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On Marginal Problem in Evidence Theory

Jifina Vejnarova*

Institute Information Theory and Automation of the AS CR,
Pod Voddrenskou vézi 4, Prague, Czech Republic
vejnarQutia.cas.cz

Abstract. Marginal problem in the framework of evidence theory is
introduced in a way analogous to probabilistic one, to address the ques-
tion of whether or not a common extension exists for a given set of
marginal basic assignments. Similarities between these two problem types
are demonstrated, concerning necessary condition for the existence of an
extension and sets of all solutions. Finally, product extension of the set

of marginal basic assignments is introduced as a tool for the expression
of a representative in a closed form.

Keywords: Marginal problem, extension, product extension.

1 Introduction

The marginal problem - which addresses the question of whether or not 2 com-
mon extension exists for a given set of marginal distributions - is one of the most
challenging problem types in probability theory. The challenges lie not only in
a wide range of the relevant theoretical problems (probably the most important
among them is to find conditions for the existence of a solution to this prob-
lem), but also in its applicability to various problems of statistics [4], computer
tomography (7], and artificial intelligence [12]. Recently it has also been stud-
led in other frameworks, for example, in possibility theory [10] and quantum
mathematics [8].

In this paper we will introduce an evidential marginal problem analogous
to that encountered in the probabilistic framework. We will demonstrate the
similarities between these frameworks concerning necessary conditions, and sets
of solutions; finally we will also introduce product extension of the set of marginal
basic assignments.

The paper is organised as follows: after a brief overview of necessary concepts
and notation (Section 2), we will introduce the evidential marginal problem,

necessary condition, and the set of solutions in Section 3; and in Section 4 we
will deal with product exteunsion.

2 Basic Concepts and Notation

In this section we will, as briefly as possible, recall basic concepts from evidence
theory [9] concerning sets and set functions.

e VS
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For an index set N = {1,2,...,n}. let {X,}icny be a system of variables,
each X, having its values in a finite set X,. In this paper we will deal with
a multidimensional frame of discernment Xy = X7 x Xo X ... x X,, and its
subframes (for K C N)

XK = XLEKXL

Throughout this paper, Xk will denote a group of variables {X,},cx when
dealing with groups of variables on these subframes.
For M ¢ K C N and A C Xk, we denote by A*M a projection of A into X,

AM =y e Xy 1 3r e Ay =M,

where, for M = {i1,42,...,im},

;L'LM = (.‘L‘L'1 s Ligy e e ,.’Iim) € Xas-
In addition to the projection, in this text we will also need its inverse operation
that is usually called a cylindrical extension. The cylindrical extension of A C

Xgu to Xy (K C L) is the set
A ={ze X, 2" e A} = Ax X[k

A more complex instance is to make a common extension of two sets, which
will be called a join {1]. By a join of two sets A C Xg and B C X (K,L C N),
we will understand a set

AxB = {reXgur: e d & e B}.

Let us note that, for any C C Xxur, it naturally holds C C C+E 1 C+E | but
generally C # CYE pq CH,

Let us also note that if K and L are disjoint, then the join of A and B is just
their Cartesian product, Acx B = A x B, and if K = L then A B = AN B.
If KNL # 0 and AYKL 0 BYKTL — () then A o B = () as well. Generally,
Aa B = ATKVL 0 BTEVLY i e | a join of two sets is the intersection of their
cylindrical extensions.

In evidence theory [9], two dual measures are used to model the uncertainty:
belief and plausibility measures. Each of them can be defined with the help of an-
other set function called a basic (probability or belief) assignment m on Xy, i.e.,
m : P(Xn) — [0, 1], where P(X ) is the power set of Xy, and ) ,~x, m(A) =
1. Furthermore, we assume that m(0) = 0.! A set 4 € P(Xy) is a focal element
if m(A) > 0.

For a basic assignment m on X, and M C K, a marginal basic assignment
of m on X, is defined (for each A C Xj/) by the equality

m*M(4) = Z m(B). (1)
BCX«k
BiM=24

' T'his assumption is not generally accepted, e.g. . in [2] it is omitted.




m of variables,
- will deal with
. x X,,, and its

‘ {X,‘}Lef( when

n of A into Xy

werse operation
tension of A C

two sets, which
{ (K,L C N),

LK g CH | but

A and B is just
=<t B=ANB.
vell. Generally,
section of their

he uncertainty:
the help of an-
mon Xn, L€,
:ACXN m<A) =
a focal element

sic assignment

(1)

On Marginal Problem in Evidence T'heory 333

3 Marginal Problem

Let {X;}ien be a finite system of finite-valued variables with values in {X;};c .
Using the procedure of marginalisation (1) one can always uniquely restrict a
basic assignment m on Xy to the basic assignment myg on Xg for K C N.
However, the opposite process, the procedure of an eztension of a system of

basic assignments my,, i = 1,...,m on Xk, to a basic assignment my on Xg

(K = K1U---UKp,), is not unique (if it exists) and can be done in many ways.
Let us demonstrate this fact with two simple examples.

