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Abstract

T -product extensions (where T is a continuous t-norm) of a system
of low-dimensional possibility distributions form an important class of
solutions of the so-called possibilistic marginal problem. Nevertheless,
they can differ from each other, e.g., from the viewpoint of inference.
Therefore the need for their interpretation is obvious. To find it, we
identify any possibility distribution with a set of probability distribu-
tions dominated by it and find a probability interpretation of models
based on Gödel’s, product and  Lukasiewicz’s t-norms.
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1 Introduction

The marginal problem — which addresses the question of whether or not a
common extension exists for a given set of marginal distributions — is one of
the most challenging types of problems in probability theory. The challenges
lie not only in a wide range of relevant theoretical problems, but also in its
applicability to various problems in statistics.
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If an extension exists, it is usually not unique, i.e., the problem has an
infinite number of solutions. Therefore the problem of existence of an exten-
sion is usually solved together with the problem of choosing one of them, in a
sense an optimal representative from within the set of all possible solutions.
Among them, the so-called product extensions, adopting the assumption of
(conditional) independence, offer a closed form of extension.

Nevertheless, in the recent decades new mathematical tools have emerged
as alternatives to probability theory. They are used in situations whose
nature of uncertainty does not meet the requirements of probability theory,
or those in which probabilistic criteria are too strict (e.g., additivity). On the
other hand, probability theory has always served as a source of inspiration
for the development of these non-probabilistic calculi and they have been
continually confronted with probability theory and mathematical statistics
from various points of view.

In this paper we will deal with T -product extensions of systems of possibil-
ity distributions, which are, in a sense, counterparts of the above-mentioned
product extensions of probability distributions. Nevertheless, these models
can differ from each other from the viewpoint of the inference, therefore the
need for their interpretation is obvious. For this purpose we will identify any
possibility distribution with a set of probability distributions dominated by it
and obtain interpretations of T -product extensions for Gödel’s and product,
and partially also for  Lukasiewicz’s, t-norms.

The paper is organised as follows: after a brief overview of basic concepts
(Section 2), in Section 3 we will recall a possibilistic marginal problem and its
T -product solutions. In Section 4 we summarize a generalisation of T -product
extensions, so-called compositional models, and in Section 5 we present the
problem of inference from these models. Finally, Section 6 is devoted to
probabilistic interpretation of T -product models based on specific continuous
t-norms.

2 Basic Concepts

The purpose of this section is to give, as briefly as possible, an overview
of basic notions of De Cooman’s measure-theoretical approach to possibility
theory [7], necessary for understanding the paper. Special attention will be
paid to conditioning, independence and conditional independence [8, 9, 18,
19]. We will start with the notion of a triangular norm, since it is the crucial
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concept of this paper.

2.1 Triangular Norms

A triangular norm (or a t-norm) T is a binary operator on [0, 1] (i.e.,
T : [0, 1]2 → [0, 1]) satisfying the following four conditions:

(i) boundary condition: for any a ∈ [0, 1]

T (1, a) = a;

(ii) isotonicity: for any a1, a2, b ∈ [0, 1] such that a1 ≤ a2

T (a1, b) ≤ T (a2, b);

(iii) associativity: for any a, b, c ∈ [0, 1]

T (T (a, b), c) = T (a, T (b, c)),

(iv) commutativity: for any a, b ∈ [0, 1]

T (a, b) = T (b, a).

A t-norm T is called continuous if T is a continuous function. Within
this paper, we will only deal with continuous t-norms, namely the following
three:

(i) Gödel’s t-norm: TG(a, b) = min(a, b);

(ii) product t-norm: TΠ(a, b) = a · b;

(iii)  Lukasiewicz’s t-norm: TL(a, b) = max(0, a+ b− 1).

Let us take a, b ∈ [0, 1] and let T be a t-norm. We will call an element
x ∈ [0, 1] T -inverse of a w.r.t. b if

T (x, a) = T (a, x) = b. (1)

It is obvious that if a < b then the equation (1) admits no solution, i.e., there
are no T -inverses of a w.r.t. b. On the other hand, if a T -inverse exists, it
need not be unique. Least specific solution of (1) is offered by a T -residual.
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Let us take a, b ∈ [0, 1]. The T -residual b4Ta of b by a is defined as

b4Ta = sup{x ∈ [0, 1] : T (x, a) ≤ b}.

The following lemma, taken from [7], expresses the relationship between
T -inverses and T -residuals for continuous t-norms.

Lemma 1 Let T be a continuous t-norm and a, b ∈ [0, 1]. If the equation
T (x, a) = b in x admits a solution, then b4Ta is its greatest solution.

2.2 Possibility Measures, Distributions and Variables

Let N be a finite index set and {Xi}i∈N be a system of finite sets. We will
deal with the Cartesian-product space

X =×i∈NXi,

called a universe of discourse and its subspaces

XK =×i∈KXi

for K ⊂ N .
A possibility measure Π is a mapping from the power set P(X) of X to

the real unit interval [0, 1] satisfying the following two requirements:

(i) Π(∅) = 0;

(ii) for any family {Aj, j ∈ J} of elements of P(X)

Π(
⋃
j∈J

Aj) = max
j∈J

Π(Aj)
1.

