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Abstract. We propose an approximate probabilistic inference method
based on the CP-tensor decomposition and apply it to the well known
computer game of Minesweeper. In the method we view conditional prob-
ability tables of the exactly �-out-of-k functions as tensors and approxi-
mate them by a sum of rank-one tensors. The number of the summands
is min{l + 1, k − l + 1}, which is lower than their exact symmetric ten-
sor rank, which is k. Accuracy of the approximation can be tuned by
single scalar parameter. The computer game serves as a prototype for
applications of inference mechanisms in Bayesian networks, which are
not always tractable due to the dimensionality of the problem, but the
tensor decomposition may significantly help.

Keywords: Bayesian Networks, Probabilistic Inference, CP Tensor
Decomposition, Symmetric Tensor Rank.

1 Introduction

In many applications of Bayesian networks [1,2,3], conditional probability tables
(CPTs) have a certain local structure. Canonical models [4] form a class of CPTs
with their local structure being defined either by:

– a deterministic function of the values of the parents (deterministic models),
– a combination of the deterministic model with independent probabilistic

influence on each parent variable (ICI models), or
– a combination of the deterministic model with probabilistic influence on a

child of the deterministic model (simple canonical models).

In this paper we will pay special attention to deterministic models.
A common task solved efficiently with the help of Bayesian networks is proba-

bilistic inference, which is the computation of marginal conditional probabilities
of all unobserved variables given observations of other variables. During the in-
ference the special local structure of deterministic CPTs can be exploited. Dı́ez

� This work was supported by the Czech Science Foundation through projects
13–20012S and 14–13713S.

L.C. van der Gaag and A.J. Feelders (Eds.): PGM 2014, LNAI 8754, pp. 535–550, 2014.
c© Springer International Publishing Switzerland 2014

http://www.utia.cas.cz/


536 J. Vomlel and P. Tichavský

and Galán [5] suggested to rewrite each CPT of a noisy-max model as a prod-
uct of two-dimensional potentials ψi, i = 1, . . . , k. Later, Savický and Vomlel [6]
generalized the method to any CPT. Assume a CPT P (Y = y|X1, . . . , Xk) with
the state y of variable Y being observed, then we can write

P (Y = y|X1, . . . , Xk) =
∑

B

k∏

i=1

ψ(B,Xi) , (1)

where B is an auxiliary variable and the summation proceeds over all its values.
The above equality can be always satisfied if the number of states of B is

the product of the number of states of variables X1, . . . , Xk. The transformation
becomes computationally advantageous if the number of states of B is low. It was
observed in [6] that each CPT can be understood as a tensor and the minimum
number of states of B equals the rank of tensor A defined as

Ai1,...,ik = P (Y = y|X1 = xi1 , . . . , Xk = xik ),

for all combinations of states (xi1 , . . . , xik ) of variables X1, . . . , Xk. The decom-
position of tensors into the form corresponding to the right hand side of for-
mula (1) is known now as Canonical Polyadic (CP) or CANDECOMP-PARAFAC
(CP) decomposition [7,8].

In [9] we have shown how the CP decomposition can be applied to the noisy
threshold model of the probabilistic tables. We have presented exact CP decom-
position of these tensors, which have rank k if the table size is 2×2× . . .×2 (k×)
in real domain, and slightly lower rank in complex domain. Similar decomposi-
tions were derived for the probabilistic tables that represent deterministic exact
�-out-of-k functions. The tensor rank is about the same. It was shown that using
the CP decomposition approach it is possible to perform probabilistic inference
also in cases where the classical method cannot be applied because of a large di-
mensionality of the probabilistic tables. Next, it was shown that the complexity
reduction using CP decomposition is better than in the popular parent divorcing
method. Finally, it was shown that the tensor decomposition approach can be
combined with another alternative mechanism for Bayesian inference, which is
Weighted Model Counting (WMC) [9].

