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Abstract. Considering the probabilistic approach to practical problems we are increasingly

confronted with the need to estimate unknown multivariate probability density functions from

large high-dimensional databases produced by electronic devices. The underlying densities

are usually strongly multimodal and therefore mixtures of unimodal density functions suggest

themselves as a suitable approximation tool. In this respect the product mixture models are

preferable because they can be efficiently estimated from data by means of EM algorithm

and have some advantageous properties. However, in some cases the simplicity of product

components could appear too restrictive and a natural idea is to use a more complex mixture of

dependence-tree densities. The dependence tree densities can explicitly describe the statistical

relationships between pairs of variables at the level of individual components and therefore the

approximation power of the resulting mixture may essentially increase.

Key words: Multivariate statistics; Mixtures of dependence trees; EM algorithm; Pattern

recognition; Medical image analysis.

1 Introduction

The probabilistic description of data is known to be a powerful tool to solve practical
problems. Recall that the true probability distribution represents a complete description
of all statistical properties of the underlying random vector. Having estimated a multi-
variate probability density function from a set of independent data vector observations,
we can derive very general and theoretically justified solutions in many fields like pattern
recognition, prediction, image analysis, statistical modeling and others.

Naturally, in the last years there is an increasing need for methods which are efficient
and practically applicable to estimating multivariate probability density functions from
large sets of multidimensional data. Such data sets usually arise as a by-product of differ-
ent information technologies in various areas like medicine, image processing, monitoring
systems, communication networks and others. A typical feature of these databases is a
high dimensionality of data and a large number of measurements. The unknown under-
lying probability density functions are nearly always multimodal and cannot be assumed
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in a simple parametric form. A natural way to approximate the underlying multidimen-
sional density functions is to use mixtures of product components. Here we use the term
approximation to emphasize the approximation accuracy as a primary goal. We recall
that, unlike statistical estimation problems, the approximating mixtures need not be
identifiable and the chosen number of components may influence only the approximation
accuracy.

The mixtures of product components can be efficiently estimated from data by means
of EM algorithm and have some specific advantages as approximation tools, e.g., marginal
distributions of product mixtures are directly available by omitting superfluous terms in
product components, the approximation “power” of product mixtures can be increased
by including additional components, product mixtures can be estimated directly from
incomplete data without estimating the missing values and, moreover, they support a
subspace modification for the sake of component-specific feature selection. In recent years,
product mixtures have been applied to multidimensional problems in different areas like
pattern recognition, texture evaluation, preprocessing of screening mammograms, texture
modeling and others (cf. [8] - [12]).

Despite the advantageous properties of product mixtures, the simplicity of product
components may become a limiting feature in some respects. As mentioned earlier, the
approximation potential of the product mixtures can be increased by including additional
product components but, in some cases, it could be advantageous to consider the mixture
components in a more specific form. In this paper we propose to use dependence-tree
densities as components [6], [18]. The structural optimization of tree dependence proposed
by Chow and Liu [3] is compatible with the EM algorithm, and thus the estimation of
dependence-tree mixtures from data is computationally feasible even in multidimensional
spaces. By using the concept of a dependence tree we can explicitly describe statistical
relationships between pairs of variables at the level of individual components; therefore,
the approximation power of the resulting mixture model may be fundamentally increased.
Of course, marginal distributions of dependence-tree mixtures are not easily obtained and
we lose some of the above-mentioned advantageous properties of product mixtures. On
the other hand, in some cases such properties need not be indispensable and the increased
approximation potential may become essential.

2 Dependence-Tree Distributions

The idea of the dependence-tree distribution refers to the known paper of Chow and Liu
[3] who proposed approximation of multivariate discrete probability distribution P ∗(x)
by the product distribution

P (x|π, β) = p(xi1)
N
∏

n=2

p(xin|xjn
), jn ∈ {i1, . . . , in−1}. (1)

Here π = (i1, i2, . . . , iN) is a permutation of the index set N and β is the tree-dependence
structure

β = {(i1,−), (i2, j2), . . . , (iN , jN)}, jn ∈ {i1, .., in−1}.
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Note that, here and in the sections that follow, we use a simplified notation of marginal
distributions whenever tolerable. Thus, we write, e.g.,

p(xn) = pn(xn), p(xn|xk) = pn|k(xn|xk).