Π is called normal if Π(X) = 1. Within this paper we will always assume
that Π is normal. The importance of this assumption will be apparent namely
in Section 6.

For any Π there exists a mapping π : X → [0, 1] (a possibilistic coun-
terpart of a density function in probability theory), called a distribution of
Π, such that for any A ∈ P(X), Π(A) = maxx∈A π(x). It is evident that
(in the finite case) Π is normal iff there exists at least one x ∈ X such that

1max must be substituted by sup if X is not finite.
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π(x) = 1. In the rest of this paper we will deal with distributions rather than
with measures.

Let us consider an arbitrary possibility distribution π defined on a uni-
verse of discourse X. The marginal possibility distribution on XK (K ⊂ N)
is defined by the expression

πXK
(xK) = max

z∈XN\K
π(xK , z) (2)

for any xK ∈ XK (notice that (xK , z) is an element of XN).
Let XK1 and XK2 denote two finite universes of discourse provided with

possibility distributions π1 and π2, respectively. Possibility distributions π1

and π2 are projective if they coincide on overlapping subspaces, i.e. if

π1(xK1∩K2) = π2(xK1∩K2). (3)

It is evident, that if K1 ∩ K2 = ∅, then any possibility distributions π1

and π2 defined on XK1 and XK2 , respectively, are projective.
Let, furthermore K1 ∩K2 = ∅. The possibility measure Π on XK1 ×XK2

is called the T -product possibility measure if, for the corresponding possibility
distributions for any (xK1 , xK2) ∈ XK1 ×XK2

π(xK1 , xK2) = T (π1(xK1), π2(xK2)). (4)

In Subsection 3.2 will generalize this concept to projective distributions
defined on overlapping subspaces (in Subsection 4.1 even the projectivity
requirement will be relaxed).

Let us consider a finite basic space Ω, provided by a possibility measure
ΠΩ with distribution πΩ. A mapping X : Ω −→ X is called a (possibilistic)
variable 2 in X. The induced (or transformed) possibility measure ΠX on X
is determined by

ΠX(A) = ΠΩ(X−1(A))

for any A ∈ P(X) and its distribution is

πX(x) = max
ω:X(ω)=x

πΩ(ω)

for any x ∈ X.

2This definition corresponds to that introduced by De Cooman in [7], but it is simplified
due to the assumption that possibility measures are defined on power sets instead of general
ample fields.
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2.3 Conditioning

Let T be a continuous t-norm on [0, 1] and G(Ω) = {h : Ω→ [0, 1]}. For any
possibility measure Π on X with distribution π, we define in accordance with

[7] the following binary relation
(Π,T )
= on G(X): for h1 and h2 in G(X) we say

that h1 and h2 are (Π, T )-equal almost everywhere (and write h1
(Π,T )
= h2) if,

for any x ∈ X,
T (h1(x), π(x)) = T (h2(x), π(x)).

This notion is very important for the definition of a conditional possibility
distribution πXK |T XL

(K ∩ L = ∅) which is defined (in accordance with [8])
as any solution of the equation

πXKXL
(xK , xL) = T (πXL

(xL), πXK |T XL
(xK |

T
xL)), (5)

for any (xK , xL) ∈ XK × XL. Continuity of a t-norm T guarantees the
existence of a solution of this equation. This solution is not unique (in gen-
eral), but the ambiguity vanishes when almost-everywhere equality is con-
sidered. We are able to obtain a representative of these conditional pos-
sibility distributions (if T is a continuous t-norm) by taking the residual
πXKXL

(xK , ·)4TπXL
(·), as

πXK |T XL
(xK |

T
·)

(ΠXL
,T )

= πXKXL
(xK , ·)4TπXL

(·), (6)

i.e., the maximal solution of the equation (5) (cf. Lemma 1).
Let us note that the right-hand side of (6) is the upper envelope of the

set of all solutions of equation (5).
The importance of this way of conditioning from the theoretical viewpoint

is obvious: as mentioned in [8, 18], it brings a unifying view on several condi-
tioning rules, and is also used in the definition of conditional T -independence
(see also below). On the other hand, its practical meaning is not so substan-
tial. Although De Cooman [8] claims that conditional distributions are never
used per se, the notion of almost everywhere equality does not solve the non-
uniqueness problem, while the choice of T -residual does; for more details see
[20].

