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We propose an algorithm for the efficient parallel implementation of elastoplastic prob-
lems with hardening based on the so-called TFETI (Total Finite Element Tearing and Inter-
connecting) domain decomposition method. We consider an associated elastoplastic model
with the von Mises plastic criterion and the linear isotropic hardening law. Such a model is
discretized by the implicit Euler method in time and the consequent one time step elasto-
plastic problem by the finite element method in space. The latter results in a system of
nonlinear equations with a strongly semismooth and strongly monotone operator. The
semismooth Newton method is applied to solve this nonlinear system. Corresponding lin-
earized problems arising in the Newton iterations are solved in parallel by the above men-
tioned TFETI domain decomposition method. The proposed TFETI based algorithm was
implemented in Matlab parallel environment and its performance was illustrated on a
3D elastoplastic benchmark. Numerical results for different time discretizations and mesh
levels are presented and discussed and a local quadratic convergence of the semismooth
Newton method is observed.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Elastoplastic processes describe behaviour of solid continuum beyond reversible elastic deformations. They are typically
described by hysteresis models with a time memory [9,41]. The rigorous mathematical analysis of elastoplastic problems
and the numerical methods for their solution started to appear in the late 70s and in the early 80s by the work of Johnson
[30,31], Matthies [46,47], Korneev and Langer [38], Nečas and Hlaváček [50] and others. Since then a lot of mathematical
contributions to computational plasticity have been written, we refer at least to the monographs by Simo and Hughes
[57] and Han and Reddy [28].

In this paper, we focus on the efficient parallel implementation of elastoplastic problems based on the TFETI domain
decomposition method [16,40]. More specifically, we consider an associated elastoplasticity with the von Mises plastic
criterion and the linear isotropic hardening law (see e.g. [28,6,58]). The corresponding elastoplastic constitutive model is
discretized by the implicit Euler method in time and consequently a nonlinear stress–strain relation is implemented by
the return mapping concept (see e.g. [58,2,6]). This approach together with the balance equation, the small strain assump-
tion and a combination of the Dirichlet and Neumann boundary conditions leads to the solution of a nonlinear variational
equation with respect to the primal unknown displacement in each time step. Such an equation can also be equivalently
formulated as a minimization problem with a potential energy functional (see e.g. [27,60]).
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By a finite element space discretization of the one time step problem, we obtain a system of nonlinear equations. The
corresponding nonlinear operator is nondifferentiable but strongly semismooth. Therefore, it is suitable to choose the semi-
smooth Newton method for solving the system since the strong semismoothness together with other properties ensure local
quadratic convergence. Semismooth functions in finite dimensional spaces and the semismooth Newton method were
introduced in [52]. In elastoplasticity, the semismoothness was investigated for example in [27,56,60,61].

In each Newton iteration, it is necessary to solve the respective linearized problem. Different linear solvers including
those based on multigrid have been successfully tested in [63,26]. Moreover, since the linear systems of equations corre-
sponding to the elastic and elastoplastic problems are spectrally equivalent [33], all preconditioners for elastic problems
can be applied to elastoplastic ones as well.

A linear solver considered in this paper is based on a FETI type domain decomposition method enabling its efficient parallel
implementation and theoretically analyzed by Mandel and Tezaur [45]. The standard FETI method (FETI-1) was originally
introduced by Farhat and Roux [20]. Using this approach, a body is partitioned into non-overlapping subdomains, an elliptic
problem with Neumann boundary conditions is defined for each subdomain, and intersubdomain field continuity is enforced
via Lagrange multipliers. The Lagrange multipliers are efficiently solved from a dual problem by a variant of the conjugate gra-
dient algorithm. The first practical implementations exploited only the favorable distribution of the spectrum of the matrix of
the smaller problem [54], known also as the dual Schur complement matrix, but such algorithm was efficient only with a small
number of subdomains. Later, Farhat, Mandel, and Roux introduced a ‘‘natural coarse problem’’ whose solution was imple-
mented by auxiliary projectors so that the resulting algorithm became in a sense optimal [21,55]. Here, we use the Total-FETI
(TFETI) [16,40] variant of FETI domain decomposition method, where even the Dirichlet boundary conditions are enforced by
Lagrange multipliers. Hence all subdomain stiffness matrices are singular with a priori known kernels which is a great advan-
tage in the numerical solution. With known kernel basis we can regularize effectively the stiffness matrix without extra fill in
and use any standard sparse Cholesky type decomposition method for nonsingular matrices [42,10].

For systematic overview of domain decomposition methods we refer to [62]. We mention FETI-DP and BDDC methods as
examples of alternatives to the Total-FETI method. The FETI-DP (dual–primal FETI) is a popular way of avoiding singular
stiffness matrices of the local problems and was first introduced by Farhat et al. [22]. On the other hand, in [42] we gave
numerical examples showing that the matrices of the systems arising in TFETI may be better conditioned than those arising
in FETI-DP. More theoretical and implementation details about FETI-DP and its extensions and improvements are given in
[23,37,34]. The BDDC (balancing domain decomposition by constraints) was introduced by Dohrmann [14] as a simpler pri-
mal alternative to the FETI-DP. The name of the method was coined by Mandel and Dohrmann [44], because it can be under-
stood as further development of the BDD (balancing domain decomposition) method [43]. An alternative approach to the
solution of elastoplastic problems based on the Schwarz domain decomposition method with overlap was introduced in [4].

The structure of the paper is as follows: In Section 2, we introduce a quasistatic scheme of a solid mechanics problem.
Within this context, we consider both elastic and elastoplastic models. The elastic model is introduced for methodical pur-
poses because it is an essential part of the investigated elastoplastic model. After its time discretization we summarize the
resulting one time step problem. In Section 3, the finite element space discretization of the one time step problem and its
nonlinear algebraic formulation are described in details. The semismooth Newton method is applied to treat this nonlinear-
ity. The TFETI method combined with the projected conjugate gradient algorithm is derived in Section 4 to solve the linear-
ized problems appearing in the Newton iterations. Finally, the algorithm for solving the whole elastoplastic problem is
summarized. In Section 5, the performance of the proposed algorithm is illustrated on numerical experiments. Final com-
ments are summarized in Section 6.

2. Elastic and elastoplastic models

In this section, we summarize elastic and elastoplastic models in a quasistatic framework. Firstly, we introduce basic
notation and assumptions that will be used for setting the models. Secondly, we describe the linear elastic constitutive mod-
el for an isotropic material. Thirdly, we introduce the elastoplastic initial value constitutive model based on the described
elasticity, the von Mises yield function, the associated plastic flow rule and the linear isotropic hardening represented by
the accumulated plastic strain. Fourthly, we consider time discretization of the constitutive model given by the implicit Euler
method. The explicit form of the time discretized elastoplastic operator is introduced.

2.1. Notation and assumptions

Let us consider a deformable body occupying a domain X � R3 with a Lipschitz continuous boundary C ¼ @X. We will
describe the state of the body during a loading process by the Cauchy stress tensor r 2 S, the displacement u 2 R3 and
the small strain tensor e 2 S. Here S ¼ R3�3

sym is the space of all symmetric second order tensors. Other variables that are nec-
essary for defining the elastoplastic models will be introduced in Section 2.3. More details can be found in [58].

