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Sequential pattern recognition assumes the features to be measured successively, one at a time, and
therefore the key problem is to choose the next feature optimally. However, the choice of the features
may be strongly influenced by the previous feature measurements and therefore the on-line ordering
of features is difficult. There are numerous methods to estimate class-conditional probability distribu-
tions but it is usually computationally intractable to derive the corresponding conditional marginals.
In literature there is no exact method of on-line feature ordering except for the strongly simplifying naive
Bayes models. We show that the problem of sequential recognition has an explicit analytical solution
which is based on approximation of the class-conditional distributions by mixtures of product compo-
nents. As the marginal distributions of product mixtures are directly available by omitting superfluous
terms in the products, we have a unique non-trivial possibility to evaluate at any decision level the con-
ditional informativity of unobserved features for a general problem of statistical recognition. In this way
the most informative feature guarantees, for any given set of preceding measurements, the maximum
decrease of decision uncertainty.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Sequential decision-making is an important area of statistical
pattern recognition. Unlike the standard scheme considering all
features of the classified object at once, the sequential recognition
includes the features successively, one at a time. Usually, the goal
is to reduce the number of features which are necessary for the fi-
nal decision. Thus, the classification based on the currently avail-
able feature measurements is either terminal or the sequential
recognition is continued by choosing the next feature. For this rea-
son the sequential decision scheme should include a stopping rule
and a suitable ordering procedure to optimally choose the next
feature.

The traditional motivation for sequential recognition assumes
that, for a certain reason, the feature measurements are expensive
and therefore, if a reliable classification is achievable with a small
subset of features, the optimal feature ordering and stopping rule
may reduce the total recognition cost. However, in most pattern
recognition applications all features are measured simultaneously
and with negligible costs. Obviously, there is no need of sequential
decision-making when the features can be used simultaneously.
On the other hand, there are problems which are sequential by
their nature but the statistical properties of features may differ at
different stages of classification. Thus the weak classifiers of [26]
can use different feature sets, the recognized patterns in orthotic
engineering may develop [31] or the state of the classified object
is influenced by control actions [22,4]. In this sense, instead of
sequential recognition, we have to solve a sequence of formally dif-
ferent recognition problems.

Practical problems of sequential recognition usually have differ-
ent specific aspects which may require highly specific solutions.
For example, most of the present approaches can be traced back
to the theoretical results of Wald [30] which are closely related
to the quality control of goods. Wald proposed the sequential prob-
ability ratio test to verify the quality of a commodity in a shipment
by efficient sampling – with the aim to minimize the costs of the
control procedure as a whole. Given a large shipment containing
a single type of goods, the test guarantees the optimal trade-off be-
tween the number of tested items and the probability of incorrect
quality evaluation.

The repetition of identical tests of goods in the Wald’s problem
naturally implies a sequence of independent, identically distrib-
uted measurements, and thus any ordering of measurements is
pointless in this case. The generalized sequential probability ratio
test provides optimal solutions only for two-class problems and
class-conditionally independent features. It can be further ex-
tended and modified [8] but, even if we admit different statistical
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properties of features in different classes, the independence
assumption remains prohibitive because the typical problems of
pattern recognition usually involve strongly interrelated features.

In the case of generally dependent features, the key problem of
sequential recognition is the optimal on-line ordering of feature
measurements. We recall that the off-line (a priori) feature order-
ing (closely related to the well-known feature selection algorithms
[24]), is less efficient because it cannot reflect the values of the pre-
viously observed features. As it will be shown later, the optimal
choice of the most informative feature at a given stage may be
strongly influenced by the values of the preceding feature mea-
surements and, for this reason, the knowledge of the underlying
conditional distributions is of basic importance. There are numer-
ous methods to estimate the unknown probability distributions in
classes but it is usually computationally intractable to derive on-
line the conditional marginals of unobserved features for a given
subset of preceding feature measurements.