The approximation model (1) is defined by the conditional marginals p(xik |xjk
) and by

the dependence structure β. It can be shown that any dependence structure β uniquely
defines a connected graph without circuits, in other words a spanning tree over the vertices
N (cf. [6], p. 7, Theorem 3.2). The probability distribution (1) can be rewritten in the
form

P (x|π, β) =

[

N
∏

n=1

p(xin)

][

N
∏

n=2

p(xin , xjn
)

p(xin)p(xjn
)

]

. (2)

Here the first product is permutation-invariant and the second product can always be
naturally ordered by the indices of variables:

P (x|α,θ) =

[

N
∏

n=1

p(xn)

][

N
∏

n=2

p(xn, xkn
)

p(xn)p(xkn
)

]

= p(x1)
N
∏

n=2

p(xn|xkn
). (3)

In this sense the indices α = (k2, . . . , kN) briefly describe the ordered edges of the span-
ning tree β̃ = {(2, k2), . . . , (N, kN )} and θ = {p(xn, xkn

), n = 2, . . . , N} stands for the
related set of two-dimensional marginals. Note that all univariate marginals can uniquely
be derived from the bivariate ones.

An essential advantage of the tree-dependence model (3) is a simple solution of the
underlying structural optimization problem. For this purpose Chow and Liu first intro-
duced a measure of approximation closeness. In particular, the optimal approximation
P (x|α,θ) of a probability distribution P ∗(x) should minimize the Kullback-Leibler in-
formation divergence (cf. [17])

I(P ∗(·)||P (·|α,θ)) =
∑

x∈X

P ∗(x) log
P ∗(x)

P (x|α,θ)
≥ 0. (4)

The information function (4) is not a metric but it is non-negative and equals zero if and
only if P ∗(x) = P (x|α,θ) for all x ∈ X. By using substitution (3) we can write

I(P ∗(·)||P (·|α,θ)) = −H(P ∗) −
1
∑

x1=0

p∗(x1) log p(x1)−

−
N
∑

n=2





1
∑

xn=0

1
∑

xkn
=0

p∗(xn, xkn
) log p(xn|xkn

)



 ,

I(P ∗(·)||P (·|α,θ)) = −H(P ∗) −
1
∑

x1=0

p∗(x1) log p(x1)− (5)

−
N
∑

n=2

1
∑

xkn
=0

p∗(xkn
)

[

1
∑

xn=0

p∗(xn, xkn
)

p∗(xkn
)

log p(xn|xkn
)

]

.
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In the previous equation the Shannon entropy H(P ∗) is a constant

H(P ∗) =
∑

x∈X

−P ∗(x) log P ∗(x) (6)

and, in order to minimize the information divergence, we have to maximize the last two
terms which correspond to the log-likelihood function for the dependence-tree distribution
(3). It can be seen (cf. [6], Eq. (46)) that, for any fixed dependence structure α,
the Kullback-Leibler information divergence I(P ∗(·)||P (·|α,θ)) is minimized by the two-
dimensional marginals θ∗ = {p∗(xn, xkn

), n = 2, . . . , N}:

p(x1) = p∗(x1), p(xn|xkn
) =

p∗(xn, xkn
)

p∗(xkn
)

. (7)

Making substitution (7) into (5), we obtain

I(P ∗(·)||P (·|α,θ)) = −H(P ∗) +
N
∑

n=1

H(p∗n) −
N
∑

n=2

1
∑

xn=0

1
∑

xkn
=0

p∗(xn, xkn
) log

p∗(xn, xkn
)

p∗(xn)p∗(xkn
)
.