The above variables depend on the spatial variable x 2 X and on the time variable t 2 Q ¼ ½t0; t��. The small strain tensor is
related to the displacement by the linear relation
eðuÞ ¼ 1
2
5uþ ð5uÞT
� �

: ð1Þ
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The equilibrium equation in the quasistatic case reads
�divðrðx; tÞÞ ¼ gðx; tÞ 8ðx; tÞ 2 X� Q ; ð2Þ
where gðx; tÞ 2 R3 represents the volume force acting at the point x 2 X and the time t 2 Q .
Let the boundary C be fixed on a part CU that has a nonzero Lebesgue measure with respect to C, i.e., we prescribe the

homogeneous Dirichlet boundary condition on CU:
uðx; tÞ ¼ 0 8ðx; tÞ 2 CU � Q : ð3Þ
On the rest of the boundary CN ¼ C n CU , we prescribe the Neumann boundary conditions
rðx; tÞnðxÞ ¼ Fðx; tÞ 8ðx; tÞ 2 CN � Q ; ð4Þ
where nðxÞ denotes the exterior unit normal and Fðx; tÞ denotes a prescribed surface forces at the point x 2 CN and the time
t 2 Q . Geometry of X with imposed boundary conditions is depicted in Fig. 1. Similarly, we can consider other boundary con-
ditions, for example symmetry and periodic conditions.

For a weak formulation of the investigated problems, it is sufficient to introduce the space of kinematically admissible
displacements,
V ¼ v 2 ½H1ðXÞ�3 : v ¼ 0 on CU

n o
: ð5Þ
Then the conditions (2)–(4) can be written in a weak sense by
Z
X
hr; eðvÞiFdx ¼

Z
X

gTvdxþ
Z

CN

FTvds 8v 2 V ; 8t 2 Q : ð6Þ
Here eðvÞ is defined by (1), h:; :iF and k:kF denote the Frobenius scalar product and the corresponding norm on the space S,
respectively. We assume that the functions r; F; g are sufficiently smooth such that the integrals in (6) are correctly defined
in the Lebesgue sense.

To complete the investigated (generally quasistatic) models, we will prescribe the constitutive relations between the
stress, the strain and eventually other variables, see Sections 2.2 and 2.3.

2.2. Elastic model

We consider the elastic constitutive model given by the Hooke law for isotropic material,
r ¼ Ce ¼ ktrðeÞI þ 2le; ð7Þ
with the Lame coefficients k;l. For the sake of simplicity, we assume a homogeneous material, i.e., the constant coefficients
k;l > 0. The trace operator of a tensor is denoted by trð:Þ and I denotes the identity.

It will be useful to introduce the volumetric and deviatoric parts of a tensor g 2 S by
volðgÞ ¼ 1
3

trðgÞI; devðgÞ ¼ g� volðgÞ: ð8Þ
It holds that
hvolðgÞ;devðnÞiF ¼ 0; hdevðgÞ; niF ¼ hdevðgÞ;devðnÞiF 8g; n 2 S: ð9Þ
By (9), we can find that the fourth order tensor C, defined by (7), is symmetric and elliptic, i.e.,
hCg; niF ¼ hg;CniF ; hCg;giF P 2lkgk2
F 8g; n 2 S: ð10Þ
Fig. 1. Geometry of the domain X with imposed boundary conditions.
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If we substitute (7) into (6), we obtain for any fixed t 2 Q the weak formulation of the elastic problem.

Problem 1 (Elastic problem). Find u ¼ uðx; tÞ 2 V such that
aeðu; vÞ ¼
Z

X
gTvdxþ

Z
CN

FTvds 8v 2 V ; ð11Þ
where the bilinear form on V reads
aeðw;vÞ ¼
Z

X
hCeðwÞ; eðvÞiFdx; w;v 2 V : ð12Þ
Due to (10) and the Korn inequality [50], aeðw;vÞ is symmetric and V-elliptic
aeðw;vÞ ¼ aeðv ;wÞ; 9c > 0 : aeðv; vÞP ckvk2
V 8v ;w 2 V : ð13Þ
The mentioned properties of the form ae ensure that the elastic problem (11) has a unique solution u 2 V , for example by
Lax–Milgram lemma [50]. Notice that the problem (11) does not depend on the load history, so it is a static problem.

2.3. Elastoplastic initial value constitutive model

In comparison to elasticity (see (7)), elastoplasticity is a time-dependent model where the history of loading is taken into
account. We will assume associated elastoplasticity with von Mises plastic criterion and linear isotropic hardening law (see
e.g. [28,6,58]). For details on more complicated hardening laws we refer for instance to [7,8,29]. The elastoplastic initial-va-
lue constitutive model consists of the following components:

1. Additive decomposition of the strain tensor into the elastic and plastic parts:
e ¼ ee þ ep: ð14Þ
2. Linear elastic law between the stress and the elastic strain:
r ¼ Cee; ð15Þ
where the fourth order tensor C is defined by (7).
3. The von Mises yield function coupled with an isotropic hardening variable j:
Uðr;jÞ ¼
ffiffiffi
3
2

r
kdevðrÞkF � ðry þ HmjÞ � 0; ð16Þ
where ry;Hm > 0 denote the initial yield stress and the hardening modulus, respectively.
4. The associated plastic flow rule:
_ep ¼ _c
@U
@r
¼ _c

ffiffiffi
3
2

r
devðrÞ
kdevðrÞkF

; _c P 0; ð17Þ
where _ep and _c denote the time derivative of the plastic strain and the plastic multiplier, respectively.
5. The hardening law based on the accumulated plastic strain rate:
_j ¼
ffiffiffi
2
3

r
k _epkF ¼ _c: ð18Þ
Notice that the second equality in (18) follows from (17).
6. The loading/unloading conditions:
_c P 0; Uðr;jÞ � 0; _cUðr;jÞ ¼ 0: ð19Þ
7. The initial conditions:
eðx; t0Þ ¼ eeðx; t0Þ ¼ epðx; t0Þ ¼ rðx; t0Þ ¼ 0; jðx; t0Þ ¼ 0; x 2 X: ð20Þ
The weak formulation of the corresponding elastoplastic problem can be found in [28]. Here we will only consider a time
discretized elastoplastic model.

2.4. Time discretized elastoplastic model

First, we derive an explicit form of the time discretized constitutive elastoplastic model. Then, we formulate the whole
time discretized elastoplastic problem, similarly as in Section 2.2.
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Let us consider the following discretization of the time interval
t0 < t1 < . . . < tk < � � � < tN ¼ t�:
Let us denote rk ¼ rkðxÞ ¼ rðx; tkÞ; x 2 X and similarly for other variables. To approximate the time derivatives, we use
the implicit Euler method. This method is often used in mathematical and engineering literature, see e.g. [28,58]. Other
approximation schemes such as Crank–Nicholson scheme or discontinuous Galerkin are discussed e.g. in [3]. Then by (14)
and (15),
_epðtkþ1Þ 	
ep

kþ1 � ep
k

Mtkþ1
¼

C�1ðrt
kþ1 � rkþ1Þ
Mtkþ1

; Mtkþ1 ¼ tkþ1 � tk; ð21Þ
where
rt
kþ1 :¼ rk þ CMekþ1; Mekþ1 ¼ ekþ1 � ek: ð22Þ
The stress tensor rt
kþ1 is denoted as a trial stress tensor. By (14)–(22), we can formulate the time discretized elastoplastic

constitutive problem as follows. Given the values rk;jk; ek of the stress, the isotropic hardening and the strain, respectively,
at the time tk and given the incremental strain Mekþ1 for the interval ½tk; tkþ1�, solve the following system of algebraic
equations
C�1ðrt
kþ1 � rkþ1Þ ¼ Mckþ1

ffiffiffi
3
2

r
devðrkþ1Þ
kdevðrkþ1ÞkF

; ð23Þ

jkþ1 � jk ¼ Mckþ1; ð24Þ
for the unknowns rkþ1;jkþ1, and Mckþ1, subject to the constraints
Mckþ1 P 0; Uðrkþ1;jkþ1Þ � 0; Mckþ1Uðrkþ1;jkþ1Þ ¼ 0: ð25Þ
This constitutive problem can be solved explicitly by the return mapping concept (see e.g. [6,58]). It means that we firstly
apply the elastic predictor, i.e., we verify whether Uðrt

kþ1;jkÞ � 0. If it holds then
Mckþ1 ¼ 0; rkþ1 ¼ rt
kþ1; Mrkþ1 ¼ CMekþ1; ð26Þ
i.e., the stress increment satisfies the elastic law defined by (7). If Uðrt
kþ1;jkÞ > 0, then by the plastic corrector we have
Mckþ1 ¼
1

