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Abstract

In the paper we present basic concepts concerning credal networks and
compositional models for credal sets and describe the problem of impre-
cision increase in the first type of these models.
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1 Introduction

The most widely used models managing uncertainty and multidimensionality
are, at present, so-called probabilistic graphical Markov models. The problem
of multidimensionality is solved in these models with the help of the concept
of conditional independence, which enables factorization of a multidimensional
probability distribution into small parts (marginals, conditionals or just factors).
Among them, the most popular are Bayesian networks. Therefore, it is not very
surprising, that analogous models have been studied also in several theories of
imprecise probability [1, 2, 3].

Credal networks are a generalization of Bayesian networks, able to deal with
imprecision. Compositional models for credal sets, on the other hand, are in-
tended to be generalization of compositional models for precise probabilities
[6, 7, 8]. As the equivalence between Bayesian networks and precise composi-
tional models is well known, it seems quite natural to ask a similar question also
in this, more general case.

Compositional models were introduced also in possibility theory [12, 13]
(here the models are parameterized by a continuous t-norm) and a few years
ago also in evidence theory [9, 10]. In all these frameworks the original idea is
kept, but there exist some slight differences among them.

Although Bayesian networks and compositional models represent the same
class of distributions, they do not make it in the same way. Bayesian networks
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use conditional distributions whereas compositional models consist of uncondi-
tional distributions. Naturally, both types of models contain the same informa-
tion but while some marginal distributions are explicitly expressed in compo-
sitional models, it may happen that their computation from a corresponding
Bayesian network is rather computationally expensive. Therefore it appears
that some of computational procedures designed for compositional models are
(algorithmically) simpler than their Bayesian network counterparts.

Furthermore, the research concerning relationship between compositional
models in evidence theory and evidential networks [14] revealed probably a more
important thing. Even though any evidential network (with proper conditioning
rule and conditional independence concept) can be expressed as a compositional
model, if we do it in the opposite way and transform a compositional model into
an evidential network, we may realize, that the model is more imprecise than
the original one. It is caused by the fact that conditioning increases imprecision.

The goal of this paper is twofold. First, we want to show that the operator
of composition can also be defined for credal sets (at least under specific condi-
tions). Second, we want to argue that it is worth-developing, as conditioning in
the framework of credal sets also increases imprecision.

The contribution is organized as follows. In Section 2 we summarize basic
concepts and notation. Definition of the operator of composition is introduced
in Section 3, where also its basic properties can be found. Finally, in Section 4
we recall the concept of credal networks and demonstrate how conditioning
increases imprecision of the resulting model.

2 Basic Concepts and Notation

In this section we will recall basic concepts and notation necessary for under-
standing the contribution.

2.1 Variables and Distributions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a system of variables, each
Xi having its values in a finite set Xi and XN = X1 ×X2 × . . . ×Xn be the
Cartesian product of these sets.

In this paper we will deal with groups of variables on its subspaces. Let us
note that XK will denote a group of variables {Xi}i∈K with values in

XK =×i∈KXi

throughout the paper.
Having two probability distributions P1 and P2 of XK we say that P1 is

absolutely continuous with respect to P2 (and denote P1 � P2) if for any xK ∈
XK

P2(xK) = 0 =⇒ P1(xK) = 0.

This concept plays an important role in the definition of the operator of com-
position.
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2.2 Credal Sets

A credal setM(XK) about a group of variables XK is defined as a closed convex
set of probability measures about the values of this variable.

In order to simplify the expression of operations with credal sets, it is often
considered [11] that a credal set is the set of probability distributions associated
to the probability measures in it. Under such consideration a credal set can be
expressed as a convex hull of its extreme distributions

M(XK) = CH{ext(M(XK ))}.

Consider a credal set about XK , i.e. M(XK). For each L ⊂ K its marginal
credal set M(XL) is obtained by element-wise marginalization, i.e.

M(XL) = CH{P ↓L : P ∈ ext(M(XK))}, (1)

where P ↓L denotes the marginal distribution of P on XL.
Having two credal sets M1 and M2 about XK and XL, respectively (as-

suming that K,L ⊆ N), we say that these credal sets are projective if their
marginals about common variables coincide, i.e. if

M1(XK∩L) =M2(XK∩L).