In the last formula H(p∗n) are the respective marginal Shannon entropies (cf. (6))

H(p∗n) =
1
∑

xn=0

−p∗(xn) log p∗(xn),

the sum of which is structure independent. Thus the Kullback-Leibler information di-
vergence I(P ∗(·)||P (·|α,θ)) is minimized by maximizing the sum of Shannon mutual
information values I(p∗n, p∗kn

) between the respective variables xn, xkn
, n = 2, . . . , N

I(p∗n, p
∗
kn

) =
1
∑

xn=0

1
∑

xkn
=0

p∗(xn, xkn
) log

p∗(xn, xkn
)

p∗(xn)p∗(xkn
)
. (8)

In other words, the optimal dependence structure α∗ has to satisfy the condition

α∗ = arg max
α

{

N
∑

n=2

I(p∗n, p
∗
kn

)
}

. (9)

As shown by Chow and Liu the optimal tree-dependence structure can be found as a
maximum weight spanning tree over the complete graph of vertices N with edge-weights
I(p∗n, p

∗
kn

). The maximum-weight spanning tree α∗ can be constructed, e.g., by the
algorithm of Boruvka-Kruskal [1], [16] as proposed by Chow and Liu. Nevertheless, from
the computational point of view, the algorithm of Prime [20] could be preferable, because
it does not need any ordering of edge weights.

Let us remark that, in the past, the approximation model (3) has been studied in
more general forms including higher-order marginals (cf. [6]).

P (x) = p(xi1)
N
∏

n=2

p(xin|xBin
), Bin ⊂ {i1, . . . , in−1}.

There are also related papers from the area of knowledge-based systems and Bayesian
networks (cf. detailed references in [18]). However, the problems arising from the under-
lying structural optimization become exceedingly difficult from the computational point
of view.
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2.1 Approximating Densities by Dependence Trees

The original paper of Chow and Liu applies to discrete distributions but, from the formal
point of view, the idea of dependence-tree approximation is applicable to continuous data
as well [6]. Considering real data vectors x ∈ X ≡ RN we have to approximate a given
probability density function P ∗(x) by the dependence-tree density function

P (x|α,θ) = f(x1)
N
∏

n=2

f(xn|xkn
). (10)

To measure the closeness between the given probability density P ∗(x) and its dependence-
tree approximation we can use the continuous version of Kullback-Leibler information
divergence (cf. [15], [22]):

I(P ∗(·)||P (·|α,θ)) =

∫

RN

P ∗(x) log
P ∗(x)

P (x|α,θ)
dx ≥ 0. (11)

In analogy with (5) we can write

I(P ∗(·)||P (·|α,θ)) =

∫

P ∗(x) log P ∗(x)dx−
∫

P ∗(x)

[

log f(x1) +
N
∑

n=2

log f(xn|xkn
)

]

dx,

and further

I(P ∗(·)||P (·|α,θ)) = −H(P ∗) −
∫

R

f ∗(x1) log f(x1)dx1− (12)

−
N
∑

n=2

∫

R

f ∗(xkn
)

[
∫

R

f ∗(xn, xkn
)

f ∗(xkn
)

log f(xn|xkn
)dxn

]

dxkn
.

In the last equation the entropy H(P ∗) is a constant and, in order to minimize the
information divergence, we have to maximize the last two terms. It can be seen that,
for a fixed dependence structure α, the information divergence I(P ∗(·)||P (·|α,θ)) is
minimized by the two-dimensional marginal densities θ∗ = {f ∗(xn, xkn

), n = 2, . . . , N}
which imply the involved univariate marginals:

f(x1) = f ∗(x1), f(xn|xkn
) =

f ∗(xn, xkn
)

f ∗(xkn
)

. (13)

Again, substituting in (12) according to (13), we obtain

I(P ∗(·)||P (·|α,θ∗)) = −H(P ∗) +
N
∑

n=1

H(f ∗
n) −

N
∑

n=2

I(f ∗
n, f ∗

kn
) (14)

where H(P ∗) is a constant entropy (cf. (6)) and the second sum is structure-independent

N
∑

n=1

H(f ∗
n) =

N
∑

n=1

∫

R

−f ∗(xn) log f ∗(xn)dxn.
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Consequently, the considered information divergence is minimized by maximizing the sum
of mutual information terms