3lþ Hm
Uðrt

kþ1;jkÞ; rkþ1 ¼ rt
kþ1 �

3l
3lþ Hm

ffiffiffi
2
3

r
Uðrt

kþ1;jkÞn̂ðrt
kþ1Þ; ð27Þ
where
n̂ðsÞ ¼ devðsÞ
kdevðsÞkF

; s 2 S: ð28Þ
Notice that the second formula in (27) is correctly defined since the denominator kdevðrt
kþ1ÞkF > 0 for Uðrt

kþ1;jkÞ > 0. Let us
define the stress and hardening operators Trðs;x; :Þ : S! S; Tjðs;x; :Þ : S! S with respect to parameters s 2 S;x 2 Rþ, such
that for g 2 S
Trðs;x; gÞ :¼ Cg� 3l
3lþ Hm

ffiffiffi
2
3

r
Uþðsþ Cg;xÞn̂ðsþ CgÞ; ð29Þ

Tjðs;x; gÞ :¼ 1
3lþ Hm

Uþðsþ Cg;xÞ; ð30Þ
respectively, where Uþ denotes the positive part of the function U. Then by (22), (24), (26), (27), (29) and (30),
Mjkþ1 ¼ Tjðrk;jk;Mekþ1Þ; Mrkþ1 ¼ Trðrk;jk;Mekþ1Þ: ð31Þ
For the sake of brevity, we will denote the stress operator Trðrk;jk; :Þ with respect to the current parameters rk and jk by
Tkð:Þ. By [6,27,60], the operator Tk : S! S is potential, Lipschitz continuous, strongly monotone, and strongly semismooth on
S.

Let us note that semismoothness was originally introduced by Mifflin [48] for functionals. Qi and Sun [52] extended the
definition of semismoothness to vector-valued function to investigate the superlinear convergence of the Newton method.
The strong semismoothness of the Lipschitz continuous function Tkð:Þmeans that Tkð:Þ is directionally differentiable on S and
has a quadratic approximate property at any g 2 S, i.e., for any n 2 S; n! 0, and any To

kðgþ nÞ 2 @Tkðgþ nÞ,
Tkðgþ nÞ � TkðgÞ � To
kðgþ nÞn ¼ Oðknk2

F Þ: ð32Þ
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Here @Tkðgþ nÞ denotes the set of the Clark generalized derivatives of Tk at gþ n. Here we will choose the Clark generalized
derivative To

k of Tk in the following way:

1. If Uðrk þ Cg;jkÞ � 0, then
To
kðgÞ ¼ C: ð33Þ
2. If Uðrk þ Cg;jkÞ > 0, then
To
kðgÞ ¼ C� 3l

3lþ Hm

ffiffiffi
2
3

r
n̂ðrk þ CgÞ 
 @Uðrk þ Cg;jkÞ

@g
� 3l

3lþ Hm

ffiffiffi
2
3

r
Uðrk þ Cg;jkÞ

@n̂ðrk þ CgÞ
@g

; ð34Þ
where
@UðrkþCg;jkÞ
@g ¼ 2l

ffiffi
3
2

q
n̂ðrk þ CgÞ;

@n̂ðrkþCgÞ
@g ¼ 2l Id�n̂ðrkþCgÞ
n̂ðrkþCgÞ

kdevðrkþCgÞkF
;

Idn :¼ devðnÞ; 8n 2 S:
Notice that Tk is not differentiable at g 2 S;Uðrk þ Cg;jkÞ ¼ 0. Otherwise To
kðgÞ ¼ @TkðgÞ=@g. By using (7)–(9) we can derive

the following uniform estimate for To
k (see e.g. [6]):
hCn; niP hTo
kðgÞn; niP

Hm

3lþ Hm
hCn; ni 8g; n 2 S; 8k� integer: ð35Þ
Let us recall that the stress, strain, hardening and displacement variables also depend on a spatial variable x 2 X. We con-
sider the dependence of TkðMekÞ on x in the following sense:
TkðMekÞ ¼ TkðMekÞðxÞ :¼ TrðrkðxÞ;jkðxÞ;MekðxÞÞ: ð36Þ
Then we can substitute the stress operator Tk, defined by (29), into the balance Eq. (6) to obtain the time discretized elas-
toplastic problem in the incremental form.

Problem 2 (One time step elastoplastic problem in the incremental form). Given the stress field rk 2 ½L2ðXÞ�3�3
sym and the

isotropic hardening field jk 2 L2ðXÞ at the time tk, find the displacement ukþ1 ¼ uk þ Mukþ1 2 V , where the increment
Mukþ1 2 V solves the variational equation
Z

X
hTkðeðMukþ1ÞÞ; eðvÞiF dx ¼

Z
X
MgT

kþ1vdxþ
Z

CN

MFT
kþ1vds 8v 2 V ; ð37Þ
with loading increments MFkþ1 ¼ Fkþ1 � Fk; Mgkþ1 ¼ gkþ1 � gk. Set the stress and isotropic hardening fields
rkþ1 ¼ rk þ Mrkþ1;jkþ1 ¼ jk þ Mjkþ1 in the next time step tkþ1 from the relations
Mrkþ1 ¼ Trðrk;jk; eðMukþ1ÞÞ; Mjkþ1 ¼ Tjðrk;jk; eðMukþ1ÞÞ; ð38Þ
almost everywhere in X.
Problem 2 can be equivalently formulated as a minimization problem [27,60]. Since the operator Tk is strongly monotone

and Lipschitz continuous on S, the non-linear Eq. (37) has a unique solution Mukþ1 2 V (see e.g. [25]). As we will see in the
next section, we will solve a linearized problem in each Newton iteration. To do this, it will be useful to define the bilinear
form akðuÞ : V � V ! R for u 2 V by
akðuÞðw; vÞ ¼
Z

X
hTo

kðeðuÞÞeðwÞ; eðvÞidx; v ;w 2 V ; ð39Þ
where the operator To
kð:Þ ¼ To

kð:ÞðxÞ is defined by (33) and (34). The bilinear form ak is symmetric, bounded, and V-elliptic on V
due to (35) and (13).

3. Semismooth Newton method in elastoplasticity

In this section, firstly, we approximate the time discretized elastoplastic problem by the finite element method and intro-
duce the corresponding algebraic notation. Secondly, we introduce the semismooth Newton method for the problem.

3.1. Finite element discretization and algebraic formulation

Details to finite element implementation of elastoplastic problems can be found in [11,6,27].
For the sake of simplicity, we assume a polyhedral 3D domain X and use the linear simplex elements. The corresponding

shape regular triangulation is denoted by T h. Thus the space V is approximated by its subspace Vh of piecewise linear and
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continuous functions. Therefore the spaces of the strains, the stress and the isotropic hardening are approximated by piece-
wise constant functions.