In this paper we take a closer look at tensors representing one specific type of
a canonical model – deterministic exact �-out-of-k functions. An �-out-of-k func-
tion is a function of k binary arguments that takes the value one if exactly � out of
its k arguments take value one – otherwise the function value is zero. These ten-
sors appear naturally in Bayesian network models with CPTs P (y|X1, . . . , Xk)
representing the addition of binary parent variables X1, . . . , Xk and with evi-
dence Y = y on the child variable. We suggest a new approximation by a sum of
rank-one tensors, where the number of the summands is min{l+1, k− l+1} and
the approximation error can be tuned by a single scalar parameter. This means
that we propose less complex (lower rank) approximations, which are computa-
tionally simpler, but they approach the desired probabilistic table (tensor) quite
accurately, with an arbitrarily small error. The main advantage is the lower rank
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of the approximation, which is much lower than the true rank (k), if � is low or
� is close to k.

The paper is organized as follows. In Section 2 we introduce the necessary
tensor notation, define tensors of the exact �-out-of-k functions, and present
their basic properties. Section 3 represents the main original contribution of this
paper. We propose two approximate CP decompositions of tensors of the �-out-
of-k functions based on the symmetric border rank of these tensors. We present
a comparison of the CP decomposition with the parent divorcing method in
Section 4. In Section 5 we introduce our Bayesian network model for the game of
Minesweeper. In Section 6 we apply the suggested decomposition to Minesweeper
and compare the computational efficiency and the approximation error of the
suggested approximate CP decompositions, the exact CP decomposition, and
the standard inference approach based on moralization of parent variables.

2 Preliminaries

Tensor is a mapping A : I → X, where X = R or X = C, I = I1 × . . .× Ik, k is a
natural number called the order of tensor A, and Ij , j = 1, . . . , k are index sets.
Typically, Ij are sets of integers of cardinality nj . Then we can say that tensor
A has dimensions n1, . . . , nk. In this paper all index sets will be {0, 1}.
Example 1. A visualization of a tensor of order k = 4 and dimensions n1 = n2 =
n3 = n4 = 2 with successive dimensions alternating between rows and columns1:

A =

⎛

⎜⎜⎜⎝

(
0 1
1 0

) (
1 0
0 0

)

(
1 0
0 0

) (
0 0
0 0

)

⎞

⎟⎟⎟⎠

Tensor A has rank one if it can be written as an outer product of vectors:

A = a1 ⊗ . . .⊗ ak ,

with the outer product being defined for all (i1, . . . , ik) ∈ I1 × . . .× Ik as

Ai1,...,ik = a1,i1 · . . . · ak,ik ,

where aj = (aj,i)i∈Ij
, j = 1, . . . , k are real or complex valued vectors.

Each tensor can be decomposed as a linear combination of rank-one tensors:

A =

r∑

i=1

bi · ai,1 ⊗ . . .⊗ ai,k , (2)

The rank of a tensor A, denoted rank(A), is the minimal r over all such decom-
positions. The decomposition of a tensor A to tensors of rank one that sum up
to A is called CP tensor decomposition.

1 The first dimension is the row of the outer matrix, the second is the column of the
outer matrix, the third is the row of the inner matrix, and the fourth is the column
of the inner matrix.
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Example 2. The tensor A from Example 1 can be written as:

A = (0, 1)⊗ (1, 0)⊗ (1, 0)⊗ (1, 0)

+(1, 0)⊗ (0, 1)⊗ (1, 0)⊗ (1, 0)

+(1, 0)⊗ (1, 0)⊗ (0, 1)⊗ (1, 0)

+(1, 0)⊗ (1, 0)⊗ (1, 0)⊗ (0, 1) .

This implies that its rank is at most 4.

The tensors studied in this paper are symmetric.

Definition 1. Let X be either R or C. Tensor A : {0, 1}k → X is symmetric if
for (i1, . . . , ik) ∈ {0, 1}k it holds that

Ai1,...,ik = Aiσ(1) ,...,iσ(k)
,

for any permutation σ of {1, . . . , k}.

Example 3. The tensor A from Example 1 is symmetric.