Let us note that if K and L are disjoint, then M1 and M2 are projective,
as M(X∅) = 1.

Conditional credal sets are obtained from the joint ones by point-wise condi-
tioning of the extreme points and subsequent linear combination of the resulting
conditional distributions. More formally: Let M(XIXJ) be a credal set about
(groups of) variables XIXJ . Then for any xJ ∈ XJ

M(XI |xJ) = CH{P (XI |xJ) : P ∈ ext(M(XIXJ))}, (2)

is a conditional credal set about XI given XJ = xJ .

2.3 Strong Independence

Among numerous definitions of independence for credal sets [4] we have chosen
strong independence, as it seems to be the most appropriate for multidimen-
sional models.

We say that (groups of) variables XK and XL (K and L disjoint) are strongly
independent with respect toM(XK∪L) iff (in terms of probability distributions)

M(XK∪L) = CH{P1 · P2 : P1 ∈ ext(M(XK)), P2 ∈ ext(M(XL))}. (3)

Again, there exist several generalizations of this notion to conditional inde-
pendence, see e.g. [11], but since the following definition is suggested by the
authors as the most appropriate for the marginal problem, it seems to be a
suitable concept also in our case, since the operator of composition can also be

Jiřina Vejnarová

121



used as a tool for solution of a marginal problem, as shown (in the framework
of possibility theory) e.g. in [13].

Given three groups of variables XK , XL and XM (K,L,M be mutually dis-
joint subsets of N , such that K and L are nonempty), we say analogous1 to [11]
that XK and XL are conditionally independent on the distribution given XM

under global set M(XK∪L∪M ) (in symbols K ⊥⊥ L|M) iff

M(XK∪L∪M ) = CH{(P1 · P2)/P
↓M
1 : P1 ∈ ext(M(XK∪M )),

P2 ∈ ext(M(XL∪M )), P ↓M
1 = P ↓M

2 } . (4)

This definition is a generalization of stochastic conditional independence: if
M(XK∪L∪M ) is a singleton, then also M(XK∪M ) and M(XL∪M ) are (projec-
tive) singletons and the definition collapses into definition of stochastic condi-
tional independence.

3 Operator of Composition and Its Properties

Now, let us start considering how to define composition of two credal sets. Con-
sider two index sets K,L ⊂ N . At this moment we do not put any restrictions
on K and L; they may be but need not be disjoint, one may be subset of the
other.

In order to enable the reader the understanding of this concept, let us first
present the definition of composition for precise probabilities [6]. Let P1 and P2

be two probability distributions of (groups of) variables XK and XL. Then

(P1 . P2)(XK∪L) =
P1(XK) · P2(XL)

P2(XK∩L)
, (5)

whenever P1(XK∩L)� P2((XK∩L). Otherwise, it remains undefined.
Let M1 and M2 be credal sets about XK and XL, respectively. Our goal

is to define a new credal set, denoted by M1 .M2, which will be about XK∪L

and will contain all of the information contained inM1 and as much as possible
of information of M2.

The required properties are met by Definition 12 in [15]. However, the
definition exhibits a kind of discontinuity and should be reconsidered. In this
paper we will deal only with the composition of projective credal sets.

Definition 1 For two projective credal setsM1 andM2 about XK and XL, a
composition M1 .M2 is defined by the following expression:

(M1 .M2)(XK∪L) = CH{(P1 · P2)/P
↓K∩L

2 : P1 ∈ ext(M1(XK)),

P2 ∈ ext(M2(XL)), P ↓K∩L
1 = P ↓K∩L

2 }.
1Let us note that our definition differs somehow from that presented in [11]: the authors

require point-wise satisfaction in (3) and (4), which leads to non-convexity. In [5] this type of
independence is called complete.

2Let us note that the definition was based on Moral’s concept of conditional independence
with relaxing convexity.
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The following lemma presents basic properties possessed by this operator of
composition.

Lemma 1 For two projective credal sets M1 and M2 about XK and XL, re-
spectively, the following properties hold true:

(i) M1 .M2 is a credal set about XK∪L.

(ii) M1 .M2 =M2 .M1.

Proof.

(i) To prove that M1 .M2 is a credal set about XK∪L it is enough to show
that any P ∈ {ext(M1 .M2)} is a probability distribution on XK∪L,
as the convexity of M1 .M2 is evident. But it is obvious, as any P ∈
{ext(M1 .M2)} is obtained via formula for composition of probability
distributions (5).