Similarly to (37) and (38), we can formulate the one time step elastoplastic problem after the space discretization. Let
rk;h; jk;h be piecewise constant stress and hardening variables with respect to the triangulation T h at the time tk obtained
from a previous time process.

Problem 3 (One time step elastoplastic problem in the incremental form after space discretization). Find the displacement
ukþ1;h ¼ uk;h þ Mukþ1;h 2 Vh, where the increment Mukþ1;h 2 Vh solves the variational equation
Z

X
hTk;hðeðMukþ1;hÞÞ; eðvhÞiFdx ¼

Z
X
MgT

kþ1vhdxþ
Z

CN

MFT
kþ1vhds 8vh 2 Vh; ð40Þ
where Tk;hð:Þ :¼ Trðrk;h;jk;h; :Þ. Set the stress and isotropic hardening fields rkþ1;h ¼ rk;h þ Mrkþ1;h;jkþ1;h ¼ jk;h þ Mjkþ1;h in
the next time step tkþ1 from the relations
Mrkþ1;h ¼ Trðrk;h;jk;h; eðMukþ1;hÞÞ; Mjkþ1;h ¼ Tjðrk;h;jk;h; eðMukþ1;hÞÞ ð41Þ
for every elements of T h.
For the sake of simplicity, we do not consider finite element approximation of Fk and gk. Similarly as in (33) and (34), we

can define the generalized derivative To
k;h of Tk;h and consequently also define the approximated bilinear form ak;hðuhÞ for

uh 2 Vh by
ak;hðuhÞðwh;vhÞ ¼
Z

X
hTo

k;hðeðuhÞÞeðwhÞ; eðvhÞidx; vh;wh 2 Vh: ð42Þ
Each function vh ¼ ðvh;1;vh;2;vh;3Þ 2 Vh can be represented by a vector
v 2 Rn; v :¼ ðvh;jðxiÞÞi2f1;...;Ng; j2f1;2;3g;
whereN denotes the number of vertices of the triangulation T h and n ¼ 3N . The homogeneous Dirichlet boundary condition
is represented by a restriction matrix BU 2 Rm�n, i.e.,
BUu ¼ o: ð43Þ
Let RT 2 R12�n be a restriction operator for a displacement vector u 2 Rn on a local element T 2 T h, i.e.,
uT ¼ RT u: ð44Þ
We denote by uk and Mukþ1 the displacement vector and the searching displacement increment at the time step k, respec-
tively. We denote the load vector represented the volume and surface forces Fk; gk by f k and its increment Mf k.

Further, we use a vector representation in R6 of the stress and strain tensors that is typical for an implementation of elas-
tic problem, i.e.,
r ¼ ðr11;r22;r33;r12;r23;r13ÞT ; e ¼ ðe11; e22; e33;2e12;2e23;2e13ÞT : ð45Þ
Notice that the stress and strain vectors have different structures in comparison to the above tensor notation. Therefore we
must carefully distinguish this difference in algebraic representation of the operators Tr; Tj; Tk;h, and To

k;h. The vectors in
sense of stress variables will be denoted by letters r; s, the vectors in sense of strain variables will be denoted by letters
e; ep; g, and n. Let rk;T and jk;T be the algebraic representation of rk;h and jk;h on an element T 2 T h, respectively.

We introduce the algebraic representations C 2 R6�6; Ee 2 R6�6; Er 2 R6�6; k:kr; U; n̂; Tj;k;T ; Tk;T , and To
k;T of the Hooke

tensor C, the deviatoric operator Id related to the strain and stress variables, the Frobenius norm with respect to a stress var-
iable, the functions U; n̂, and the restrictions of the functions Tj rkjT ;jkjT ; �ð Þ; Tk;h; To

k;h on T 2 T h, respectively, with respect
to the vector form (45) of the stress and strain variables. The forms of matrices C; Ee; Er, and the norm k:kr are
C :¼

kþ 2l k k 0 0 0
k kþ 2l k 0 0 0
k k kþ 2l 0 0 0
0 0 0 l 0 0
0 0 0 0 l 0
0 0 0 0 0 l

2666666664

3777777775
;

Ee :¼ 1
3

2 �1 �1 0 0 0
�1 2 �1 0 0 0
�1 �1 2 0 0 0
0 0 0 1:5 0 0
0 0 0 0 1:5 0
0 0 0 0 0 1:5

2666666664

3777777775
;

Er :¼ PEe; P :¼ diag ð1;1;1;2;2;2Þ;
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and
kskr :¼ sT Ps
� �1=2

; s 2 R6;
respectively. Consequently the functions U; n̂; Tj;k;T ; Tk;T ; To
k;T are defined by (16), (28), (30), (29), (33) and (34) in the

following way:
Uðs;jÞ :¼
ffiffiffi
3
2

r
kErskr � ry þ Hmj

� �
;

n̂ðsÞ :¼ Ers
kErskr

; nk;TðgÞ ¼ n̂ rk;T þ Cg
� �

;

Tj;k;TðgÞ :¼ 1
3lþ Hm

Uþ rk;T þ Cg;jk;T

� �
;

Tk;TðgÞ :¼ Cg� 3l
3lþ Hm

ffiffiffi
2
3

r
Uþ rk;T þ Cg;jk;T

� �
nk;TðgÞ;

To
k;TðgÞ :¼

C; if U rk;T þ Cg;jk;T

� �
6 0; otherwise

C � 2l 3l
3lþHm

Ee�

�2l 3l
3lþHm

ffiffi
2
3

q
ryþHmjk;T

kEr rk;TþCgð Þkr nk;TðgÞnT
k;TðgÞ � Ee

� �
;

8>>>>><>>>>>:

respectively.

We also introduce the matrix GT 2 R6�12 representing the algebraical relation between the strain and the displacement
(the exact form of GT is in [1]), i.e., the strain eT on an element T 2 T h can be found by (44) in the form
eT ¼ GT RT u: ð46Þ
Based on the introduced notation we define the non-linear operator Fk : Rn ! Rn,
FkðvÞ ¼
X
T2T h

Tk;TðGT RTvÞ
� �T GT RT ; v 2 Rn; ð47Þ
which plays the role of the left hand side in (40). Further we define the tangential and elastic stiffness matrices
KkðvÞ ¼
X
T2T h

To
k;TðGT RTvÞ;GT RT

� �T
GT RT ; KkðvÞ 2 Rn�n; v 2 Rn; ð48Þ

Ke ¼
X
T2T h

CGT RTð ÞT GT RT ; Ke 2 Rn�n; ð49Þ
which represent the bilinear forms ak;h and ae, respectively. In particular, we denote the matrix KkðMukþ1;iÞ briefly by Kk;i,
where the reason of Mukþ1;i 2 Rn will be explained in the next section.