Let us also note that the problem of conditioning in possibility theory
was also solved (from a different viewpoint) in [6].
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2.4 Independence

Two variables XK and XL (K ∩ L = ∅) (taking their values in XK and
XL, respectively) are T -independent [9] if, for any FXK

∈ X−1
K (P(XK)),

FXL
∈ X−1

L (P(XL)),

Π(FXK
∩ FXL

) = T (Π(FXK
),Π(FXL

)),

Π(FXK
∩ FC

XL
) = T (Π(FXK

),Π(FC
XL

)),

Π(FC
XK
∩ FXL

) = T (Π(FC
XK

),Π(FXL
)),

Π(FC
XK
∩ FC

XL
) = T (Π(FC

XK
),Π(FC

XL
)),

where AC denotes the complement of A.
From this definition it immediately follows that the independence concept

is parameterised by T . This fact is reflected in some definitions and assertions
that follow and, above all, in the main results of this paper.

The following theorem, an immediate consequence of Proposition 2.6. of
the above-mentioned paper [9], led to the definition of conditional possibilistic
T -independence [17] recalled bellow.

Theorem 1 Let us assume that a t-norm T is continuous and K ∩ L = ∅.
Then the following propositions are equivalent.

(i) XK and XL are T -independent.

(ii) For any xK ∈ XK and xL ∈ XL

πXK∪L
(xK∪L) = T (πXK

(xK), πXL
(xL)).

(iii) For any xK ∈ XK and xL ∈ XL

T (πXK
(xK), πXL

(xL)) = T (πXK |T XL
(xK |

T
xL), πXL

(xL))

= T (πXL|T XK
(xL|

T
xK), πXK

(xK)).

Given a possibility measure Π on XK × XL × XM (K,L,M mutually
disjoint) with the respective distributionπ(xK , xL, xM), variables XK and XL

are conditionally T -independent 3 given XM (with respect to π) if, for any
pair(xK , xL) ∈ XK ×XL,

πXK∪L|T XM
(xK∪L|

T
·)

(ΠXM
,T )

= T (πXK |T XM
(xK |

T
·), πXL|T XM

(xL|
T
·)). (7)

3Let us note that a similar definition of conditional independence can be found in [13].

7



Let us stress once more that we do not deal with the pointwise equality but
with the almost everywhere equality, in contrast to the conditional noninter-
activity introduced by Fonck [12]. Clearly, this is not the only way how to
define conditional independence in possibility theory, other approaches can
be found e.g. in [2, 3] or in [4, 11].

The following theorem, proven in [18], is a “conditional counterpart” of
Theorem 1.

Theorem 2 For a continuous t-norm T and K,L,M mutually disjoint sub-
sets of N , the following propositions are equivalent:

(i) XK and XL are T -independent given XM with respect to π.

(ii) For any xK ∈ XK, y ∈ XL and xM ∈ XM

πXK |T XL∪M
(xK |

T
xL∪M)

(ΠXL∪M
,T )

= πXK |T XM
(xK |

T
xM). (8)

3 Possibilistic Marginal Problem

In this section we recall the definition of the possibilistic marginal problem,
a necessary condition for the existence of its solution, sets of all solutions
and, finally, T -product extensions [20].

3.1 Definition

Using the procedure of marginalisation (2) we can always uniquely restrict a
possibility distribution π defined on X to the distribution πK defined on XK

for K ⊂ N (for K = ∅ let us set πK ≡ 1). However, the opposite process,
the procedure of an extension of a system of distributions πKi

, i = 1, . . . ,m
defined on XKi

to a distribution πK on XK (K = K1 ∪ · · · ∪Km), is much
harder.

The possibilistic marginal problem can be (analogous to probability the-
ory) understood as follows: Let us assume that Xi, i ∈ N , 1 ≤ |N | <∞ are
finite universes of discourse, K is a system of nonempty subsets of N and

S = {πK , K ∈ K} (9)

is a family of possibility distributions, where each πK is a distribution on a
product space XK .
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The problem we are interested in is the existence of an extension, i.e.,
a distribution π on X whose marginals are distributions from S; or, more
generally, the set

P = {π(x) : π(xK) = πK(xK), K ∈ K} (10)

is of interest.4

Let us note that possibilistic marginal problem can also be viewed as a
special case of checking coherence of possibility assessments, see [1], where a
different characterization of this problem can be found.

It has been shown in [20] that we will not be able to find any distribution
with prescribed marginals if they do not satisfy projectivity condition (3),
nevertheless this condition is not sufficient, as also shown in [20].

Within the probabilistic framework, projectivity is a necessary condition
for the existence of an extension, too, and becomes a sufficient condition if
the index sets of the marginals can be ordered in such a way that it satisfies a
special property called the running intersection property (see, e.g., [15]). At
the end of the next section we will recall this notion and present an analogous
result within the possibilistic framework.

3.2 T -product Extensions

If a solution of a possibilistic marginal problem exists, it is (usually) not
unique. This fact is fully analogous to the probabilistic framework. However,
contrary to the probabilistic marginal problem, the set of extensions of a set
of possibility distributions is closed under maximisation, but (generally) not
convex, as proven in [20]. It is evident that it is difficult (even more so than
within the probabilistic framework) to handle the whole set of extensions and
therefore an additional requirement is necessary to enable us to choose one
representative of this set. The most natural requirement seems to be that of
(conditional) T -independence.