Definition 2. Let X be either R or C. The symmetric rank srankX(A) of a
tensor A is the minimum number of symmetric rank-one tensors taking values
from X such that their linear combination is equal to A, i.e.,

A =

r∑

i=1

bi · a⊗k
i , (3)

where ai, i = 1, . . . , r are vectors of length equal to dimensions of A taking values
form X, bi ∈ X, i = 1, . . . , r, and a⊗k

i is used to denote ai ⊗ . . .⊗ ai︸ ︷︷ ︸
k copies

.

As we will discuss later some tensors A can be approximated with arbitrarily
small error by tensors of lower rank than their rank. This can be formalized
using the notion of border rank.

Definition 3. The border rank of A : {0, 1}k → R is

brank(A) = min{r : ∀ε > 0 ∃E : {0, 1}k → R, ||E|| < ε, rank(A+ E) = r} ,

where || · || is any norm.

Next we give an example of a tensor that has its border rank at most two. The
example is a specialization of Example 4.2 from [10].

Example 4. Let k = 4. Then for q > 0 tensor

B(q) = 1

2q
· (1, q)⊗ (1, q)⊗ (1, q)⊗ (1, q)

− 1

2q
· (1,−q)⊗ (1,−q)⊗ (1,−q)⊗ (1,−q)
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has rank at most two. Note that

lim
q→0

B(q) = A

where A is the tensor from Example 1. This implies that brank(A) ≤ 2.

A class of tensors that appear in the real applications are tensors representing
functions. In this paper we pay special attention to tensors representing the exact
�-out-of-k functions, i.e. a Boolean function taking value 1 if and only if exactly
� of its k inputs have value 1.

Definition 4. Tensor S(�, k) : {0, 1}k → {0, 1} represents an exact �-out-of-k
function if it holds for (i1, . . . , ik) ∈ {0, 1}k:

Si1,...,ik(�, k) = δ(i1 + . . .+ ik = �)

δ(i = �) =

{
1 if i = �
0 otherwise.

Example 5. The tensor A presented in Examples 1– 4 is tensor S(1, 4). It follows
from Example 2 it has rank at most 4 and border rank at most 2 (Example 4).

3 Approximate Tensor Decompositions

Tensors S(�, k) were studied in [9]. It was shown that their symmetric rank in the
real domain is equal to k for all integer k, � [9, Proposition 1 and Proposition 3],
except for the trivial cases � ∈ {0, k}, where the rank is one [9, Lemma 2],
symbolically:

srankR(S(�, k)) =
{
k for 1 ≤ � ≤ (k − 1)
1 for � ∈ {0, k}. (4)

In the complex domain the tensor rank is slightly smaller for � in vicinity of k/2:

srankC(S(�, k)) = max{�+ 1, k − �+ 1} for 1 ≤ � ≤ (k − 1), (5)

see [9, Proposition 3]. The proofs in [9] are constructive.
In practical applications, the tensors with � near zero, � = 1, 2, 3, 4 and with

� near k, i.e. � = k − 1, k − 2, k − 3, k − 4, seem to be more common that those
with � around k/2. For example, in Section 5 we discuss an application to the
computer game of Minesweeper where CPTs with values of � around k/2 appear
rarely. For � near k/2 we recommend decomposition in the complex domain [9],
which has the rank specified in formula (5).

Earlier it was shown in [10, Theorem 4.3] that the symmetric border rank of
the tensor S(�, k) can be bounded as

brank(S(�, k)) ≤ min{�+ 1, k − �+ 1} .
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It means that the tensor can be expressed as a limit of a series of tensors having
the displayed rank. Unfortunately, the CP decomposition of the approximating
tensors are such that some elements of the factor matrices converge to zero and
some other converge to infinity. For practical applications it is indeed possible to
work with an inaccurate decomposition, provided that the approximation error
is sufficiently low, and the corresponding factor matrices do not have too large
Frobenius norm, so that there are no serious numerical issues with these factors.

The paper [10, Section 6] contains a general construction of series of tensors
of rank min{� + 1, k − � + 1} that converge to S(�, k) for a general pair (k, �).
Convergence of the series is relatively slow with respect to the Frobenius norm
of the factor matrices, except for the special case � = 1.