Let
V :¼ v 2 RnjBUv ¼ of g:
Then by using (47), we can rewrite the Eq. (40) as follows: find Mukþ1 2 V such that
vT FkðMukþ1Þ � Mf kþ1

� �
¼ 0 8v 2 V ; ð50Þ
where Mf kþ1 is the increment of the load vector. Let ~uk 2 Rn�m; ~f k 2 Rn�m; eK k;i; eK e 2 Rðn�mÞ�ðn�mÞ, and eF k : Rn�m ! Rn�m

denote the restrictions of uk; f k; Kk;i; Ke, and Fk given by omitting the entries (degrees of freedom) corresponding to
the prescribed Dirichlet boundary conditions. Then we can rewrite the Eq. (50) to the following system of non-linear
equations:
find Mukþ1 2 V : eF kðM~ukþ1Þ ¼ M~f kþ1: ð51Þ
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The discretized elastoplastic problem can be solved by the following algorithm:

Algorithm 1. Solution of discretized elastoplastic problem

1: initial step: u0 ¼ o; e0;T ¼ o; r0;T ¼ o; j0;T ¼ o for any T 2 T h

2: for k ¼ 0; . . . ;N � 1 do

3: find Mukþ1 2 V : eF kðM~ukþ1Þ ¼ M~f kþ1

4: for all T 2 T h do
5: Mekþ1;T ¼ GT RTMukþ1; ekþ1;T ¼ ek;T þ Mekþ1;T

6: Mrkþ1;T ¼ Tk;TðMekþ1;TÞ; rkþ1;T ¼ rk;T þ Mrkþ1;T

7: Mjkþ1;T ¼ Tj;k;TðMekþ1;TÞ; jkþ1;T ¼ jk;T þ Mjkþ1;T

8: end for
9: end for
3.2. Semismooth Newton method for one time step problem

The non-linear system of Eqs. (51) is solved by the semismooth Newton method (see e.g. [52]). The corresponding algo-
rithm is following:

Algorithm 2. Semismooth Newton method

1: initialization: Muk;0 ¼ o
2: for i ¼ 0;1;2; . . . do

3: find dui 2 V : eK k;id~ui ¼ M~f kþ1 � eF kðM~uk;iÞ
4: compute Muk;iþ1 ¼ Muk;i þ dui

5: if kMuk;iþ1 � Muk;ik=ðkMuk;iþ1k þ kMuk;ikÞ 6 �Newton then stop
6: end for
7: set Mukþ1 ¼ Muk;iþ1

Here �Newton > 0 is the relative stopping tolerance and d~ui 2 Rn�m is the restriction of dui given by omitting the entries (de-
grees of freedom) corresponding to the prescribed Dirichlet boundary conditions. Since (35) yields
~wT eK e ~w P ~wT eK k;i ~w P
Hm

3lþ Hm
~wT eK e ~w 8 ~w 2 Rn�m; 8k; i� integers ð52Þ
the matrices eK k;i are spectrally equivalent to eK e. By Kienesberger et al. [33], it means that all types of preconditioners for
elastic problems can be applied to the linearized problem in each Newton step as well. If Hm ¼ 0, we obtain the elastic-per-
fectly plastic problem, and eK k;i become generally singular. Such a problem is complicated not only for computations but also
for the complete theory in terms of displacements. Therefore, the mentioned spectral equivalency seems to be problematic
for too small values of Hm. However, most of local stiffness matrices used in assembly of eK k;i remain in an elastic mode andeK k;i become more regular in real computations. Indeed, we have successfully used the introduced algorithms even for per-
fectly plastic case [12].

In [6,27,60], superlinear local convergence of the algorithm has been derived. Let us note that the convergence depends
on the discretization parameter h of the triangulation. Therefore we can expect that the finer the mesh, the bigger the num-
ber of the Newton iterations. In [60], a damped semismoooth Newton method for such a problem has also been described.
Such a method has again superlinear local convergence and additionally global convergence.

4. TFETI method for solving linearized problems

In this section, we describe the TFETI domain decomposition method for solving linearized problems appearing in New-
ton iterations and its optimal solver based on projected conjugate gradient method with preconditioning (PCGP). Finally, we
summarize TFETI based algorithm for solving the whole elastoplastic problem.

4.1. TFETI domain decomposition method

In the previous section, we showed that we need to solve the following system of the linear equations:
find dui 2 V : eK k;id~ui ¼ M~f kþ1 � eF kðM~uk;iÞ; ð53Þ
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in each time step k and in each Newton iteration i. Since the TFETI domain decomposition method can be described inde-
pendently of the indices k; i, we will schematically write the problem in the form:
find u 2 V : ~K ~u ¼ ~f ; ð54Þ
where eK ; ~u; ~f are the restriction of K ; u; f with respect to the Dirichlet boundary conditions respectively. Let us note that K
is a symmetric and positive semidefinite matrix and eK is a symmetric and positive definite matrix. Therefore the linearized
problem (54) has a unique solution. The problem (54) can be equivalently rewritten as a minimization problem:
find u 2 V : JðuÞ 6 JðvÞ; 8v 2 V ; ð55Þ
where
JðvÞ ¼ 1
2

vT Kv � f Tv ; v 2 V :
The corresponding functional representation of (54) is following: find uh 2 Vh such that for any vh 2 Vh,
Z
X
hDheðuhÞ; eðvhÞiF dx ¼

Z
X

gTvhdxþ
Z

CN

FTvhds�
Z

X
hsh; eðvhÞiFdx; ð56Þ
where Dh restricted on T 2 T h is a constant fourth order symmetric and elliptic tensor and sh restricted on T 2 T h is a con-
stant second order tensor from S. We can see that (56) is related to (53), if we replace
Dh � To
k;hðMuk;h;iÞ; sh � Tk;hðMuk;h;iÞ; F � MFkþ1; g � Mgkþ1; uh � duh;i
and set Muk;h;i and duh;i as the functional representation of Muk;i and dui, respectively.
Notice that the problem (56) has a similar scheme as the elastic problem defined in Section 2.2. Therefore the below intro-

duced TFETI method can also be explained for elasticity in the same way.
The variational problem of the type (56) can be equivalently formulated as a minimization problem:
find uh 2 Vh : JhðuhÞ 6 JhðvhÞ 8vh 2 Vh; ð57Þ
where
JhðvhÞ ¼
1
2

Z
X
hDheðvhÞ; eðvhÞiF dx�

Z
X

gTvhdx�
Z

CN

FTvhdsþ
Z

X
hsh; eðvhÞiF dx: ð58Þ
To apply the TFETI domain decomposition, we tear the body from the part of the boundary with the Dirichlet boundary
condition, decompose it into subdomains, assign each subdomain by a unique number, and introduce new ‘‘gluing’’ condi-
tions on the artificial intersubdomain boundaries and on the boundaries with imposed Dirichlet condition (see Fig. 2).

In particular, the polyhedral domain X is decomposed into a system of s disjoint polyhedral subdomains
Xp � R3; p ¼ 1;2; . . . ; s. We assume that the decomposition is consistent with the triangulation T h, i.e.,
8T 2 T h 9! p 2 f1;2; . . . ; sg : T � �Xp ð59Þ
and define
T p
h :¼ fT 2 T h : T � �Xpg; T h ¼

[
p2f1;2;...;sg

T p
h: ð60Þ
After the decomposition each boundary Cp of Xp consists of three disjoint parts Cp
U ; Cp

N , and Cp
G;C

p ¼ Cp
U [ Cp

N [ Cp
G, where
Cp
U ¼ CU \ Cp; Cp

N ¼ CN \ Cp; Cp
G ¼

[
q2f1;2;...;sgnfpg

Cpq
G ;
Fig. 2. TFETI domain decomposition with subdomain renumbering.
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with Cpq
G being the part of Cp which is glued to Xq; p – q.

