various f computed on an uniform mesh with 641 nodes.

Discrete solutions v is computed by 1000 iterations of the Uzawa

algorithm.

f 1
2
‖v − u‖2E J(v)− J(u)

q
J(v)−J(u)
1
2 ‖v−u‖2

E

M(v, . . . )
q

M(v,... )
J(v)−J(u)

-5 2.54e-006 2.54e-006 1.00 2.54e-006 1.00
-6 3.66e-006 3.66e-006 1.00 3.66e-006 1.00
-7 4.98e-006 4.98e-006 1.00 4.98e-006 1.00
-8 6.51e-006 6.51e-006 1.00 6.51e-006 1.00
-9 7.78e-006 8.05e-006 1.02 8.10e-006 1.00

-10 9.11e-006 9.79e-006 1.04 9.88e-006 1.00
-11 1.05e-005 1.10e-005 1.02 1.11e-005 1.00
-12 1.20e-005 1.29e-005 1.04 1.30e-005 1.00
-13 1.35e-005 1.42e-005 1.03 1.44e-005 1.00
-14 1.51e-005 1.60e-005 1.03 1.61e-005 1.00
-15 1.68e-005 1.78e-005 1.03 1.79e-005 1.00
-16 1.84e-005 2.01e-005 1.04 2.03e-005 1.01
-17 2.02e-005 2.16e-005 1.03 2.18e-005 1.00
-18 2.20e-005 2.39e-005 1.04 2.42e-005 1.01
-19 2.39e-005 2.55e-005 1.03 2.57e-005 1.00
-20 2.58e-005 2.80e-005 1.04 2.83e-005 1.01

Tab. 3. Verification of majorant and energy estimates for problems

with various f computed on an uniform mesh with 641 nodes.

Discrete solutions v is computed by 10000 iterations of the Uzawa

algorithm.
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CONCLUSIONS

A new minimization majorant algorithm providing an optimal value of the functional
majorant M that bounds the difference of energies J(v)−J(u) was described. Numerical
experiments in 1D show that the bound can be computed sharply for both low and high
quality approximation v assuming a high number of the algorithm iterations. An analysis
of a nonlinear benchmark with known analytical solution indicates, that J(v) − J(u)
provides the exact value of the error of approximation 1

2‖v − u‖2
E in situations when

contact zone of the discrete solution v covers whole contact zone of the exact solution u.
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