Example 1. Consider, for i = 1,2, two basic assignments m; on X; = {a;, bi},
specified in the left-hand side of Table 1. Our task is to find a basic assignment m

Table 1. Example 1: basic assignments m; and m2 and m and m’

AC Ximi(A) AT Xsma(A) AT X, x Xgm(A) AT X, x Xo|m(A)
{al} 0.2 {a'z} 0.6 {a1az} 0.2 {a1} x X2 0.2
{h} | 0.3 (b2} | 0 {braz} | 03 (i} x X2 | 0.2
X, | 05 X, | 04 X; x {az} | 0.1 {b1az} 0.1

{araz,b1b;} | 0.4 X1 x X2 0.5

on X x X, satisfying these marginal constraints. It is easy to realise that, e.g.,
m or m' contained in the left-hand side of Table 1 is a solution to this problem.
It is obvious that one can find numerous different solutions to this problem. ¢

The following example is devoted to a (more interesting) case of overlapping
marginals.

Example 2. Consider two basic assignments m; (for 7 = 1,2) on X; x X3
(Xi = {a:. b}, i = 1,2,3) specified in Table 2. It is again easy to realise that both

Table 2. Example 2: basic assignments m; and ma.

@

AC X xXslmi(A) ACX; x X;s|ma(A4)
{aia3} 0.5 {azas} 0.5
{aias,bibs}| 0.3 {azas,b2bs} | 0.3
X1 x {az} | 0.2 X2 x {az} | 0.2

joint basic assignments m and m’ contained in Table 3 satisfy these constraints.

And it is again obvious that one can find numerous different solutions to this
problem.

o
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Table 3. Example 2: basic assignments m and m’

AC X1 x Xy xXgm(A)  ACX; xX; x X3[m'(A)
{a1a2a3} 0.5 {a1a2a3} 0.3
{ar1a2a3,b1b2b3} | 0.3 {a1az2a3,b1b2b3} | 0.3
X1 x Xz x {as} | 0.2 {a1} x X2 x {az} | 0.2
X x {azas} 0.2

The evidential marginal problem can be, analogous to probability theory,
understood as follows: Let us assume that X;,7 € N, 1 <|N| < oo are finitely-
valued variables, K is a system of nonempty subsets of N and

S={mg,K €K} (2)

is a family of basic assignments, where each m is a basic assignment on X .
The problem we are interested in is the existence of an extension, i.e., a basic
assignment m on X whose marginals are basic assignments from S: or, more
generally, the set
E={m :m* =mu K e K} (3)

is of interest.

Let us note that we will not be able to find any basic assignment on X; x X x
X3 with prescribed two-dimensional marginals in Example 2 if these marginals
do not satisty quite a natural condition called a projectivity (or compatibility)
condition.

Having two basic assignments m; and mg on X g and X, respectively (K, L C
N), we say that these assignments are projective if

mJl,KmL _ mék nL.
which occurs if and only if there exists a basic assignment m on Xgz such
that both m; and my are marginal assignments of some m on X g (cf. also
Theorem 2).

This condition is clearly necessary, but not sufficient, as demonstrated in
Example 3.

Example 3. Let X, be the same as in Example 2, and m;.m> and m3 be
defined as shown in Table 4.

Although these three basic assignments are projective, more exactly,
m;i({a;}) = 0.5 and m;(X;) = 0.5 for i = 1,2,3 and j = i, + 1(mod3), no basic
assignment m on X; x X, x X3 exists that would have them as its marginals .
From the first two marginals one can derive that the only focal elements of m
are {ajazasz} and X; x Xy x X3, but none of them is projected to any of the
focal elements of 3. %
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Table 4. Example 3: basic assignments my, m2 and ms

AC X X XzJmi(A) ACX; x Xs|ma(A) AC X, x Xa|mi(A)
{alaz} 0.5 {agag} 0.5 {al} X X3 0.5
X1 X Xz 0.5 Xz X Xg 0.5 X1 X {aa} 0.5

In the probabilistic framework, projectivity is a necessary condition for the
existence of an extension, too, and becomes a sufficient condition if the index sets
of the marginals can be ordered in such a way that it satisfies a special property
called the running intersection property (see, e.g., [6]), or equivalently, if the
model is decomposable. We conjure that a similar result also holds in evidential
framework; nevertheless, it will remain a topic for our future research.

If a solution of an evidential marginal problem exists, it is (usually) not unique,
as we have already seen in Examples 1 and 2. This fact is completely analogous to
the probabilistic framework. And the following theorem reveals another analogy
in this respect.

Theorem 1. The set £(S) is a convex set of basic assignments.
Proof. Let my,mq € E(S) and m be such that
m(C) = am(C) + (1 — a)ma(C)

for any C C Xy Since mt¥(CHE) = miF(CHE) = miK(CYE) for any K € K,
we get

mE(CYEY = amB(CYE) 4 (1 - a)mi® (CHE) = mif (CVF)
for any K € K. Therefore, m € £(S). O

A convex combination of basic assignments m and m’ usually leads to a more
complex basic assignment with a higher number of focal elements, as can be seen
from the following simple example.