I(f ∗
n, f ∗

kn
) =

∫

R2

f ∗(xn, xkn
) log

f ∗(xn, xkn
)

f ∗(xn)f ∗(xkn
)

dxndxkn
= H(f ∗

n)+H(f ∗
kn

)−H(f ∗
nkn

) (15)

as a function of the dependence structure α. In other words, the optimal dependence
structure α∗

α∗ = arg max
α

{

N
∑

n=2

I(f ∗
n, f ∗

kn
)
}

of the approximation model P (·|α,θ∗) is defined by the maximum-weight spanning tree
over the complete graph of vertices N with the edge-weights I(f ∗

n, f ∗
kn

). We note that,
assuming Gaussian densities with the variances σn and covariances σnkn

, we obtain the
Shannon mutual information formula:

I(f ∗
n, f ∗

kn
) = −1

2
log

(

1 − σ2
nkn

σ2
nσ2

kn

)

. (16)

3 Estimating Gaussian Dependence-Tree Density

Let us recall the practical situation when the true probability density P ∗(x) is unknown
and the dependence-tree approximation has to be constructed from data. Unlike the
binary case (cf. Sec. 3.1), we have to assume parametric models of two-dimensional
marginals f(xn, xkn

) in order to make the resulting dependence-tree model practically
applicable. A natural choice here is to use two-dimensional Gaussian densities:

f(xn, xk|µn, µk, Σnk) =
1

√

(2π)2 det Σnk

×exp{−1

2
(xn−µn, xk−µk)

T Σ−1
nk (xn−µn, xk−µk)},

Σnk =

(

σ2
n σnk

σnk σ2
k

)

, n, k ∈ N , (17)

which imply the univariate marginals

f(xn|µn, σn) =
1√

2πσn

exp

{

−(xn − µn)2

2σ2
n

}

, n ∈ N .

Considering the Gaussian dependence-tree density function with the structural parame-
ters α, vector of means µ and the covariance matrices Σ:

α = (k2, . . . , kN), µ = {µ1, . . . , µN}, Σ = {Σnkn
, n = 2, . . . , N}

we can write

P (x|α,µ,Σ) = f(x1|µ1, σ1)
N
∏

n=2

f(xn|xkn
, µn, µkn

, Σnkn
) =

= f(x1|µ1, σ1)
N
∏

n=2

f(xn, xkn
|µn, µkn

, Σnkn
)

f(xkn
|µkn

, σkn
)

(18)
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and the corresponding log-likelihood function is given by

L(α,µ,Σ) =
1

|S|
∑

x∈S

log P (x|α,µ,Σ) =
1

|S|
∑

x∈S

[log f(x1|µ1, σ1)−

−
N
∑

n=2

log f(xkn
|µkn

, σkn
)

]

+
N
∑

n=2

1

|S|
∑

x∈S

log f(xn, xkn
|µn, µkn

, Σnkn
). (19)

For any fixed dependence structure α we can concentrate on estimating two-dimensional
Gaussian densities which imply all univariate marginals and conditional densities. Using
maximum-likelihood estimates of the underlying parameters, we obtain

µ̂n =
1

|S|
∑

x∈S

xn, σ̂2
n =

1

|S|
∑

x∈S

(xn − µ̂n)2, σ̂nk =
1

|S|
∑

x∈S

(xn − µ̂n)(xk − µ̂k), n, k ∈ N

and, making substitution in the formula (19), we can write

L(α, µ̂, Σ̂) =
N
∑

n=1

1

|S|
∑

x∈S

log f(xn|µ̂n, σ̂n) +
N
∑

n=2

1

|S|
∑

x∈S

log
f(xn, xkn

|µ̂n, µ̂kn
, Σ̂nkn

)

f(xn|µ̂n, σ̂n)f(xkn
|µ̂kn

, σ̂kn
)

=

=
N
∑

n=1

1

2

[

1 + log(2πσ̂2
n)
]

+
N
∑

n=2

1

2
log

(

1 − σ̂2
nkn

σ̂2
nσ̂

2
kn

)

. (20)

In the last equation only the second term is structure dependent and therefore the optimal
dependence structure α∗ is defined by

α∗ = arg max
α

{

N
∑

n=2

−1

2
log

(

1 − σ̂2
nkn

σ̂2
nσ̂

2
kn

)

}

. (21)

Note that the edge-weight of the underlying spanning tree is the same (cf. (16)) as in the
deterministic approximation problem based on Gaussian densities.