There exists a special class of solutions to a marginal problem, namely the
class of T -product distributions, defined in Section 2.2. If K1 and K2 are dis-
joint, the resulting distribution is just a T -productof the given distributions,
i.e.,

π̃T (xK1∪K2) = π̃(xK1 , xK2) = T (π1(xK1), π2(xK2)). (11)

4Let us stress that the introduced problem is different from those solved by De Campos
and Huete in [2, 3]; the reader is referred to [20] for more details concerning this difference.
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It follows from Theorem 1 that the equality (11) holds iff XK1 and XK2 are
T -independent, therefore we obtain different T -product distributions for dif-
ferent t-norms.

The generalisation of a T -product distribution to a general set of marginal
distributions with pairwise disjoint index sets is straightforward.

If the index sets K1 and K2 are not disjoint, the situation is somewhat
more complicated. Let us assume π1 and π2 to be projective distributions of
XK1 and XK2 , respectively. Then the T -product extension of these distribu-
tions can be defined by the equality

π̃T (xK1∪K2) = T (π1(xK1), π2(xK2)4Tπ2(xK1∩K2)). (12)

Clearly, T -product extensions of projective possibility distributions are a
generalization of T -product distributions as (12) collapses to (11) if
K1 ∩K2 = ∅.

The following theorem, proven in [20] and expressing the relationship
between T -product extensions and conditional independence, is of great im-
portance from the viewpoint of this paper.

Theorem 3 Let T be a continuous t-norm and π1 and π2 be projective pos-
sibility distributions of XK1 and XK2, respectively. Then the distribution π̃T
of XK1∪K2

π̃T (xK1∪K2) = T (π1(xK1), π2(xK2)4Tπ2(xK1∩K2)) (13)

= T (π1(xK1)4Tπ1(xK1∩K2), π2(xK2)),

if and only if XK1\K2 and XK2\K1 are conditionally T -independent given
XK1∩K2.

As the residuals are upper envelopes of sets of all solutions of the equation
(5) (cf. Subsection 2.3), this result can be reformulated also in terms of upper
envelopes.

A generalisation of this approach to a more general system S of marginal
possibility distributions will be at the centre of our attention in the next
section.

4 Compositional Models

This section is devoted to a twofold generalisation of the above-mentioned
ideas to general sets of (not necessarily projective) possibility distributions.

10



It is based on operators of composition of possibility distributions introduced
within the probabilistic framework in [14] and within the possibilistic frame-
work in [16].

4.1 Operators of Composition

Considering a continuous t-norm T , two (not necessarily disjoint) subsets
K1, K2 of N and two normal possibility distributions 5 π1(xK1) and π2(xK2)
of variables XK1 and XK2 , respectively, we define the operator of right com-
position of these possibility distributions by the expression

π1 (xK1) .T π2 (xK2) = T (π1 (xK1) , π2 (xK2)4Tπ2 (xK1∩K2)) ,

and analogously the operator of left composition by the expression

π1 (xK1) /T π2 (xK2) = T (π1 (xK1)4Tπ1 (xK1∩K2) , π2 (xK2)) .

It is evident that both π1 .T π2 and π1 /T π2 are (generally different from
each other) possibility distributions of variables {Xi}i∈K1∪K2 .

Now, we will present a lemma proven in [16], expressing basic properties
of these operators. This lemma also reveals that the operators of composition
are generalisations of T -product extensions in such a sense, that they are able
to produce “extensions” of non-projective distributions.

Lemma 2 Let T be a continuous t-norm and π1(xK1) and π2(xK2) be two
distributions. Then

(i)
(π1 .T π2)(xK1) = π1(xK1),

(ii)
(π1 /T π2)(xK2) = π2(xK2),

(iii)
(π1 .T π2)(xK1∪K2) = (π1 /T π2)(xK1∪K2)

iff π1 and π2 are projective.

5Let us stress that for the definition of these operators we do not require projectivity
of distributions π1 and π2.
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4.2 Generating Sequences

In this subsection we will show how to apply the operators iteratively. Con-
sider a sequence of distributions π1(xK1), π2(xK2), . . . , πm(xKm) and the ex-
pression

π1 .T π2 .T . . . .T πm.

Before beginning a discussion of its properties, we have to explain how to
interpret it. Although we did not mention it explicitly, the operator .T (as
well as /T ) is neither commutative nor associative.6 Therefore, generally

(π1 .T π2) .T π3 6= π1 .T (π2 .T π3).

For this reason, let us note that in the part that follows, we always apply the
operators from left to right, i.e.,

π1 .T π2 .T π3 .T . . . .T πm = (. . . ((π1 .T π2) .T π3.T ) . . .) .T πm.