1-out-of-k

The tensor S(1, k) can be written as a limit

S(1, k) = lim
x→∞Sa(1, k, x)

where

Sa(1, k, x) = (x, y)⊗k − (x,−y)⊗k

y = y(x, k) =
1

2xk
.

Obviously, rank of Sa(1, k, x) is 2. The error of the approximation is

E(1, k, x) = ‖S(1, k)− Sa(1, k, x)‖∞ =
1

4x2k
.

Note that Example 4 represents a special case for k = 4.

A Method for Tensor Approximations

In this paper we extend the above result for the cases � = 2, 3, 4 and a general
k. In other words we write the tensor S(�, k) as a limit of an appropriately
parameterized tensor Sa(�, k, x) of a low rank,

S(�, k) = lim
x→∞Sa(�, k, x) .

We have conducted a series of numerical experiments attempting to decompose
the tensors numerically, using Levenberg-Marquardt method [11] starting from
different random starting points, which allowed us to guess a functional form of
suitable approximations.

Once the functional form of the approximation was found, we used symbolic
matlab tool to evaluate the assumed tensor decomposition as a function of 2 to 5
designed parameters. These parameters were selected to approximate the exact
tensor of interest to the maximum possible extent, with a single parameter left.
This parameter allows one to control the quality of the approximation, possibly
at the expense of numerical stability.
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2-out-of-k

For � = 2 we get

Sa(2, k, x) = (x, y)⊗k + (x,−y)⊗k − 2xk(1, 0)⊗k

y = y(x, k) =
1√

2x(k−2)/2
.

The error of the approximation is

E(2, k, x) = ‖S(2, k)− Sa(2, k, x)‖∞ =
1

2xk
.

3-out-of-k

For � = 3 we get

Sa(3, k, x) = (x, y)⊗k − (x,−y)⊗k − (z, w)⊗k + (z,−w)⊗k

with

y = y(x, k) = −1

2
x1−k/3

z = z(x, y, k) =

(
2x3k−3y3

2xk−3y3 − 1

)1/(2k)

w = w(x, y, z, k) = y
(x
z

)k−1

.

The error of the approximation is

E(3, k, x) = ‖S(3, k)− Sa(3, k, x)‖∞ =
3

2x2k/3
.

4-out-of-k

Finally, for � = 4 we get

Sa(4, k, x) = (x, y)⊗k + (x,−y)⊗k − (z, w)⊗k − (z,−w)⊗k − 2(xk − zk)(1, 0)⊗k

with

y = y(x, k) = x1−k/4

z = z(x, y, k) =

(
2x2k−4y4

2xk−4y4 − 1

)1/k

w = w(x, y, z, k) = y
(x
z

)k/2−1

.

The error of the approximation is

E(4, k, x) = ‖S(4, k)− Sa(4, k, x)‖∞ =
3

2xk/2
.
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(k − �)-out-of-k

Approximations for � = k − 1, k − 2, k − 3, k − 4 can be constructed from � =
1, 2, 3, 4, respectively, by swapping values of all vectors in the CP decompositions,
i.e., from

Sa(�, k) =

r∑

i=1

bi · a⊗k
i ,

we get

Sa(k − �, k) =

r∑

i=1

bi · a⊗k
i ,

where vector ai = (yi, xi) is obtained from ai = (xi, yi) by swapping its values.

Approximate Decompositions of Threshold Tensors

Similar functional forms can be derived also for approximate decompositions
of threshold tensors discussed in [9]. For tensors T (�, k) with � near zero (� =
1, 2, 3, 4) and with � near k (� = k − 1, k − 2, k − 3, k − 4) we can use already
derived expressions for S(�, k) and combine them using the following identity:

T (�, k) =

{∑k
m=� S(m, k) for � = k − 1, k − 2, . . .

(1, 1)⊗k −
∑�−1

m=1 S(m, k) for � = 1, 2, . . ..

Complex Valued Decompositions

It is worth noting that if complex-valued factors in the decomposition are al-
lowed, the approximation is possible with higher accuracy for the same variable
x. We consider the same functional form as in the real-valued decomposition.