Similarly to the definition of Vh, we can define the spaces Vp
h; p ¼ 1;2; . . . s, of piecewise linear and continuous approxi-

mations of H1ðXpÞ:
Vp
h :¼ fvp

h 2 H1ðXpÞ : vp
hjT 2 ½P1�3 8T 2 T p

h; vp
hjCp

U
¼ 0g: ð61Þ
Let V h :¼ V1
h � V2

h � . . .� Vs
h be a product space and
Kh :¼ fvh ¼ ðv1
h; . . . ;v s

hÞ 2 Vh : vp
h ¼ vq

h on Cpq
G 8p; q 2 f1;2; . . . ; sg; p – qg: ð62Þ
Let us note that we slightly distinguish the notation introduced for the TFETI method from the notation introduced in Sec-
tions 2 and 3. For example, we write Vh for the TFETI method while in Section 2, we used the notation Vh. A similar distinction
is also introduced for the below algebraic description of the TFETI method.

Let
JhðvhÞ ¼
Xs

p¼1

1
2

Z
Xp
hDheðvp

hÞ; eðv
p
hÞiFdx�

Z
Xp

gTvp
hdx�

Z
Cp

N

FTvp
hdsþ

Z
Xp
hsh; eðvp

hÞiF dx

( )
ð63Þ
be a functional defined on Vh. Then the minimization problem (57) can be equivalently rewritten into the form:
find uh 2 Kh : JhðuhÞ 6 JhðvhÞ 8vh 2 Kh; ð64Þ
where uh ¼ ðuhÞjX1 ; . . . ; ðuhÞjXs

� �
and uh 2 Vh solves (57).

Each function vh ¼ v1
h;v2

h; . . . ;v s
h

� �
; vh 2 Vh, can be represented by a vector v 2 Rn; v ¼ vT

1;vT
2; . . . ;vT

s

� �T , where
vp 2 Rnp ; p 2 f1;2; . . . ; sg, is the algebraic representation of vp

h and n ¼
Ps

p¼1np. Similarly we can find the vector

f 2 Rn; f ¼ f T
1; f

T
2; . . . ; f T

s

� �T
; f p 2 Rnp ; p 2 f1;2; . . . ; sg, such that f p is the algebraic representation of the load restricted on

Xp and Cp
N . Let the matrix BG 2 RmG�n represent the gluing conditions introduced in (62) and BU 2 RmU�n the Dirichlet bound-

ary conditions introduced in (61). Both matrices can be combined into one constraint matrix
B ¼
BG

BU

� �
; B 2 Rm�n; m ¼ mG þ mU : ð65Þ
Typically m is much smaller than n. Let us note that B can be assembled to have different forms: redundant, non-redundant or
orthonormal. The rows of BG in the standard redundant form are vectors of the order n with zero entries except 1 and �1 at
appropriate positions. The orthonormal form is obviously obtained from the redundant one by only special treating of the
rows of B corresponding to the nodes shared by more subdomains, i.e., for each of such nodes we take all corresponding rows
in the redundant form, othonormalize them, and remove dependent ones. This can be done in parallel. For more details see
[32,51,53,36,24]. In fact all forms are applicable but due to simplicity of our presentation we use the orthonormal form of B.

Let the matrix K 2 Rn�n; K ¼ diag ðK1;K2; . . . ;KsÞ denotes a symmetric positive semidefinite block diagonal matrix, where
Kp ¼
X
T2T p

h

jTj DT GT Rp
T

� �T GT Rp
T ; Kp 2 Rnp�np :
Here DT 2 R6�6 is the algebraic representation of DhjT and Rp
T 2 R12�np is a restriction operator for a displacement vector

up 2 Rnp to a local element T 2 T p
h. The diagonal blocks Kp; p 2 f1;2; . . . ; sg, which correspond to the subdomains Xp, are po-

sitive semidefinite sparse matrices with known kernels, the rigid body modes.
The algebraical formulation of (64) is following:
find u 2 V : JðuÞ 6 JðvÞ 8v 2 V;

JðvÞ :¼ 1
2 vT Kv� fTv;

V :¼ v 2 Rn : Bv ¼ of g:

8><>: ð66Þ
Even though (66) is a standard convex quadratic programming problem, its formulation is not suitable for numerical solu-
tion. The reasons are that K is typically ill-conditioned, singular, and very large.

The complications mentioned above may be essentially reduced by applying the duality theory of convex programming
(see, e.g., Dostál [15]), where all the constraints are enforced by the Lagrange multipliers k. The Lagrangian associated with
problem (66) is
Lðv; kÞ ¼ JðvÞ þ kT Bv: ð67Þ
It is well known [15] that (66) is equivalent to the saddle point problem:
find ðu; kÞ 2 Rn � Rm : Lðu; mÞ 6 Lðu; kÞ 6 Lðv; kÞ 8ðv; mÞ 2 Rn � Rm ð68Þ
in sense that u solves (66) if and only if ðu; kÞ solves (68).
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4.2. Optimal solvers to equality constrained problems

The solution of (68) leads to the equivalent problem to find ðu; kÞ 2 Rn � Rm satisfying:
K BT

B 0

 !
u
k

	 

¼

f
o

	 

: ð69Þ
The system (69) is uniquely solvable which is guaranteed by the following necessary and sufficient conditions [5]:
Ker BT ¼ o; ð70Þ

Ker K \ Ker B ¼ o: ð71Þ
Notice that (70) is the condition on the full row-rank of B. Let us mention that an orthonormal basis of Ker K is known a priori
and that its vectors are columns of R 2 Rn�l; l ¼ n� rankðKÞ.

The first equation in (69) is satisfied if
f � BT
k 2 ImK ð72Þ
and
u ¼ Kyðf � BT
kÞ þ Ra ð73Þ
for an appropriate a 2 Rl and arbitrary matrix Ky satisfying KKyK ¼ K. Here Ky is a generalized inverse matrix whose appli-
cation on a vector can be efficiently implemented (see Remark 1).

Remark 1. The diagonal block Kp; p 2 f1;2; . . . ; sg, which corresponds to the subdomain Xp, is positive semidefinite sparse
matrix with known kernel basis created by the rigid body modes. The first note about practical implementation of the action
of the generalized inverse based on modified Cholesky factorization can be found in [19]. This approach does not solve how
to detect carefully zero pivots. In contrast to [19] we use the kernel basis and fixing nodes strategy to effectively regularize
all blocks without extra fill in and then decompose them using any standard sparse Cholesky type factorization method for
nonsingular matrices [42,10]. The action of Ky on a vector is naturally parallelized with respect to the subdomains and
computed using backward and forward substitutions.
Remark 2. Notice that the pseudoinverse Ky can also be applied on vectors which do not belong to ImðKÞ. Therefore we can
write Kyðf � BT

kÞ ¼ Kyf � KyðBT
kÞ in the other text. The random error corresponding with this partition is neglicted with

respect to the implementation of Ky introduced in Remark 1.
The condition (72) can be equivalently written as
RTðf � BT
kÞ ¼ o: ð74Þ
Further substituting (73) into the second equation in (69) we arrive at
�BKyBT
kþ BRa ¼ �BKyf : ð75Þ
Summarizing (75) and (74) we find that the pair ðk;aÞ 2 Rm � Rl satisfies:
F N T

N 0

	 

k

a

	 

¼

d

e

	 

; ð76Þ
where F :¼ BKyBT ; N :¼ �RT BT ; d :¼ BKyf , and e :¼ �RT f
Since N is of full row-rank as follow from (71), the inverse ðNN TÞ�1 exists and PN :¼ I � N TðNN TÞ�1N is well defined and

represents the orthogonal projector onto Ker N. Applying PN on the first equation in (76) and checking that PNN Ta ¼ o we
eliminate a and obtain that k satisfies:
PNFk ¼ PNd; Nk ¼ e: ð77Þ
In practical computations, we further decompose k ¼ kIm þ kKer into two orthogonal components kIm 2 ImN T and
kKer 2 Ker N, substitute them into (77) and get the problem
PNFkKer ¼ PN d� FkImð Þ on Ker N; ð78Þ
with kIm ¼ N T NN T
� ��1e, where NN T is sparse and can be treated efficiently by parallel direct solvers such as MUMPS [49].