This expression defines a multidimensional distribution of XK1∪...∪Km . There-
fore, for any permutation i1, i2, . . . , im of indices 1, . . . ,m, the expression

πi1 .T πi2 . . . . .T πim

determines a distribution of the same family of variables; however, these
distributions can differ from one another for different permutations. In the
following subsection, we will deal with special generating sequences (or their
special permutations) which seem to possess the most advantageous proper-
ties.

4.3 T -perfect Sequences

An ordered sequence of possibility distributions π1, π2, . . . , πm is said to be
T -perfect if

π1 .T π2 = π1 /T π2,

π1 .T π2 .T π3 = π1 /T π2 /T π3,
...

π1 .T · · · .T πm = π1 /T · · · /T πm.
6Counterexamples can be found in [16].
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The notion of T -perfectness suggests that a sequence perfect with respect
to one t-norm need not be perfect with respect to another t-norm, which is
analogous to (conditional) T -independence.

The following lemma (an immediate consequence of (iii) in Lemma 2) will
be used in Section 6.

Lemma 3 Let T be a continuous t-norm. The sequence π1, π2, . . . , πm is
T -perfect if and only if the pairs of distributions (π1 .T · · · .T πk−1) and πk
are projective for all k = 2, 3, . . . ,m.

The following characterisation theorem, proven in [20], expresses one of
the most important results concerning T -perfect sequences. It says they can
be composed into multidimensional distributions that are extensions of all
the distributions from which the respective joint distribution is composed,
i.e. if there exists an ordering of low-dimensional distributions from (9) such
that they form a T -perfect sequence, then the resulting model is a solution
of the possibilistic marginal problem.

Theorem 4 The sequence π1, π2, . . . , πm is T -perfect iff all the distributions
π1, π2, . . . , πm are marginal to distribution π1 .T π2 .T . . . .T πm.

Now we are ready to approach the formulation of the result concerning
sufficient conditions for the existence of an extension of the given set of low-
dimensional distributions, as we promised in Section 3.2. Before doing that,
we need to recall what the running intersection property means.

A sequence of sets K1, K2, . . . , Kn is said to meet running intersection
property (RIP) if

∀i = 2, . . . , n ∃j(1 ≤ j < i) (Ki ∩ (K1 ∪ . . . ∪Ki−1)) ⊆ Kj.

The following theorem, proven in [20], reveals the relationship between
RIP and T -perfectness.

Theorem 5 Let S = {πKi
, Ki ∈ K} be a system of pairwise projective low-

dimensional possibility distributions defined by (9). If there exists a permu-
tation i1, . . . , im of indices 1, . . . ,m such that Ki1 , . . . , Kim meets RIP, then,
for any continuous T , there exists a T -product extension

πi1 .T πi2 . . . . .T πim

of these distributions.
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In other words, RIP guarantees the existence of T -product extension of
a system of pointwise projective possibility distribution (regardless of the
underlying continuous t-norm).

5 Influence of a t-norm on Inference

The usual goal of the construction of multidimensional models in artificial
intelligence is to use them for inference. As we presented an approach to the
construction of multidimensional possibility distributions parameterised by a
continuous t-norm, we should also note that the resulting models (based on
different t-norms) may substantially differ from each other, from the view-
point of inference.

To demonstrate it, let us present a simple example showing that, using
different t-norms, we can obtain multidimensional models yielding different
inferential rules. The example is the simplest (nontrivial) case described
by Theorem 5; the index sets satisfy RIP and therefore one can construct
a compositional model as a T -product extension of its marginals for any
continuous t-norm T .

Example 1 Consider two binary variables X1, X2 and a ternary variable X3

having two-dimensional possibility distributions contained in Table 1.

π1(x1, x3) X3 0 1 2
X1 = 0 1 1 1
X1 = 1 .5 .7 .9

π2(x2, x3) X3 0 1 2
X2 = 0 1 1 1
X2 = 1 .5 .4 .3

Table 1: Example 1 — two possibility distributions

It is evident that inference about variable X3 based on values of variable
X1 is different from that based on values of X2. Our aim is to make inference
based on both X1 and X2.

Therefore we have to construct a joint possibility distribution of X1, X2

and X3 on X1 × X2 × X3. Using operators .T for three distinct t-norms
(Gödel’s, product and  Lukasiewicz’s) mentioned in Section 2.1 we will obtain
the three different possibility distributions summarised in Table 2.7

7Let us mention at this moment that the marginal of π2 on X3 is identically equal to 1
and therefore (for any continuous t-norm) conditional possibility distribution π2(X2|X3)
coincides with the joint one π2(X2, X3).
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X1 X2 X3
π1 .T π2(X1, X2, X3)

G Π L

0 0 0 1 1 1
0 0 1 1 1 1
0 0 2 1 1 1
0 1 0 .5 .5 .5
0 1 1 .4 .4 .4
0 1 2 .3 .3 .3
1 0 0 .5 .5 .5
1 0 1 .7 .7 .7
1 0 2 .9 .9 .9
1 1 0 .5 .25 0
1 1 1 .4 .28 .1
1 1 2 .3 .27 .2