In particular, for � = 3 the dependence of the variable y on x can be taken
as y = (2−2/3 − 1/x2)x1−k/3, and for � = 4 we propose the choice y = (2−1/2 −
1/x2)x1−k/4. With these choices, the variables z and w become complex-valued,
but the decomposition remains valid and the total approximation error is
reduced.

Approximation Errors

In Table 1 we present maximum2 approximation error for approximate decom-
positions of �-out-of-k tensors. These errors were obtained for variable x = 10.
With higher variable x, the approximation errors could be still lower, but for
the price of a risk of numerical issues.

2 The maximum is taken over all absolute values of differences of all corresponding
pairs of tensor values.
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The first two column present errors of the complex-valued and real-valued
decomposition described above. For � = 1 and � = 2 there is no difference, no
increase of accuracy can be attained in the complex domain. For � = 3 and
� = 4 the former decomposition is more accurate, but for the price of involving
arithmetic with complex numbers. The third column contains the error obtained
by a rank-k approximation in the real domain suggested in [9]. The error is
effectively zero.

Table 1. Maximum approximation error for approximate and exact decompositions
of �-out-of-k tensors. The errors for decompositions of (k − �)-out-of-k tensors are the
same as of �-out-of-k by their construction.

CPT complex approx. real approx. real exact

1-out-of-4 2.5e-09 2.5e-09 1.465e-14
2-out-of-4 5,00e-05 5,00e-05 1.908e-15
1-out-of-5 2.5e-11 2.5e-11 1.399e-14
2-out-of-5 5,00e-06 5,00e-06 5.995e-15
1-out-of-6 2.5e-13 2.5e-13 1.654e-14
2-out-of-6 5,00e-07 5,00e-07 6.573e-14
3-out-of-6 3.78e-06 6.3e-05 1.248e-13
1-out-of-7 2.5e-15 2.5e-15 7.472e-14
2-out-of-7 5,00e-08 5,00e-08 2.315e-12
3-out-of-7 8.144e-07 4.454e-05 6.625e-14
1-out-of-8 1.11e-16 1.11e-16 1.798e-12
2-out-of-8 1.192e-07 1.192e-07 1.396e-12
3-out-of-8 1.755e-07 2.18e-05 2.376e-12
4-out-of-8 5.698e-06 0.00015 1.239e-12

Remark 1. For the three cases 2-out-of-4, 3-out-of-6 and 4-out-of-8 presented
in Table 1 we can get exact CP complex decomposition of the same symmetric
rank as the approximate one – see formula (5).

4 A Comparison with the Parent Divorcing Method

A different transformation that can be applied to CPTs of �-out-of-k functions
is the parent-divorcing method [12].

On the right hand side of Figure 1 we present the graph after parent divorcing
and consequent moralization for k = 5 and � = 1. First, we add k − 2 auxiliary
variables and connect each of them with two parents. The CPT of each auxiliary
node is for � ≤ k/2, j = 2, . . . , k − 1 and y = 0, 1, . . . ,min{j, �+ 1} defined as

P (Yj = y|Yj−1 = y′, Xj = x) =

⎧
⎨

⎩

1 if either y = y′ + x or
y′ + x ≥ � and y = �+ 1

0 otherwise,
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where for j = 2 variable Yj−1 is replaced by X1. Note that we need not consider
the values of Yj greater than � + 1 since in these cases the exact �-out-of-k
function is already ensured to be zero and by adding the values of the remaining
variables Xj , . . . , Xk the sum cannot decrease. For � > k/2 the CPTs are defined
similarly but with values of y swapped.

X1 X2 X3 X4 X5

B

2 2 2 2 2

2

3

Y3

Y2

X5X4X3X2X1

2 2 2 2 2

3

3

Y4

Fig. 1. The graph after the CP decomposition (left) and the parent divorcing method
with consequent moralization (right) for k = 5 and � = 1. The small numbers attached
to nodes represent number of states of corresponding variables.

In the moralization step all parents of each node are pairwise connected by an
undirected edge and directions of edges are removed. Finally, the last auxiliary
node is connected to the last parent node by an undirected edge. The table
corresponding to clique {Yk−1, Xk} is for the observed value y of Y defined as

P (Y = y|Yj−1 = y′, Xj = x) =

⎧
⎨

⎩

1 if either � = y′ + x and y = 1 or
� �= y′ + x and y = 0

0 otherwise.