(ii) For any distribution P of {ext(M1 . M2)(XK∪L)} there exist

P1 ∈ {ext(M1(XK))} and P2 ∈ {ext(M2(XL))} such that P ↓K∩L
1 =

P ↓K∩L
2 and P = (P1 · P2)/P ↓K∩L

2 . But simultaneously (due to projectiv-

ity) P = (P1 · P2)/P ↓K∩L
1 , which is an element of (M2 .M1)(XK∪L).

Hence
(M1 .M2)(XK∪L) = (M2 .M1)(XK∪L),

as desired. ut
Let us now illustrate the application of the operator of composition and its

properties by two examples. The first shows what happens when K ∩ L = ∅.
Let use note the all variables in the examples in this paper are binary.

Example 1 Let
M1(X1) = CH{[0.2, 0.8], [0.7, 0.3]}

and
M2(X2) = CH{[0.6, 0.4], [1, 0]}

be two credal sets about X1 and X2, respectively. Then, as mentioned above,
M1(X1) and M2(X2) are projective, and therefore M1 .M2 is obtained via
Definition 1:

(M1 .M2)(X1X2) = CH{[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0],

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0]}.

It is evident, that not every element ofM1 .M2 can be expressed as a product
of its marginals, as e.g.

[0.41, 0.04, 0.39, 0.16] ∈ CH{[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0],

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0]},

but [0.41, 0.04, 0.39, 0.16] 6∈ {P1 · P2 : P1 ∈M(XK), P2 ∈M(XL)}. ♦
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The following example is devoted to the case, when K ∩ L 6= ∅.

Example 2 Let

M1(X1X2) = CH{[0.2, 0.2, 0, 0.6], [0.1, 0.4, 0.1, 0.4],

[0.25, 0.25, 0.25, 0.25], [0.2, 0.3, 0.3, 0.2]}.

be a credal set about variables X1X2 and

M2(X2X3) = CH{[0.2, 0, 0.3, 0.5], [0, 0.2, 0, 0.8],

[0.5, 0, 0.5, 0], [0.2, 0.3, 0.2, 0.3]},

be a credal set about variables X2X3. These two credal sets are projective, as

M1(X2) = CH{[0.2, 0.8], [0.5, 0.5]} =M2(X2),

therefore Definition 1 can be applied:

(M1 .M2)(X1X2X3)

= CH{[0.2, 0, 0.075, 0.125, 0, 0, 0.275, 0.375], [0, 0.2, 0, 0.2, 0, 0, 0, 0.6],

[0.1, 0, 0.15, 0.25, 0.1, 0, 0.15, 0.25], [0, 0.1, 0, 0.4, 0, 0.1, 0, 0.4],

[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0], [0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],

[0.2, 0, 0.2, 0, 0.3, 0, 0.3, 0], [0.08, 0.12, 0.08, 0.12, 0.12, 0.18, 0.12, 0.18]}.

It can easily be checked that both (M1 .M2)(X1X2) =M1(X1X2) and (M1 .
M2)(X2X3) =M2(X2X3). ♦

The following theorem reveals the relationship between strong independence
and the operator of composition. It is, together with Lemma 1, the most im-
portant assertion enabling us to introduce multidimensional models.

Theorem 1 Let M be a credal set about XK∪L with marginals M(XK) and
M(XL). Then

M(XK∪L) = (M↓K .M↓L)(XK∪L) (6)

iff
(K \ L) ⊥⊥ (L \K)|(K ∩ L). (7)

Proof. Let us suppose that (6) holds. Since M1(XK) and M2(XL) are projec-
tive, Definition 1 can be applied and therefore

M(XK∪L) = CH{(P1 · P2)/P
↓K∩L

2 : P1 ∈M(XK),

P2 ∈M(XL), P ↓K∩L
1 = P ↓K∩L

2 }).