Eq. (78) is solved efficiently by the projected conjugate gradient method with preconditioning (PCGP). In numerical exam-

ples, we consider both the computationally less expensive lumped preconditioner to F in the form F�1 :¼ BKBT and the (qua-

si-) optimal Dirichlet preconditioner in the form F�1 :¼ BSBT introduced in [21], where S is the Schur complement to the
block of K corresponding to the interior nodes and B is the restriction of B to the remaining nodes, i.e., to the nodes with
imposed Dirichlet and gluing conditions. The condition number estimates contain a linear factor of H=h (H is the domain
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decomposition step and h is the discretization step) for the lumped preconditioner as opposed to a polylogarithmic bound for
the Dirichlet preconditioner. More details about other forms of the Dirichlet preconditioners and estimates of condition
number can be found in [53,36]. We obtain the following algorithmic scheme for the solution of (66):

Algorithm 3. Linear solver based on the TFETI method

1: Set N :¼ �RT BT ; H :¼ ðNN TÞ�1
; d :¼ BKyf , and e :¼ �RT f .

2: Compute kIm :¼ N T He.

3: Set ~d :¼ d� FkIm .
4: Compute kKer from (78) by PCGP:

5: r0 ¼ ~d; k0
Ker ¼ o.

6: for j ¼ 1;2; . . ., until convergence do

7: Project wj�1 ¼ Pj�1
Nr .

8: Precondition zj�1 ¼ F�1wj�1.

9: Re-project yj�1 ¼ Pj�1
Nz .

10: bj ¼ ðyj�1ÞT wj�1=ðyj�2ÞT wj�2 ðb1 ¼ 0Þ.
11: pj ¼ yj�1 þ bjpj�1ðp1 ¼ y0Þ.
12: cj ¼ ðyj�1ÞT wj�1=ðpjÞT Fpj.

13: k
j
Ker ¼ k

j�1
Ker þ cjpj.

14: rj ¼ rj�1 � cjFpj.
15: if kwj�1k 6 �PCGPkr0k then stop.
16: end for

17: kKer ¼ k
j
Ker .

18: Set k :¼ kIm þ kKer .
19: Compute a :¼ HNðd� FkÞ.
20: Compute u :¼ Kyðf � BTkÞ þ Ra.
Remark 3. Action of H on a vector may be efficiently implemented by the sparse Cholesky factorization of NN T .
4.3. TFETI based algorithms for solving elastoplastic problem

In this subsection, we summarize the above proposed algorithms for solving elastoplastic problems and modify them
with respect to the use of the TFETI domain decomposition method.

Algorithm 4. Algorithm for solving elastoplastic problem - sequential version

1: u0 ¼ o; r0;T ¼ o; j0;T ¼ o; T 2 T h (initial step)
2: for k ¼ 0; 1; 2; . . . ; N � 1 (time steps)
3: set Mukþ1;0 ¼ o (zero approximation)
4: for i ¼ 1;2; . . . (Newton iterations)
5: for p ¼ 1;2; . . . ; s (cycle over subdomains)
6: restrict Mukþ1;i�1; Mf kþ1 into subdomain variables Mup

kþ1;i�1;Mf p
kþ1

7: call Algorithm 5 with (Mup
kþ1;i�1;Mf p

kþ1; rk;T ; jk;T ; T 2 T p
h) to find output variables

Kp
k;i; f p

k;i; Mrkþ1;T ; Mjkþ1;T ; T 2 T p
h.

8: collect Kp
k;i f p

k;i, into global variables Kk;i; f k;i

9: end for (cycle over subdomains)
10: solve by Algorithm 3 the problem: find dui 2 V such that

1

Jk;iðduiÞ 6 Jk;iðvÞ 8v 2 V ; with Jk;iðvÞ ¼ 2

vT Kk;iv � f T
k;iv
11: Mukþ1;i ¼ Mukþ1;i�1 þ dui (displacement update)
12: if kMukþ1;i � Mukþ1;i�1k= kMukþ1;ik þ kMukþ1;i�1k

� �
6 �Newton then stop

13: end for (Newton iter.)
14: ukþ1 ¼ uk þ Mukþ1;i,
15: rkþ1;T ¼ rk;T þ Mrkþ1;T ; jkþ1;T ¼ jk;T þ Mjkþ1;T ; T 2 T h

16: end for (cycle over time steps)



The assembling procedure for subdomain data looks as follows.
Algorithm 5. Assemble all data corresponding to a subdomain Xp

1: Input: Mup
kþ1;i�1; Mf p

kþ1; rk;T ; jk;T ; T 2 T p
h.

2: f p
k;i ¼ Mf p

kþ1

3: Kp
k;i ¼ O

4: for T 2 T p
h

5: compute jTj (volume of the element T)

6: Mrkþ1;T ¼ Tk;T GT Rp
TMup

kþ1;i�1

� �
7: Mjkþ1;T ¼ Tj;k;T GT Rp

TMup
kþ1;i�1

� �
8: f p

k;i ¼ f p
k;i � jTj Mrk;T

� �T GT Rp
T

9: Kp
k;i ¼ Kp

k;i þ jTj To
k;T GT Rp

TMup
kþ1;i�1

� �
GT Rp

T

� �T
GT Rp

T

10: end for (cycle over elements)
11: Output: Kp

k;i; f p
k;i; Mrkþ1;T ;Mjkþ1;T ; T 2 T p

h

Loop over subdomains and all subdomain operations may be implemented in parallel. Parallelization of FETI/TFETI is
based on distributing matrix portions among processing units. This allows algorithms to be almost the same in sequen-
tial and parallel versions; only data structure implementation differs. Most of computations (subdomain operations)
appearing are purely local and therefore parallelizable without any data transfers. Each of cores works with the local
part associated with its subdomains. Natural effort using the massively parallel computers is to maximize the number
of subdomains so that the sizes of the subdomain stiffness matrices are reduced. This accelerates their factorization and
subsequent pseudoinverse application which belongs to the most time consuming action. On the other hand, negative
effect of that is an increase of the null space dimension and the number of Lagrange multipliers. This leads to larger
coarse problems, i.e., applications of the projector PN which are scalable only up to a few thousands of cores and then
the coarse problem solution starts to dominate. For the numerical solution of such large problems we recommend to use
a hybrid FETI method [35].
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5. Numerical experiments

The proposed algorithms were implemented in MatSol library [39] developed in Matlab and parallelized using Matlab
Distributed Computing Server and Matlab Parallel Toolbox. For all computations we use maximum 28 cores with 2 GB mem-
ory per core of the HP Blade system, model BLc7000. The numbers of subdomains are chosen to keep the number of nodes
per subdomain approximately constant except for the coarsest mesh level.

The performance is demonstrated on an elastoplastic homogeneous thin plate of sizes 20� 20� 2 with the circular hole
of radius 1 in the center. Its geometry with imposed boundary conditions and indicated symmetry planes is depicted in
Fig. 3. Thus we consider only eighth of the thin plate in our computations (see Fig. 4) and impose symmetry conditions
on three symmetry surfaces. A similar benchmark was solved in [59,27,13].
Fig. 3. Geometry of the whole body.