Table Size

The table size is the number of numerical values (memory units) that are needed
to represent all tables of a CPT. In Table 2 we compare the table size of CPT
after the real approximate (tsCPa) and real exact CP decompositions (tsCPe) of
�-out-of-k tensors compared with the parent divorcing (PD) method (tsPD) and
the full table size (tsf ). The table sizes were for given k ≥ 4 and (k− 1) ≥ � ≥ 1
computed by following formulas:
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tsCPa = 2kmin{k − �+ 1, �+ 1}
tsCPe = 2k2

tsPD =

k−1∑

j=2

2min{j, k − �+ 2, �+ 2} ·min{j + 1, k − �+ 2, �+ 2}

+2min{k − �+ 2, �+ 2}
tsf = 2k

Table 2. Table size for the real approximate and real exact CP decompositions com-
pared with the parent divorcing (PD) method and the full table size. On the right we
present a plot of table sizes for k = 8. The table sizes for decompositions of (k − �)-
out-of-k tensors are the same as of �-out-of-k by their construction.

CPT tsCPa tsCPe tsPD tsf
1-out-of-4 16 32 36 16
2-out-of-4 24 32 44 16
1-out-of-5 20 50 54 32
2-out-of-5 30 50 76 32
1-out-of-6 24 72 72 64
2-out-of-6 36 72 108 64
3-out-of-6 48 72 136 64
1-out-of-7 28 98 90 128
2-out-of-7 42 98 140 128
3-out-of-7 56 98 186 128
1-out-of-8 32 128 108 256
2-out-of-8 48 128 172 256
3-out-of-8 64 128 236 256
4-out-of-8 80 128 292 256

1 2 3 4 5 6 7

0
1

0
0

2
0

0
3

0
0

4
0

0

value of l

ta
b
le

 s
iz

e

full CPT
PD
CP exact
CP approx

5 The Game of Minesweeper

In [13] the computer game of Minesweeper was used to illustrate a few modeling
tricks utilized when applying Bayesian networks in real applications. In [10] this
game was used to illustrate the benefits of CP tensor decompositions of CPTs of
noisy exact �-out-of-k functions. In this paper we will use the Bayesian network
model of this game to compare exact and approximate CP tensor decompositions
of deterministic CPTs of exact �-out-of-k functions.

Minesweeper is a one-player game. The game starts with a grid of n×m blank
fields. During the game the player clicks on different fields. If the player clicks on
a field containing a mine the game is over. Otherwise the player gets information
on how many fields in the neighborhood of the selected field contain a mine. The
goal of the game is to find all mines without clicking on them. In Figure 2 two
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Fig. 2. Two screenshots from the game of Minesweeper. The screenshot on the right
hand side is taken after the player stepped on a mine and it shows the actual position
of mines.

screenshots from the game are presented. More information about Minesweeper
can be found at Wikipedia [14].

The Bayesian network of Minesweeper contains two variables for each field
on the game grid. One variable is binary and corresponds to the (originally un-
known) state of each field of the game grid. It has state 1 if there is a mine on this
field and state 0 otherwise. The second variable corresponds to the observation
made during the game. It has state variables on the neighboring positions in the
grid as its parents. It conveys the number of its neighbors with a mine. Thus,
its number of states is the number of its parents plus one. Its CPT is defined by
the addition function. Whenever an observation is made the corresponding state
variable can be removed from the BN since its state is known. If its state is 1
the game is over, otherwise its state is 0. When evidence from an observation
is distributed to its neighbors the node corresponding to the observation can be
removed. By entering evidence to a CPT of addition a table of exact �-out-of-k
function is created. Variables from the second set that were not observed are not
included in the BN model since they are barren variables [2, Section 5.5.1]. The
above considerations implies that in every moment of the game we will have at
most one node for each field of the grid and all tables in the BN are either one
dimensional priors that are the same for each position or tables of exact �-out-of-
k function. Thus, the BN of Minesweeper represent a good test bed for inference
algorithms exploiting the local structure of tables of �-out-of-k functions. This
paragraph is a digest of a more detailed description of the BN of Minesweeper
in [10, Section 7.1].