In this paper we show that, approximating the class-conditional
distributions by mixtures of product components, we have a un-
ique possibility to solve exactly the on-line feature ordering prob-
lem for a general multi-class problem of statistical recognition.
Marginal distributions of product mixtures are directly available
by omitting superfluous terms in the products and therefore we
can evaluate, for any given set of preceding measurements, the
conditional Shannon informativity of the unobserved features.
The most informative feature guarantees the maximum decrease
of decision uncertainty – with respect to the estimated conditional
distributions.

In the following sections we first discuss the related work
(Section 2) and briefly describe the product mixture model
(Section 3) in application to Bayesian decision-making (Section 4).
The information controlled sequential recognition is described in
Section 5 and the properties of the method are illustrated by a
numerical example in Section 6.
2. Related work

According to our best knowledge, the exact solution of the on-
line feature ordering problem is available in the literature only
for so-called naive Bayes classifiers based on the strongly simplify-
ing assumption that the features are statistically independent in
each class [1,2,21,7]. A more general setup has been considered
by Fu [8], who proposed a dynamic programming approach to
the on-line ordering of features. However, in order to reduce the
arising computational complexity, the features are assumed to be
statistically independent or Markov dependent and continuous
variables have to be discretized.

Šochman and Matas [26,27] have recently proposed to circum-
vent the computational difficulties by combining so-called weak
classifiers from a large set in the framework of the AdaBoost algo-
rithm. The arising sequence of strong classifiers plays a role of
sequential measurements which are not independent. The joint
conditional density of all measurements, whose estimation is
intractable, is approximated by the class-conditional response of
the sequence of strong classifiers. The method called WaldBoost
applies the AdaBoost algorithm to selecting and ordering the mea-
surements and to approximation of the sequential probability ratio
in the Wald’s decision scheme. The WaldBoost algorithm is justi-
fied by the asymptotic properties of AdaBoost and yields a nearly
optimal trade-off between time and error rate for the underlying
two-class recognition problems.

One of the most natural application fields of sequential recogni-
tion is that of medical diagnostics [1,2,7]. In the case of computer-
aided medical decision-making we assume the final decision to be
made by a physician, and therefore the main purpose of the
sequential procedure should be to accumulate maximum diagnos-
tically relevant information along with the preliminary evaluation.
The number of both possible diagnoses and potentially available
features may be very large, and therefore the main advantage of
the sequential procedure is the optimal choice of diagnostically rel-
evant questions. There is no need for a stopping rule, the process
may continue as long as the user is willing and able to answer
the questions. The output of the classifier is given by the Bayes for-
mula in the form of a posteriori probabilities of possible diagnoses
which may be useful for the physician – in addition to the patient’s
answers and recommended medical tests.

3. Mixtures of product components

Let x be an N-dimensional vector of discrete features

x ¼ ðx1; x2; . . . ; xNÞ 2 X ; xn 2 Xn; N ¼ f1;2; . . . ;Ng

and N be the related index set of the variables xn. Approximating
unknown discrete probability distributions by product mixtures,
we assume the following conditional independence model:

PðxÞ ¼
X

m2M
wmFðxjmÞ; x 2 X ; M¼ f1; . . . ;Mg; ð1Þ

with the component weights

w ¼ ðw1;w2; . . . ;wMÞ; wm P 0;
X

m2M
wm ¼ 1;

and the product distributions

FðxjmÞ ¼
Y
n2N

fnðxnjmÞ; xn 2 Xn; m 2 M: ð2Þ

Here fnðxnjmÞ are univariate discrete probability distributions
and M is the component index set.