648 M. Čermák et al. / Applied Mathematics and Computation 231 (2014) 634–653
The elastoplastic body X is made of homegeneous isotropic material with the parameters
E ¼ 206900; m ¼ 0:29; ry ¼ 450; and Hm ¼ 10000;
where E and m are the Young modulus and the Poisson ratio, respectively, which are related with the Lamé coefficients k and
l by the following formulas:
k ¼ Em
ð1þ mÞð1� 2mÞ ¼ 110743:8; l ¼ E

2ð1þ mÞ ¼ 801938:
The indicated traction forces with the history of loading taking into account are prescribed by the function
gðtÞ ¼ 400 sinð2ptÞ; t 2 ½t0; t��; t0 ¼ 0; t� ¼ 1
4
:

Since the elastoplastic model is rate-independent and any local unloading is not expected with respect to the prescribed load
history, the results should be independent of the chosen time discretization. Let us consider two variants of the equidistant
time discretization characterized by the time step Dt:

(a) Dt ¼ 1=4; N ¼ 1,
(b) Dt ¼ 1=32; N ¼ 8.

For the spatial discretization of X, let us consider five levels of tetrahedral meshes generated by Ansys with
520; 1623; 9947; 166374; and 309546
nodes decomposed into subdomains using Metis. An example of such decomposition is depicted in Fig. 5 and a zoom near the
hole in Fig. 6.

In Table 1, we report on numerical results for the time discretization ðaÞ, different mesh levels, the Dirichlet and the
lumped preconditioners. The stopping tolerances of the Newton and the PCGP algorithms are
�Newton ¼ 10�4 and �PCGP ¼ 10�7; ð79Þ
respectively. We see that the number of the Newton iterations remains almost constant for all meshes. Similar behavior was
observed in the numerical results by Gruber and Valdman et al. [27]. Note that even the total number of the PCGP iterations
(which means the sum of PCGP iterations over all Newton steps) increases only moderately for finer meshes and both pre-
conditioners. We observe similarly as in [21] that the Dirichlet preconditioner is worse because of medium size of our prob-
lems, i.e., the total number of PCGP iterations is less than for the lumped preconditioner but not sufficiently.

In Table 2, the number of the PCGP iterations, the number of plastic elements, and the relative convergence criterion are
reported for each Newton’s iteration of Algorithm 4. In this case, the time discretization ðaÞ, the finest mesh level, and the
lumped preconditioner are considered together with sharper stopping tolerances
�Newton ¼ 10�9 and �PCGP ¼ 10�14; ð80Þ
so that more Newton’s iterations can be studied. Since the initial Newton iteration is taken as zero vector (of displacements),
the first iteration of the Newton method actually solves a purely elastic problem. The second and further iterations already
reflect an elastoplastic behaviour with stabilizing number of plastic elements and higher number of PCGP iterations. This is
caused by larger condition number of a considered matrix in accordance with estimate (52). Once plastic elements are iden-
tified in the 7th step, we observe the quadratic convergence of the Newton method. Such behavior agrees with the theoret-
ical results in [6].

In Table 3, the computational history of Algorithm 4 for the time discretization ðbÞ is documented. We consider the finest
mesh level, the stopping tolerances (79) and the lumped preconditioner only. The corresponding development of the plastic
zone is depicted for the times t2; t4; t6, and t8 in Figs. 7–10, respectively. The growing zone of plastic elements results from
Fig. 4. Geometry of eighth of body.



Fig. 5. Domain decomposition into 5 subdomains.

Fig. 6. Zoom of Fig. 5 near the hole.

Table 2
Computational history of Algorithm 4 for the time discretization ðaÞ and the finest mesh level.

Newton iter. Number of PCGP iters. Number of plastic elem. Stopping criterion

1 224 0 1
2 312 808 116 1.4016e�1
3 310 797 081 4.6051e�2
4 319 788 802 6.3207e�3
5 318 795 245 4.5604e�4
6 319 796 519 1.0735e�5
7 321 796 596 1.1790e�8
8 314 796 596 9.0488e�14

Table 1
Numerical results of Algorithm 4 for different mesh levels and the time discretization ðaÞ.

Mesh properties
Mesh level 1 2 3 4 5
Number of mesh nodes 520 1 623 9 947 166 374 309 546
Number of mesh elements 1 441 6 279 48 287 931 709 1 758 907

Domain Decompositions
Number of subdomains 1 1 8 135 270
Number of CPU cores 2 2 9 28 28
Number of primal variables 1 560 4 869 33 414 623 904 1 183 101
Number of dual variables 284 618 5 448 136 904 272 053

Performance using the lumped preconditioner
Number of plastic elements 252 2 152 20 790 420 760 796 520
Number of Newton iterations. 5 6 6 6 6
Total number of PCGP iterations 237 391 573 718 724
Total time in seconds 8 60 77 928 1796

Performance using the Dirichlet preconditioner
Number of plastic elements 252 2 152 20 790 420 759 796 517
Number of Newton iterations. 5 6 6 6 6
Total number of PCGP iterations 235 339 440 482 486
Total time in seconds 9 174 207 1532 3274
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Table 3
Computational history of Algorithm 4 for the time discretization ðbÞ and the finest mesh level.

Time step Number of Newton iters. Total number of PCGP iterations Number of plastic elems. Solution time

1 2 226 0 536
2 2 228 8 700 534
3 4 487 181 557 1 152
4 4 522 316 718 1 237
5 4 553 502 605 1 270
6 5 863 671 067 1 678
7 5 899 762 501 1 638
8 4 662 799 989 1 445

Fig. 7. Elastic (gray color) and plastic (black color) elements at time t2.

Fig. 8. Elastic (gray color) and plastic (black color) elements at time t4.

Fig. 9. Elastic (gray color) and plastic (black color) elements at time t6.

Fig. 10. Elastic (gray color) and plastic (black color) elements at time t8.
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the monotonically increased loading. Distributions of the von Mises stress kdevðrÞkF and the total displacement kuk at the
final time t� are depicted in Figs. 11 and 12, respectively.

Comparing time discretizations ðaÞ and ðbÞwe see that the resulting number of plastic elements differs at the final time t�.
The difference is less than 0:5% and is caused by the roundoff errors, the use of iterative solvers, and the numerical evalu-
ation of the yield function which decides whether an element plasticizes or not.



Fig. 11. Distribution of von Mises stress kdevðrÞkF at t8.

Fig. 12. Total displacement kuk at t8.
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6. Conclusion

We have proposed the algorithm for the efficient parallel implementation of elastoplastic problems with the von Mises
plastic criterion and the linear isotropic hardening law which is based on the TFETI domain decomposition method. For the
time discretization we used implicit Euler method and for the space discretization of the respective one time step elastoplas-
tic problem the finite element method. The latter results in a system of nonlinear equations with a strongly semismooth and
strongly monotone operator. Thus the semismooth Newton method was applied and respective linearized problems were
solved in parallel using TFETI. The performance of our algorithm was demonstrated on the 3D elastoplastic thin plate with
the hole in the center and prescribed loading history. Numerical results for different time discretizations and mesh levels
were presented and discussed. Local quadratic convergence of the semismooth Newton method was observed after identi-
fication of the plastic zone which is in accordance with the theoretical results.

Our future plan is to apply the proposed TFETI based algorithm on elastoplastic multi-body contact problems of mechan-
ics. This has already been done successfully for the pure elastic case [18,17].
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