To prove (7) means to find for any P from M(XK∪L) a pair of projective
distributions P1 and P2 fromM(XK) andM(XL), respectively, such that P =
(P1 · P2)/P1

↓K∩L. But due to condition of projectivity, M(XK∪L) consists of
exactly this type of distributions.
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Let on the other hand (7) be satisfied. Then any P from M(XK∪L) can be
expressed as conditional product of its marginals, namely

P = (P ↓K · P ↓K)/P ↓K∩L,

P ↓K ∈M(XK) and P ↓L ∈M(XL). Therefore,

M(XK∪L) = {(P ↓K · P ↓K)/P ↓K∩L : P ↓K ∈M1(XK), P ↓L ∈M2(XL))},

which concludes the proof. ut

4 Credal Networks

A credal network [1] over XN is (analogous to Bayesian networks) a pair
(G, {P1, . . . ,Pk}) such that for any i = 1, . . . , k (G,Pi) is a Bayesian network
over XN .

The resulting model is a credal set, which is the convex hull of the Bayesian
networks, i.e.

CH{P1(XN ), . . . Pk(XN )}.
It is evident, that this definition looses the attractiveness of Bayesian networks,
where the overall information is computed from the local pieces of information.

The most popular (and also effective) type of credal networks are those
called separately specified. A separately specified credal networks over XN is a
pair (G,M), where M) is a set of conditional credal setsM(Xi|pa(Xi)) for each
Xi ∈ XN .

Here the overall model is obtained analogous to Bayesian networks as the
strong extension of the M(Xi|pa(Xi)), i ∈ N .

Nevertheless, the reverse side of this nice property is the imprecision increase
of this type models, as can be seen even from the following simple example.

Example 3 Let M(X1X2) be a credal set about variables X1 and X2 with
values in X1 and X2 (Xi = {xi, x̄i}), respectively, defined as in Example 2.

From its extreme points we obtain the following distributions:

P1(x2) = 0.2 P1(x1|x2) = 1 P1(x1|x̄2) = 0.25
P2(x2) = 0.2 P2(x1|x2) = 0.5 P2(x1|x̄2) = 0.5
P3(x2) = 0.5 P3(x1|x2) = 0.5 P3(x1|x̄2) = 0.5
P4(x2) = 0.5 P4(x1|x2) = 0.4 P2(x1|x̄2) = 0.6,

These are, together with the graph X2 −→ X1 four Bayesian networks.
Their convex hull is exactly the setM1(X1X2). Nevertheless, it is not separably
specified credal network. To obtain it we need the credal setsM(X2),M(X1|x2)
and M(X1|x̄2)

From the above values one will get the “extreme” points of M(X1|x2) and
M(X1|x̄2):

[1, 0], [0.5, 0.5], [0.5, 0.5], [0.4, 0.6],
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and
[0.25, 0.75], [0.5, 0.5], [0.5, 0.5], [0.6, 0.4],

respectively.
As [0.5, 0.5] is a linear combination of both [1,0] and [0.4,0.6], and [0.25,0.75]

and [0.6,0.4], the resulting (conditional) credal sets are

M(X2) = CH{[0.2, 0.8], [0.5, 0.5]},
M(X1|x2) = CH{[1, 0], [0.4, 0.6]},
M(X1|x̄2) = CH{[0.25, 0.75], [0.6, 0.4]}.

The strong extension of these credal sets is

˜M1(X1X2) = CH{[0.2, 0.2, 0, 0.6], [0.2, 0.48, 0, 0.32], [0.08, 0.2, 0.12, 0.6],

[0.08, 0.48, 0.12, 0.32], [0.5, 0.125, 0, 0.375],

[0.5, 0.3, 0, 0.2], [0.2, 0.125, 0.3, 0.375], [0.2, 0.3, 0.3, 0.2]}.

which is less precise than the original model. ♦

5 Conclusions

We introduced an operator of composition of projective credal sets — a general-
ization of that introduced about 15 years ago in (precise) probability framework.
The operator satisfies the basic properties necessary for the introduction of com-
positional models of credal sets. Nevertheless, the definition must be extended
to non-projective credal sets, which seems to be the most important problem to
be solved in the near future.

We also recalled the concept of credal networks and we suggested that com-
positional models of credal sets are potentially good counterpart of these models,
which are either not separately specified (contrary to our expectation concerning
compositional models), or more imprecise.
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[6] R. Jiroušek. Composition of probability measures on finite spaces. Proc. of
UAI’97, (D. Geiger and P. P. Shenoy, eds.). Morgan Kaufmann Publ., San
Francisco, California, pp. 274–281, 1997.
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