Since the late 1960s the standard way to compute maximum-
likelihood estimates of mixture parameters is to use the EM
algorithm [28,6,9]. Formally, given a finite set S of independent
observations of the underlying N-dimensional random vector

S ¼ fxð1Þ; xð2Þ; . . .g; x ¼ ðx1; x2; . . . ; xNÞ 2 X ; ð3Þ

we maximize the corresponding log-likelihood function

L ¼ 1
jSj
X
x2S

log
X

m2M
wmFðxjmÞ

" #
ð4Þ

by means of the following EM iteration equations:

qðmjxÞ ¼ wmFðxjmÞP
j2MwjFðxjjÞ

; w0m ¼
1
jSj
X
x2S

qðmjxÞ; ð5Þ

f 0nðnjmÞ ¼
X
x2S

dðn; xnÞqðmjxÞP
x2SqðmjxÞ ; n 2 Xn; n 2 N ; ð6Þ

where dðn; xnÞ is the d-function notation (dðn; xnÞ ¼ 1 for n ¼ xn and
zero otherwise) and the apostrophe denotes the new parameter val-
ues in each iteration. In the case of high dimensionality ðN � 102Þ
the EM algorithm has to be carefully implemented to avoid under-
flow problems [13].

Let us recall that the number of components in the mixture is a
parameter to be specified in advance. One can easily imagine that
there are many different possibilities to fit a mixture of many com-
ponents to a large number of multidimensional feature vectors
whereby each possibility may correspond to a local maximum of
the related log-likelihood function. For this reason the log-
likelihood criterion nearly always has local maxima and therefore
the iterative computation depends on the starting-point.

Nevertheless, in the case of large data sets ðjSj � 103Þ and large
number of components ðM � 102Þ, possible local maxima usually
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do not differ very much from each other. With identical number of
components the EM algorithm expectedly achieves similar local
maxima, the similar values of the log-likelihood criterion imply
comparable approximation quality and therefore, according to
our experience, large approximating mixtures can be initialized
randomly without any relevant risk of unhappy consequences.
4. Decision making based on product mixtures

Considering the framework of statistical pattern recognition we
assume that the vector x is to be classified with respect to a finite
set of classes X ¼ fx1; . . . ;xKg. We approximate the class-
conditional distributions PðxjxÞ by product mixtures:

PðxjxÞ ¼
X

m2Mx

wmFðxjmÞ;
[
x2X
Mx ¼M; ð7Þ

where wm are probabilistic weights, FðxjmÞ are the product compo-
nents andMx;x 2 X are disjoint index sets. Note that, in this way,
the component index m simultaneously identifies the value of the
class variable x 2 X.

Having estimated the class-conditional distributions PðxjxÞ and
a priori probabilities pðxÞ;x 2 X we can write, for any given x 2 X ,
the Bayes formula

pðxjxÞ ¼ PðxjxÞpðxÞ
PðxÞ ; PðxÞ ¼

X
x2X

PðxjxÞpðxÞ: ð8Þ

The posterior distribution pðxjxÞ can be used to define a unique
decision by means of Bayes decision function

d : X ! X; dðxÞ ¼ arg max
x2X
fpðxjxÞg; x 2 X ; ð9Þ

which is known to minimize the probability of classification error.
We recall that the unique classification (9) is accompanied by

information loss because of the suppressed a posteriori probabili-
ties of classes. Typically, in medical decision-making the probabil-
ities of possible diagnoses are preferable to a unique deterministic
decision. For the sake of sequential recognition we consider simul-
taneously the Bayes formula (8) as the classifier output since the a
posteriori probabilities provide more subtle description of the
resulting classification. By using the Shannon entropy

HxðXÞ ¼
X
x2X
� pðxjxÞ log pðxjxÞÞ ð10Þ

we have a reliable quantitative measure of the decision uncertainty
implied by the Bayes formula (8).

The approximation power of product mixtures has often been
underestimated – probably because of their formal similarity with
so-called ‘‘naive Bayes’’ model (cf. [1–3,23]). We recall that, in the
case of product mixtures, the term ‘‘naive Bayes’’ is incorrectly
used because the independence assumption applies to mixture
components and not to the approximated class-conditional distri-
butions. Actually, the product mixtures (1) and (2) are suitable for
describing complex statistical properties of strongly interrelated
features. In the case of discrete variables the product mixture is a
universal approximator [12] in the sense that any discrete distribu-
tion can be expressed in the form (1). In the case of continuous
variables the approximation potential of product mixtures ap-
proaches the universality of nonparametric kernel estimates [25]
with the increasing number of components.