Example 1. (Continued) Combining m and m’ with a = 0.5, we obtain the
basic assignment contained in Table 4. &

This fact is again analogous to a probabilistic framework, but contrary to the
probabilistic case, where the number of focal elements is limited to the cardinality
of Xy, in evidence theory the increase of the number of focal elements may lead
to intractable tasks.

4 Product Extensions

It is evident that it is rather hard to deal with the whole sets of extensions:
hence it seems to be reasonable to look for a representative of each such set.
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Table 5. Example 1: basic assignment m*

AQXl x Xo m*(A) AQXl XX2 m*(A) 4§X1 XX2 m*(A)
{aﬂlz} 0.1 {01} X Xz 0.1 X1 X {ay} 0.05
{blaz} 0.2 {bl} X Xz 0.1 Xl X X2 0.25

{alaz,lhbz} 0.2

Dempster’s rule of combination [9] is a standard way to combine (in the frame.
work of evidence theory) information from different sources. It has been fre.
quently criticised since the time it first appeared. That is why many alternatives
to it have been suggested by various authors.

From the viewpoint of this paper, the most important among them is the
conjunctive combination rule [2], which is, in fact, a non-normalised Dempster’s
rule defined for m; and ms on the same space X by the formula

(mi@me)(C) = Z myi(A)mo(B).
A.BCX x ANB=C

The result of this rule is one of the examples of a non-normalised basic assign-
ment.

It can easily be generalised [3] to the case when m is defined on Xy and Mo
is defined on X (K # L) in the following way (for any C € Xpyp):
(Mm@ my)(C) = Z my(A)ma(B). (4)

ACXy . BCX,
ATLL;KQBM,UKZC

Another possible way to solve this problem is to use the product extension of
marginal basic assignments defined as follows:

Definition 1. Let m1 and my be projective basic assignments on Xg and Xp,
(K.L € N), respectively. We will call basic assignment m on Xy, product
extension of my and ms if for any A = AVE 0q AL

me(A“") . méL(A“‘)
meﬁL(AiKmL)

m(A) = (5)

whenever the right-hand side is defined, and m(A) = 0 otherwise. .
Let us note that the definition is only seemingly non-commutative, as m1 aqd
ma are supposed to be projective. Therefore, it is irrelevant which marginal is
used in the denominator.
In the following example we will show that a product extension is more ap-
propriate than Dempster’s rule of combination.
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Table 6. Example 4: basic assignments my, mzZ

A Q X1 X Xg 7711(‘4) A _C_ X2 X X3 7712(A)
X1 X {ba} 0.5 X-z X {ba} 0.5
{(albg,b1a3)} 0.5 {(a‘zbg,bzbg)} 0.5

Example 4. Let X;,7 = 1,2, 3, be the same as in previous examples and m;
and my be two basic assignments defined as shown in Table 6.

Since their marginals are projective, as can easily been checked, there exists
(at least one) common extension of both of them.

Applying the conjunctive combination rule to the marginals, one obtains val-
ues contained in the left-hand part of Table 7 with the marginal basic assign-
ments different from the originals.

Table 7. Example 4: basic assignments obtained by Dempster’s combination rule and
product extension

ACX xX3 |mi(A) ACX: x X3 |ma(A)
X1 x Xz x {b3} | 0.25 X x Xz x {bs} | 05
{(a1a2b3, bib2as)}; 0.25 {(a1a2b3,b1b2az)}| 0.5
Xy x {a2} x {bs}| 0.25
{a1} x X2 x {bs} | 0.25

On the other hand, product extensions of basic assignments m; and my con-
tained in the right-hand side of Table 7 keep both marginals. &

The difference consists in assigning values to joins of focal elements of the
marginal basic assignments. While in (4) the original basic assignments are used
even in instances in which focal elements have different projections; at least one

of the marginals is equal to zero in (5) in this case, which means that these sets
cannot be focal elements of the joint basic assignment.

This result was not obtained by chance, as the following assertion implies.

Theorem 2. Let m; and my be two projective basic assignments on Xx and
X (K,L € N), respectively, and mn be their product extension. Then

m*(B) = m,(B),
m*(C) = ma(C)
for any B € X and C € X, respectively.
Proof. 1t follows directly from Theorem 1 in [11]. O

The next step would be to prove an analogous result for a more general system
of basic assignments (as suggested in the previous section). Results form [5]
indicate that it could be done.
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5 Conclusions

We have introduced an evidential marginal problem in a way analogous to a
probability setting, where marginal probabilities are substituted by marginal
basic assignments.

We presented the necessary conditions for the existence of a solution to this
problem and also dealt with the sets of all solutions. Finally. we introduced 3
so-called product extension., which enables us to express an extension of the
problem in a closed form.

There are still many problems to be solved in the future, such as the structure
of the set of extensions of the problem as well as a generalisation of the product
extension to a more general index set of marginal basic assignments.
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