Table 2: Example 1 — three-dimensional possibility distributions

Now, let us use these 3-dimensional possibility distributions for inference:
knowing values of X1 and X2 we have to choose the “most possible” value
of X3. It is evident that the most interesting case is that when both X1

and X2 equal 1. In this case, the model based on Gödel’s t-norm chooses
X3 = 0, while the model based on product t-norm X3 = 1 and that based on
 Lukasiewicz’s t-norm X3 = 2; see Table 3, where the respective conditional
possibilities are summarised. ♦

X3
π1 .T π2(X3|X1 = 1, X2 = 1)

G Π L

0 1 25/28 .8
1 .4 1 .9
2 .3 27/28 1

Table 3: Example 1 — conditional possibilities

Therefore, it is obvious that an interpretation of the resulting models is
needed.
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6 Interpretation of T -perfect Sequences

In this section we will deal with probabilistic interpretation of the compo-
sitional models, namely those based on Gödel’s, product and  Lukasiewicz’s
t-norm.

6.1 Upper Envelopes of Sets of Probability Distribu-
tions

With any possibility measure Π on X, one can associate a class of probability
measures usually called a credal set M(Π) on X dominated by it, i.e.,

M(Π) = {P : P (A) ≤ Π(A) ∀A ∈ P(X)}.

As proven in [10], the normality of Π is equivalent not only to the fact
thatM(Π) 6= ∅, but also that Π is an upper envelope ofM(Π), i.e., that for
any A ∈ P(X) there exists P ∈M(Π) such that P (A) = Π(A).

Nevertheless, since we are interested in distributions rather than in mea-
sures, the results in this section will be formulated in terms of distributions.
It should be noted that the results need not be valid for possibility measures
(although this fact is not so important from the viewpoint of this paper).

Example 2 Let X = {0, 1} and π(0) = 0.6, π(1) = 1 a distribution on X.
Then π is the upper envelope of

M(π) = {p : p(0) ∈ [0, 0.6], p(1) = 1− p(0)},

which is a convex set of probability distributions. ♦

From the results obtained by De Cooman and Aeyels [10] one can conclude
that Gödel’s extension (i.e., T -product extension for T (a, b) = min(a, b)) of
two one-dimensional possibility distributions is the upper envelope of the set
of all extensions of probability distributions from the corresponding sets. In
the next subsection we present an analogous result for a product t-norm, then
generalise it to a product extension of distributions on overlapping subspaces
and, finally, to product-perfect sequences.
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6.2 Product Extensions

Let us start with the simplest case, as suggested above.

Lemma 4 Let XK1 and XK2 be two (groups of) variables (K1 ∩ K2 = ∅)
with values in XK1 and XK2, respectively, and π1 and π2 be their possibility
distributions. Then the distribution defined by the equality

πΠ(xK1 , xK2) = π1(xK1) · π2(xK2)

for any (xK1 , xK2) ∈ XK1 ×XK2 is the upper envelope of the set of product
extensions of probability distributions from M(π1) and M(π2).

Proof. First, let us note that p1(xK1) ≤ π1(xK1) for all xK1 ∈ XK1 and
p2(xK2) ≤ π2(xK2) for all xK2 ∈ XK2 . Let

M(πΠ) = {p(xK1 , xK2) = p1(xK1) · p2(xK2); p1 ∈M(π1), p2 ∈M(π2)}

be the set of product extensions of probability distributions fromM(π1) and
M(π2). From this and from the above-presented inequalities it follows that

p(xK1 , xK2) = p1(xK1) · p2(xK2) ≤ π1(xK1) · π2(xK2)

is satisfied for any (xK1 , xK2) ∈ XK1 ×XK2 . To prove that πΠ is the upper
envelope ofM(πΠ), it is enough to show that for any (xK1 , xK2) ∈ XK1×XK2

there exist probability distributions p1 and p2 such that p1(xK1) · p2(xK2) =
π1(xK1) ·π2(xK2). But it is evidently the case since both π1 and π2 are upper
envelopes of M(π1) and M(π2), respectively. �

According to the results of Walley and De Cooman [21] this assertion can
be generalised as follows:

Lemma 5 Let XK1 and XK2 be two (groups of) variables with values in XK1

and XK2, respectively, and π1 and π2 be their projective possibility distribu-
tions. Then the distribution defined by

πΠ(xK1∪K2) = π1(xK1) .Π π2(xK2)

for any xK1∪K2 ∈ XK1∪K2 is the upper envelope of the set of product exten-
sions of projective pairs of probability distributions from M(π1) and M(π2).
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Proof. Walley and De Cooman [21] proved that Dempster’s conditioning
rule, i.e., the conditioning rule based on product-residual, produces (from
joint possibility distribution π) a conditional possibility distribution which
is an upper envelope of the set of conditional probabilities obtained from
M(π). Due to the definition of the operator .T , the desired result follows
directly from Lemma 4. �

Finally, we obtain the following theorem.