In recent years we have applied product mixtures successfully
to multidimensional pattern recognition [15,16], mammographic
screening [19], texture modeling [14], image forgery detection
[20], classification of documents [18] and others (cf. also [23]).
5. Sequential recognition

The sequential recognition assumes a successive evaluation of
features. Each time, either terminal classification is to be per-
formed or the next feature has to be optimally chosen. The goal
of the sequential classification is to assign the observed subset of
features to a class x 2 X or, more exactly, to reduce the uncer-
tainty HxðXÞ (cf. Eq. (10)) of the related a posteriori probability dis-
tribution (8). Note that the entropy HxðXÞ approaches zero when
the a posteriori probabilities concentrate at a single value x 2 X.
If we use the Shannon entropy HxðXÞ as a measure of decision
uncertainty [29] then a natural way to choose the next feature
measurement is to maximize the corresponding conditional Shan-
non information about the class variable x contained in the con-
sidered feature. We show that, in this sense, the most
informative feature provides the maximum expected decrease of
uncertainty of the a posteriori distribution.

Motivated by an earlier idea [11] we use the fact that, in the
case of product mixtures, there is a simple possibility to derive
any marginal distributions by deleting superfluous terms in the
products. In this way, we have at any decision level a unique pos-
sibility to evaluate the exact conditional informativity of the
remaining features.

In particular, let xi1 ; xi2 ; . . . ; xik be a given subset of known fea-
ture measurements. Then for the sub-vector xC

xC ¼ ðxi1 ; xi2 ; . . . ; xik Þ 2 XC ; C ¼ fi1; . . . ; ikg � N ; ð11Þ

and a variable xn; ðn 2 N n CÞ, we can directly write the formulae
both for the related marginals

FCðxC jmÞ ¼
Y
i2C

fiðxijmÞ; m 2Mx; x 2 X;

PCjxðxC jxÞ ¼
X

m2Mx

wmFCðxC jmÞ;

PCðxCÞ ¼
X
x2X

pðxÞ
X

m2Mx

wmFCðxC jmÞ;

Pn;Cðxn; xC jxÞ ¼
X

m2Mx

wmfnðxnjmÞFCðxC jmÞ;

Pn;Cðxn; xCÞ ¼
X
x2X

pðxÞ
X

m2Mx

wmfnðxnjmÞFCðxC jmÞ;

and for the conditional distributions of xn 2 Xn

PnjCxðxnjxC ;xÞ ¼
Pn;Cjxðxn; xC jxÞ

PCjxðxC jxÞ
¼
X

m2Mx

Wx
mðxCÞfnðxnjmÞ; ðPCjxðxC jxÞ > 0Þ; ð12Þ

PnjCðxnjxCÞ ¼
X
x2X

X
m2Mx

�Wx
mðxCÞfnðxnjmÞ: ð13Þ

Here Wx
mðxCÞ and �Wx

mðxCÞ; ðx 2 XÞ are the component weights
corresponding to the observed feature vector xC 2 XC:

Wx
mðxCÞ ¼

wmFCðxC jmÞP
j2Mx

wjFCðxC jjÞ
; m 2Mx; x 2 X;

�Wx
mðxCÞ ¼

pðxÞwmFCðxC jmÞP
#2Xpð#Þ

P
j2M#

wjFCðxC jjÞ
:

In view of the above equations, the conditional Shannon
informativity of the remaining variables xn can be computed for
arbitrary sub-vector xC 2 XC .
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In particular, if xn; ðn 2 N n CÞ is an unobserved feature, then the
conditional information about X contained in the related random
variable Xn, given a sub-vector xC , can be expressed by means of
the Shannon formula

IxC ðXn;XÞ ¼ HxC ðXÞ � HxC ðXjXnÞ: ð14Þ

Equivalently, we can write

IxC ðXn;XÞ ¼ HxC ðXnÞ � HxC ðXnjXÞ; ð15Þ

where HxC ðXnÞ; HxC ðXnjXÞ are the respective entropies:

HxC ðXnÞ ¼
X

xn2Xn

� PnjCðxnjxCÞ log PnjCðxnjxCÞ; ð16Þ

HxC ðXnjXÞ¼
X
x2X

PXjCðxjxCÞ�
X

xn2Xn

�PnjCxðxnjxC ;xÞlogPnjCxðxnjxC ;xÞ;

ð17Þ

PXjCðxjxCÞ ¼
PCjxðxC jxÞpðxÞ

PCðxCÞ
: ð18Þ

Finally, we can use the statistical information IxC ðXn;XÞ to
define the next most informative feature xn0 , given xC:

n0 ¼ arg max
n2NnC

IxC ðXn;XÞ
� �

: ð19Þ

Let us note that, in view of Eq. (14), the most informative
feature xn0 actually minimizes the conditional entropy HxC ðXjXnÞ

HxC ðXjXnÞ ¼
X

xn2Xn

PnjCðxnjxCÞHxn ;xC ðXÞ

¼
X

xn2Xn

PnjCðxnjxCÞ
X
x2X
� PXjnCðxjxn; xCÞ log PXjnCðxjxn; xCÞ ð20Þ

which can be viewed as the expected value of the decision uncer-
tainty with respect to the random variable Xn. In other words the
most informative feature xn0 guarantees the maximum decrease of
the expected decision uncertainty HxC ðXjXnÞ .
Fig. 1. Sequential recognition of the numerals six and five. The odd rows show the changi
corresponding to the currently uncovered (white or black) raster fields and finally the inp
raster field value.
As mentioned earlier in Section 4, the entropy HxC ðXÞ of the pos-
terior distribution (18) is a natural measure of decision uncertainty
given the sub-vector of observed feature measurements xC . For this
reason it is well applicable as a stopping rule. In particular, if we
define

HxC ðXÞ ¼
X
x2X
� PXjCðxjxCÞ log PXjCðxjxCÞ ð21Þ
HðXÞ ¼
X
x2X
� pðxÞ log pðxÞ; ð22Þ

then a reasonable condition to stop sequential recognition and to
make final decision is the inequality

HxC ðXÞ
HðXÞ < s; ð0 < s < 1Þ: ð23Þ

Intuitively it would be quite plausible to apply the maximum a
posteriori probability PXjCðx0jxCÞ in the stopping condition in a sim-
ilar way:

PXjCðx0jxCÞ > s; 0 < s < 1: ð24Þ

However, the resulting stopping rule (24) would be less sensi-
tive than (23), because it cannot distinguish between different
accompanying less probable ‘‘noisy’’ alternatives.

We recall also that the relation (19) ‘‘looks’’ only one step
ahead. This widely used strategy has been proposed by Cardillo
and Fu [5] to reduce the computational complexity of the on-line
feature ordering. In our case we could easily choose the most infor-
mative pair of features, in analogy with the formulae above. Obvi-
ously, evaluation of the most informative pair of variables is a
qualitatively superior strategy; but if only one feature measure-
ment is accepted in each step, the more complex computation
would be devaluated in the next step because the knowledge of
the new feature measurement xn0 may essentially change the
underlying conditional probabilities (cf. Fig.1).
ng expectation of the classifier. The even rows show the informativity of raster fields
ut image. Note that the expected images may strongly change in case of unexpected
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The proposed method of sequential recognition, as described in
this section, assumes that the class-conditional distributions
PðxjxÞ; x 2 X are estimated in the form of product mixtures.
The whole procedure can be summarized in three steps:

1. Evaluation of the conditional informativity IxC ðXn;XÞ for all
unobserved features xn;n 2 N n C, given the subvector xC of pre-
ceding feature measurements.

2. Choice of the most informative feature xn0 by Eq. (19) and inclu-
sion of the new feature measurement xn0 into the subvector xC .

3. Evaluation of the stopping rule (23). A valid condition implies
making the final Bayesian classification according to the a pos-
teriori distribution (18), otherwise the algorithm continues by
point 1.