In Figure 3 we present an example of the game grid after 175 random obser-
vations of fields without a mine from the point of view of a game oracle. The
players do not see the positions of mines.
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S(1, 3)

S(2, 8)

Fig. 3. The game grid after 175 random observations. The points ”.” represent covered
fields without a mine, crosses ”x” represent covered fields with a mine. The numbers
correspond to uncovered fields and give the number of mines in the neighborhood.
The neighborhoods of 2 out of 175 observed fields are denoted by rectangles. In the
corresponding steps of the game the CPTs S(1, 3) and S(2, 8) are added to the Bayesian
network. Note that nodes of observed fields are connected to uncovered fields only –
therefore we add CPT S(1, 3) instead of S(1, 8).

6 Numerical Experiments

We performed experiments with Minesweeper of 20 × 20 grid size. We imple-
mented all algorithms in the R language [15]. In each of 350 steps of the game
the oracle randomly selected a field to be observed from those 350 not contain-
ing a mine and we created a Bayesian network corresponding to that step. We
compared two transformations:

– the standard method consisting of moralization and triangulation steps and
– the CP tensor decomposition applied to CPTs with higher number of par-

ents3 – for other CPTs we used the moralization followed by the triangulation
step.

In both networks we used the lazy propagation method [16] which is junction
tree based methods where the computations are performed with messages that
are kept as long as possible as lists of tables.

3 We applied CP tensor decomposition only when the total size of created tables was
less than the size of the table after moralization. Roughly speaking, this happened
when the number of parents was higher than three for the approximate methods and
higher than six for the exact method.



548 J. Vomlel and P. Tichavský
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Fig. 4. Results of the experiments for the real exact decompositions – (a) and (b),
the real approximate decompositions – (c) and (d), and the complex approximate
decompositions – (e) and (f).
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At each step of the game we recorded (1) decadic logarithm of the size of the
largest table created during the lazy propagation and (2) the conditional marginal
probabilities given current observations computed by (1) the standard method
and three versions of methods exploiting the CP tensor decomposition: (2) the
real exact decompositions, (3) the real approximate decompositions, and (4) the
complex approximate decompositions. The value of parameter x was set to 10.

For the results of experiments see Figure 4. All values represent the average
over ten different games. The plots in the first column present the decadic loga-
rithm of the size of the largest table created at each step of the game. The plots
in the second column present the average error (measured by the absolute value
of difference) of the conditional marginal probabilities.

We can see that when using exact CP tensor decomposition the size of largest
tables are not reduced but there is no approximation error (as expected). When
the real or complex approximate CP tensor decomposition is used at some stages
of the game the size of largest tables is reduced by an order of magnitude. But
this is achieved at an expense of a certain loss of the accuracy. The loss is lower
for the complex CP tensor decomposition (ranging from 0 to 0.2) than for the
real CP tensor decomposition (ranging from 0 to 0.25). Unfortunately, for some
particular configurations the approximation error is high. The numerical stability
of probabilistic inference seems to be an important issue here – however, we did
not study this issue in depth and leave it as a topic for our future research.

7 Conclusions

The reduction of maximal table size is important for applications where large
tables imply memory requirements that forbid using standard probabilistic infer-
ence schemes based on moralization and triangulation. The game of Minesweeper
is a prototype application, where the tensor decomposition approach can be re-
ally useful for reducing computational load of the inference mechanism. For this
particular game, the computational savings are low, if any, because the maxi-
mum number of parents (order of the probability tables) is at most 8. However,
we can imagine more complex situations, where the number of parents is higher.
In such cases the computational advantage would be more apparent.

We can consider, for example, a 3D generalization of Minesweeper, where each
field has not only 8 but 26 neighbors. The complexity of such problem would
grow significantly. We believe that the tensor decompositions presented in this
paper might be very suitable for the probabilistic inference in Bayesian networks
of such a type.
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