Theorem 6 Let π1, π2, . . . , πm be a product-perfect sequence of possibility
distributions. Then

π1 .Π π2 .Π · · · .Π πm

is the upper envelope of the probability distributions

p1 . p2 . · · · . pm,

where p1, p2, . . . pm form perfect sequences of probability distributions from
M(π1),M(π2), . . . ,M(πm).

Proof of this theorem follows directly from the definition of a perfect se-
quence, Lemma 3 and iterative application of Lemma 5. �

Loosely speaking, if conditional stochastic independence relations among
(groups of) variables appearing in the model are valid (or at least expected),
then it is suitable to use a compositional model based on product t-norm (as
the relationship between probabilistic operator of composition and stochastic
conditional independence is analogous to that between .T and conditional
T -independence.

6.3 Gödel’s Extensions

Unfortunately, it is not possible to use a similar approach for the case
of Gödel’s t-norm, since Walley and De Cooman showed that Dubois and
Prade’s conditioning rule, i.e., the conditioning rule based on min-residual,
produces — from a joint possibility distribution π — a conditional distribu-
tion which is not an upper envelope of the set of conditional probabilities
obtained from M(π); see [21] for more details.

Nevertheless, it is possible to prove an analogy of Lemma 5 — the follow-
ing assertion generalises the above-mentioned result obtained by De Cooman
and Aeyels.
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Lemma 6 Let XK1 and XK2 be two (groups of) variables with values in XK1

and XK2, respectively, and π1 and π2 be their projective possibility distribu-
tions. Then the distribution defined by the equality

πG(xK1∪K2) = π1(xK1) .G π2(xK2) (14)

for any xK1∪K2 ∈ XK1∪K2 is the upper envelope of the set of all extensions of
projective probability distribution pairs from M(π1) and M(π2).

Proof. Let us recall that p1(xK1) ≤ π1(xK1) for all xK1 ∈ XK1 and p2(xK2) ≤
π2(xK2) for all xK2 ∈ XK2 .

First let us prove that (14) dominates the set of all extensions of projective
probability distribution pairs from M(π1) and M(π2), i.e., for any p from
M(πG) the inequality

p(xK1∪K2) ≤ min(π1(xK1), π2(xK2)4minπ2(xK1∩K2)) (15)

is satisfied for any (xK1∪K2) ∈ XK1∪K2 . Since the equalities

p1(xK1) =
∑

(xK2\K1
)∈XK2\K1

p(xK1∪K2),

p2(xK2) =
∑

(xK1\K2
)∈XK1\K2

p(xK2∪K1)

must hold for any p ∈M(πG), it is obvious that

p(xK1∪K2) ≤ min(p1(xK1), p2(xK2)) ≤ min(π1(xK1), π2(xK2))

from which (15) immediately follows due to the inequalities presented above
and the simple fact that a ≤ a4T b for any 0 ≤ a ≤ b ≤ 1 and any continuous
t-norm T .

To prove that πG defined by (14) is also the upper envelope, it is enough
to prove that for any x ∈ XK1∪K2 there exists a distribution p ∈M(πG) such
that p(x) = π(x).

Let x̄ be an arbitrary fixed element of XK1∪K2 . As π1 and π2 are up-
per envelopes of M(π1) and M(π2), respectively, there must exist probabil-
ity distributions p∗1 ∈ M(π1) on XK1 and p∗2 ∈ M(π2) on XK2 such that
p∗1(x̄↓K1) = π1(x̄↓K1) and p∗2(x̄↓K2) = π2(x̄↓K2).
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Now, we have to distinguish between two situations: either πG(x̄) =
π1(x̄↓K1) or πG(x̄) = π2(x̄↓K2).8 In the first case we define

p∗(x↓K1 , y) =

{
p∗1(x↓K1) if y = x̄↓K2\K1 ,
0 otherwise,

and, similarly, in the second one

p∗(y, x↓K2) =

{
p∗2(x↓K2) if y = x̄↓K1\K2 ,
0 otherwise.

Then
p∗(x̄) = min(π1(x̄↓K1), π2(x̄↓K24Tπ2(x̄↓K1∩K2)),

as desired. �

Theorem 7 Let π1, π2, . . . , πm be a min-perfect sequence of possibility dis-
tributions. Then

π1 .G π2 .G · · · .G πm
is the upper envelope of the set of all extensions of projective probability
distributions from M(π1),M(π2), . . . ,M(πm).

Proof of this theorem follows directly from the definition of a perfect se-
quence, Lemma 3 and the iterative application of Lemma 6. �

In other words, if one does not know anything about (in)dependence
relations among involved variables, a compositional model based of Gödel’s
t-norm is the most appropriate, as it is the upper envelope of all probabilistic
models with marginals from the corresponding credal sets.

6.4  Lukasiewicz’s Extensions

Due to the ordering of t-norms one would expect that  Lukasiewicz’s exten-
sion will dominate, in a sense, the minimal set of extensions of probability
distributions. It is true, but only partially, as can be seen from the following
theorem and example.