6. Illustrating example

The proposed sequential recognition controlled by maximum
conditional informativity guarantees the best possible strategy in
the sense that, for any sub-vector of previously observed features
xC ¼ ðxi1 ; . . . ; xik Þ, the next chosen feature measurement minimizes
the expected decision uncertainty HxC ðXjXnÞ. The result is of theo-
retical nature. In other words, any other method of sequential rec-
ognition based on the same probabilistic description of classes
PðxjxÞpðxÞ;x 2 X can only approach or achieve the same expected
decrease of decision uncertainty. In this respect the only applica-
tion dependent aspect is the quality of the estimated product
mixtures.

Obviously, the practical justification of product mixtures by
numerical examples is beyond the scope of the present paper,
here we refer mainly to our papers published in the last years
(cf. Section 4) and to the paper of Lowd and Domingos [23]. The fol-
lowing example of recognition of numerals in the binary raster
representation rather illustrates different properties of the pro-
posed method, especially the great variability of decisions in the
initial stages of sequential recognition and also the well known
trade-off between the error rate and the related number of ob-
served variables. Simultaneously, we make use of the possibility
to visualize the changing ‘‘expectations’’ of the classifier with the
increasing number of uncovered raster fields.

In recent years we have repeatedly applied multivariate Ber-
noulli mixtures to recognition of handwritten numerals from the
NIST benchmark database, with the goal of verifying different
decision-making aspects [15,16]. The considered NIST Special
Database 19 (SD19) contains about 400,000 handwritten numerals
in binary raster representation (about 40,000 for each numeral).
We normalized all digit patterns to a 32 � 32 binary raster to
obtain 1024-dimensional binary data vectors x 2 f0;1g1024. In
order to guarantee the same statistical properties of the training-
and test-data set, we have used the odd samples of each class for
Table 1
Classification error matrix obtained by applying the estimated class-conditional mixtu
independent test set. The class-conditional error rates are summarized in the last column

Class 0 1 2 3 4 5

0 19,892 5 74 24 36
1 7 22,006 40 12 46
2 25 55 19,617 65 46
3 23 17 103 19,835 3
4 41 8 18 1 18,925
5 40 27 18 210 12 17,
6 94 22 40 9 30
7 9 29 113 30 86
8 27 40 61 145 25
9 14 18 19 103 177
training and the even samples for testing. Also, to increase the var-
iability of the binary patterns, we extended the training data sets
four times by making three differently rotated variants of each pat-
tern (by �2, �1 and +1 degrees) with the resulting 80,000 training
data vectors for each class.

We approximated the class-conditional distributions of the
1024-dimensional binary patterns by multivariate Bernoulli
mixtures

PðxjxÞ ¼
X

m2Mx

wm

Y
n2N

fnðxnjmÞ; xn 2 f0;1g; ð25Þ

fnðxnjmÞ ¼ hxn
mnð1� hmnÞ1�xn ; 0 6 hmn 6 1; x 2 X:

In order to estimate the class-conditional distributions (25), we
have used the structural modification of the EM algorithm
[15,16,10] with the goal of suppressing the noisy parameters of
the model. Nevertheless, the resulting components are formally
identical with (25), i.e., we have

FðxjmÞ ¼
Y
n2N

hxn
mnð1� hmnÞ1�xn ; ð26Þ

with the only difference being that some of the parameters hmn are
fixed and replaced by their common mean values. The resulting
number of components was M = 2007 with the number of parame-
ters hmn totaling to 1,797,878. The quality of the estimated class-
conditional mixtures has been verified by classifying the numerals
from the independent test sets (20,000 for each class) with the
resulting global error rate of 2.696%. The corresponding classifica-
tion error matrix is shown in Table 1 in detail.