Recall that, assuming Gaussian marginals p(xn, xk) in the tree-dependence density
function (10), we restrict the approximation power of the optimal tree dependence model
P (x|α∗,θ∗) by the underlying global Gaussian hypothesis. The only advantage of the sim-
plifying tree-dependence approximation (18) is then its applicability to high-dimensional
spaces since the involved two-dimensional marginals can be well estimated even from
limited data sets and avoid the risk of ill-conditioned high-dimensional matrices.

4 Mixtures of Dependence Trees

The product mixture model can be generalized by using mixtures of dependence trees (cf.
[6], [18], [14]). We recall that the dependence tree distribution can explicitly describe sta-
tistical dependencies between pairs of variables at the level of individual components and
therefore the approximation potential of the resulting mixture model may considerably
increase. On the other hand, marginal distributions of the dependence-tree mixtures are
not trivially available anymore and we lose some of the excellent properties of product
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mixtures, as mentioned in the Introduction. Nevertheless, in some cases such proper-
ties may be unnecessary, while the increased complexity of components could become
essential.

The tree-dependence model (3) can be easily generalized to mixtures (cf. [6], [18])
because the optimization of tree dependence structure proposed by Chow and Liu [3] is
compatible with the EM algorithm. In particular, we assume the following concept of
Gaussian dependence-tree mixtures

P (x|w,α,µ,Σ) =
∑

m∈M

wmF (x|αm,µm,Σm) = (22)

∑

m∈M

wmf(x1|µ(m)
1 , σ

(m)
1 )

N
∏

n=2

f(xn|xkn
, µ(m)

n , µ
(m)
kn

, Σ
(m)
nkn

)

with the weight vector w = (w1, w2, . . . , wM), the structural parameters {α1,α2, . . . ,αM}
and the component parameters

µ = {µ1,µ2, . . . ,µM}, µm = {µ(m)
1 , . . . , µ

(m)
N },

Σ = {Σ1,Σ2, . . . ,ΣM}, Σm = {Σ(m)
nkn

, n = 2, . . . , N}.
Equation (22) can be equivalently rewritten in the form

P (x|w,α,µ,Σ) =
∑

m∈M

wmF (x|αm,µm,Σm) = (23)

∑

m∈M

wmf(x1|µ(m)
1 , σ

(m)
1 )

N
∏

n=2

f(xn, xkn
|µ(m)

n , µ
(m)
kn

, Σ
(m)
nkn

)

f(xkn
|µ(m)

kn
, σ

(m)
kn

)
.

Note that the approximation potential of the dependence-tree mixture (23) is no longer
limited by the underlying Gaussian assumption.

To optimize the mixture of dependence-tree densities (23) we have to maximize the
log-likelihood function

L(w,α,µ,Σ) =
1

|S|
∑

x∈S

log

[

∑

m∈M

wmF (x|αm,µm,Σm)

]

.

By using the EM algorithm, we reduce the mixture estimation problem to iterative max-
imization of the following weighted likelihood function (cf. Sec. 2):

Qm(αm,µm,Σm) =
∑

x∈S

q(m|x)

w
′

m|S|
log F (x|αm,µm,Σm) (24)

with the conditional weights q(m|x) and the corresponding component weights w
′

m:

q(m|x) =
wmF (x|αm,µm,Σm)

P (x|w,α,µ,Σ)
, w

′

m =
1

|S|
∑

x∈S

q(m|x), (w
′

m|S| =
∑

x∈S

q(m|x)). (25)
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Considering the formula (23), we can write

Qm(αm,µm,Σm) =
∑

x∈S

q(m|x)

w
′

m|S|
log f(x1|µ(m)