8Let us note that due to projectivity of π1 and π2 it cannot happen that

π2(x̄↓K1∩K2) = π2(x̄↓K2) < π1(x̄↓K1).
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Theorem 8 Let X1 and X2 be two binary variables with distributions π1 and
π2, respectively. Then the distribution defined by the equality

πL(x1, x2) = max(0, π1(x1) + π2(x2)− 1)

for any (x1, x2) ∈ X1 × X2 dominates the set M(πL), where at least one
common extension exists for each pair p1 ∈ M(π1) and p2 ∈ M(π2). This
distribution is the minimal one with this property.

Proof. Without loss of generality let us suppose that X1 = X2 = {0, 1}. Let
π1 and π2 be possibility distributions on X1 and X2, respectively, and p1 ∈
M(π1) and p2 ∈ M(π2) be arbitrary probability distributions dominated
by them. Since we only deal with normal possibility distributions, let us
suppose, again without loss of generality, that π1(1) = π2(1) = 1. Let us
denote α = min(p1(0), p2(0),max(0, π1(0) + π2(0)− 1)). Then

p(0, 0) = α,

p(0, 1) = p1(0)− α,
p(1, 0) = p2(0)− α,
p(1, 1) = 1 + α− p1(0)− p2(0)

is clearly dominated by possibility distribution

πL(0, 0) = max(0, π1(0) + π2(0)− 1),

πL(0, 1) = π1(0),

πL(1, 0) = π2(0),

πL(1, 1) = 1

and simultaneously satisfies the marginal constraints. It only remains to
check that p is a probability distribution, i.e., that all of its values are non-
negative (the summation up to 1 is evident). But it follows directly from the
definition of α (which also implies that p1(0) + p2(0)− 1 ≤ α).

Now we prove that πL is the minimal distribution with this property. Let
us suppose that there exists π′ smaller than πL. Then, due to boundary
condition, π′(i, j) = πL(i, j) for i + j ≥ 1 and therefore π′(0, 0) < πL(0, 0).
Since π′ must be nonnegative, π1(0) + π2(0) > 1. Let us set p1(0) = π1(0)
and p2(0) = π2(0). Then the extension of p1 and p2 must satisfy p(0, 0) <
π1(0) + π2(0) − 1, and therefore p(1, 1) = 1 + p(0, 0) − p1(0) − p2(0) < 0.
Hence, πL is minimal. �
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The condition that the variables must be binary is substantial, as can be
seen from the following example.

Example 3 Let π1 and π2 be marginal distributions on X1 = {0, 1, 2} and
X2 = {0, 1}, respectively, and their  Lukasiewicz’s extension be defined as
suggested in Table 4.

πL(x1, x2) X1 0 1 2 π2(x2)
X2 = 0 0 0 .5 .5
X2 = 1 .5 .5 1 1

π1(x1) .5 .5 1

Table 4: Example 3 —  Lukasziwicz’s extension

Let us choose p1 ∈ M(π1) such that p1(0) = 0.5, p1(1) = 0.5 (therefore
p1(2) = 0) and p2 ∈ M(π2) such that p2(0) = 0.5 (i.e., p2(1) = 0.5). None
of the extensions of these two probability distributions (cf. Table 5) is dom-
inated by πL, since both x and y should equal 0, but their sum should equal
0.5. ♦

p(x1, x2) X1 0 1 2 p2(x2)
X2 = 0 x y 0 .5
X2 = 1 .5− x .5− y 0 .5

p1(x1) .5 .5 0

Table 5: Example 3 — a set of dominated probabilities

7 Conclusions

We have recalled a possibilistic marginal problem introduced in [20], neces-
sary conditions, and the sets of all solutions. A lot of attention was paid to
T -product extensions — distributions that can be obtained from the
marginals by adopting a (conditional) independence requirement. We also
recalled a sufficient condition under which they exist and described the ap-
paratus for their construction.

Since these models can differ from each other for different t-norms, the
need for their interpretation is obvious. In this paper we confined ourselves to
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three distinguished t-norms, namely Gödel’s, product and  Lukasiewicz’s, and
identified any possibility distribution with the set of probability distributions
dominated by it.

We proved that multidimensional possibility models based on product
t-norm are upper envelopes of product extensions with marginals dominated
by the marginal possibility distributions, and models based on Gödel’s t-norm
upper envelopes of any probability distributions with marginals dominated
by the marginal possibility distributions.

The result for  Lukasiewicz’s t-norm is much weaker: two-dimensional
possibility distributions of binary variables is the minimal one dominating a
set of probability distributions. For more general models this assertion need
not hold.

Nevertheless, both min-perfect sequences and product-perfect sequences
have sensible probabilistic interpretation. This interpretation simultaneously
gives a hint of which model should be used in which situation.
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[18] J. Vejnarová, Conditional independence relations in possibility theory. Int. J.
Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000), pp. 253–269.

24
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