According to the sequential scheme we assume that the recog-
nized numeral on the raster is not visible and the raster fields be-
come uncovered successively. For this purpose, given a sub-vector
of visible raster fields xC , we have to evaluate at each stage the con-
ditional informativity IxC ðXn;XÞ for all the remaining raster fields
xn; ðn 2 N n CÞ. In other words, according to (12), (13), we have to
compute the marginal distributions

PCjxðxC jxÞ ¼
X

m2Mx

wm

Y
i2C

hxi
mið1� hmiÞ1�xi ;

PCðxCÞ ¼
X
x2X

X
m2Mx

pðxÞwm

Y
i2C

hxi
mið1� hmiÞ1�xi ;

PnCjxðxn; xC jxÞ ¼
X

m2Mx

wm

Y
i2C[fng

hxi
mið1� hmiÞ1�xi ;

PnCðxn; xCÞ ¼
X
x2X

pðxÞPnCjxðxn; xC jxÞ;

in order to evaluate the conditional distributions
res (number of components: M = 2007, number of parameters: 1,797,878) to the
and the global percentage of errors is given in the last row.

6 7 8 9 Error rate (%)

46 42 4 41 18 1.437
16 26 123 67 9 1.548
15 20 38 130 25 2.091

172 1 29 295 78 3.507
13 64 82 75 350 3.330

713 52 11 167 53 3.223
172 19,527 2 70 3 2.213

6 0 20,282 46 346 3.175
86 17 34 19,278 77 2.587
39 2 243 180 18,972 4.022

Mean classification error: 2.696



Table 2
Sequential recognition test for differently chosen thresholds of posterior entropy. The first column contains different threshold values and in the same row follow the related error
rates for different numerals. The next row contains the corresponding mean number of observed raster fields. The last column contains the corresponding mean values.

Numerals 0 1 2 3 4 5 6 7 8 9 Mean values (%)

Entropy threshold: 0.05 2.6 1.5 14.0 12.2 4.5 10.5 4.8 7.8 13.4 7.7 7.8%
Mean number of fields: 20.6 37.0 23.7 22.7 18.2 22.2 24.4 36.5 32.7 52.6 29.2

Entropy threshold: 0.10 3.0 1.7 19.0 13.9 5.3 13.4 5.4 8.6 16.1 8.3 9.4%
Mean number of fields: 14.9 20.0 17.7 17.8 13.4 16.5 17.3 30.8 23.9 39.8 21.2

Entropy threshold: 0.15 3.6 2.1 22.4 15.4 6.0 15.4 6.4 8.8 18.8 8.8 10.6%
Mean number of fields: 9.8 16.0 14.1 14.8 11.9 13.7 13.5 24.4 18.9 34.2 17.2

Entropy threshold: 0.20 4.1 2.2 26.4 16.2 7.1 16.5 8.1 10.8 21.0 9.2 12.0%
Mean number of fields: 6.9 13.0 11.4 13.2 9.6 11.9 10.6 19.5 16.0 27.5 14.0

Entropy threshold: 0.25 5.1 2.2 28.9 17.2 8.0 17.9 9.1 12.2 24.7 11.0 13.5%
Mean number of fields: 5.7 12.0 10.3 11.5 8.1 10.5 9.2 18.0 13.1 21.5 12.0

Entropy threshold: 0.30 5.7 2.3 30.8 17.9 8.8 18.6 9.2 14.6 26.4 11.9 14.4%
Mean number of fields: 4.7 10.9 9.6 10.5 7.5 9.1 8.1 16.9 11.6 17.1 10.6

Entropy threshold: 0.35 6.7 8.5 31.9 18.8 10.5 22.7 9.6 13.9 28.3 12.3 16.2%
Mean number of fields: 4.4 9.5 8.5 9.2 6.9 8.2 7.7 13.4 9.4 12.1 8.9
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PnjCxðxnjxC ;xÞ ¼
Pn;Cjxðxn; xC jxÞ

PCjxðxC jxÞ
¼
X

m2Mx

Wx
mðxCÞhxn

mnð1� hmnÞ1�xn ; xn 2 Xn; ð27Þ

PnjCðxnjxCÞ ¼
Pn;Cjxðxn; xCÞ

PCðxCÞ
¼
X
x2X

X
m2Mx

�Wx
mðxCÞhxn

mnð1� hmnÞ1�xn ; xn 2 Xn: ð28Þ

Finally, by using the probabilities ðn 2 N n C;x 2 XÞ:

PnjCxð1jxC ;xÞ ¼
X

m2Mx

Wx
mðxCÞhmn; ð29Þ

PnjCxð0jxC ;xÞ ¼ 1� PnjCxð1jxC ;xÞ;

PnjCð1jxCÞ ¼
X
x2X

pðxÞ
X

m2Mx

WmðxCÞ hmn; ð30Þ

PnjCð0jxCÞ ¼ 1� PnjCð1jxCÞ;

we can compute the Shannon entropies HxC ðXnÞ;HxC ðXnjXÞ to ob-
tain the resulting conditional informativity IxC ðXn;XÞ, (cf. (16),
(17) and (22)).

Let us remark that the probabilities (30) in the raster arrange-
ment can be interpreted as the conditional expectation of the ras-
ter image given the feature measurements xC . In this sense Fig. 1
shows examples of changing ‘‘expectation’’ of the classifier with
the increasing number of uncovered raster fields (odd rows).
Similarly, for each expected image, we can visualize the correspond-
ing conditional informativity of features by displaying suitably
normed informativity values IxC ðXn;XÞ in raster arrangement (even
rows). Other examples can be found in the supplementary material.
Note that, in case of a surprising raster field value, the expected
image may essentially change as it can be seen in Fig. 1. For this rea-
son it would be hardly possible to reduce the number of relevant
classes at an early stage of sequential decision-making.

In the experiments the sequential recognition has been stopped
by thresholding the normed posterior entropy HxC ðXÞ=HðXÞ (cf.
(23)). In order to illustrate the trade-off between the classification
accuracy and the number of uncovered raster fields, we have tested
several thresholds in the stopping rule (23) on the independent
test set. Table 2 describes the sequential classification results in de-
tail. The first column contains in even rows the different threshold
values s and in the same row follow the corresponding error rates
for different numerals. The next row contains the related mean
numbers of uncovered raster fields. The last column contains the
global mean values for the underlying stopping rule. It can be seen
that, for the threshold s ¼ 0:05, about 30 raster fields are sufficient
in the mean to achieve the classification error of 7:8%. Recall that
with all 1024 uncovered raster fields our sequential recognition
scheme achieves the same global error 2:696% as the non-
sequential classifier from Table 1.
7. Concluding remarks

The sequential problem of statistical pattern recognition can be
solved in full generality by approximating the class-conditional
distributions using mixtures of product components. In particular,
at each stage, given a set of observed measurements, we can com-
pute the conditional informativity of all remaining features and
choose the next most informative feature. The most informative
feature minimizes the expected decision uncertainty with respect
to the estimated product mixtures.

We recall that the product mixtures are suitable to approximate
unknown multidimensional and multimodal probability distribu-
tions (cf. Section 4). Moreover, we have shown earlier that the mix-
tures of product components can be used as a knowledge base of
the Probabilistic Expert System PES [12]. This system has recently
been applied to reproduce the statistical properties of the confi-
dential questionnaire data from the Czech Census 2001 [17]. We
recall that by using the final interactive software product [32]
the user can derive, with a high degree of accuracy, the marginal
distribution of any query variable, possibly conditioned on the val-
ues of a set of any evidence variables. In this way the statistical
properties of arbitrary subpopulations can be studied in detail.

In case of medical decision-making the sequential classification
can be used to design interactive statistical databases - in the sense
of the above mentioned census application. The initial database
can be designed by medical experts and further developed by
means of interactive questioning software. The expert knowledge
can be introduced in the database by manually editing the compo-
nent parameters and, on the other hand, an open access medical
expert system can accumulate user-supplied anonymous ‘‘ques-
tionnaires’’. We recall that the statistical knowledge base in the
form of a product mixture can be estimated from incomplete data
[17] and repeatedly upgraded by the increasing data sets. Simulta-
neously it is possible to identify and remove unreliable question-
naires as data records having low probability. In the case of
advanced database the relevance of new manually designed com-
ponents and features may be automatically verified by means of
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the EM algorithm in terms of component weights estimated from
data.
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