1 , σ
(m)
1 )+

+
N
∑

n=2

∑

x∈S

q(m|x)

w
′

m|S|
log

f(xn, xkn
|µ(m)

n , µ
(m)
kn

, Σ
(m)
nkn

)

f(xkn
|µ(m)

kn
, σ

(m)
kn

)
. (26)

Again, for any fixed dependence structure αm, we may confine ourselves to estimating the
Gaussian parameters µ

(m)
n , σ

(m)
n , σ

(m)
nk by using the weighted analogy of m.-l. estimates:

µ
′(m)
n =

1

|S|
∑

x∈S

q(m|x)

w
′

m|S|
xn, (σ

′(m)
n )2 =

1

|S|
∑

x∈S

q(m|x)

w
′

m|S|
(xn − µ

′(m)
n )2, (27)

σ
′(m)
nk =

1

|S|
∑

x∈S

q(m|x)

w
′

m|S|
(xn − µ

′(m)
n )(xk − µ

′(m)
k ), n, k ∈ N .

Making substitutions (27) into (26) in analogy with (20), we obtain

Qm(αm,µ
′

m,Σ
′

m) = −
N
∑

n=1

1

2

[

1 + log(2πσ
′(m)2
n )

]

−
N
∑

n=2

1

2
log

(

1 − σ
′(m)2
nkn

σ
′(m)2
n σ

′(m)2
kn

)

.

In the last equation only the second term is structure-dependent and therefore the optimal
dependence tree α

′

m is for each component defined by Eq.

α
′

m = arg max
α

{

N
∑

n=2

−1

2
log

(

1 − (σ
′(m)
nkn

)2

(σ
′(m)
n σ

′(m)
kn

)2

)}

. (28)

The resulting EM algorithm for estimating Gaussian dependence-tree mixtures can thus
be summarized by Eqs. (25), (27) and (28), (cf. [6], Eqs. (5.9)-(5.12)).

5 Preprocessing of Screening Mammograms

In order to illustrate the application possibilities of Gaussian dependence-tree mixtures
we recompute our recent results on evaluation of screening mammograms simply by using
dependence trees instead of product components. In the papers [12], [8], [11] we proposed
preprocessing of screening mammograms by means of local statistical models with the
aim of facilitating diagnostic evaluation.

The idea of the method is to emphasize diagnostically important details as “unusual”
locations of high “novelty”. First we estimate local statistical properties of gray levels in
a suitably chosen search window in terms of a joint probability density. In particular, we
use the data set produced by scanning a mammogram with a search window in order to
estimate the density function in the form of a Gaussian mixture with product components.
At the second stage we compute the value of the estimated mixture density at each
position of the search window and display the corresponding log-likelihood value log P (x)
as a gray level at the central pixel of the window. Thus the resulting ”log-likelihood
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Figure 1: Comparison of the log-likelihood images for the digital mammogram C-0002-1
(left cranio-caudal part) from the DDSM database. From left to right: original mammo-
gram, the log-likelihood image based on product mixture and the log-likelihood image
based on mixture of dependence trees.

image” maps the unusual, atypical parts of the mammogram as dark regions and, in this
way, the locations suspected of containing malignant lesions should be emphasized.

In the computational experiments we used mammograms from the DDSM database
(cf. [13]) subsampled to the pixel size of about 0.1 mm (cf. Fig.1, left-hand part). The size
of the search window was 13×13 pixels with trimmed corners. The resulting dimension
of the local data vectors x ∈ S was N=145 (=169-4×6). In all experiments we used the
mixture model of 36 Gaussian components. A typical example of the log-likelihood image
is shown in Fig. 1 (central part). Note that the dark regions are partly emphasized by
contour lines and even small, barely visible micro-calcifications appear as dark spots (cf.
[12] for detailed explanation).

The right-hand part of Fig.1 shows an analogous log-likelihood image obtained by
means of a dependence-tree mixture. In particular, we used the same data to estimate
the mixture of Gaussian dependence-tree densities (22). Not surprisingly, we obtained
a much higher value of the maximized log-likelihood criterion using the same number
of components (M=36, L=-249.1 versus L=-441.5), with the corresponding much better
approximation of the underlying multivariate density. Nevertheless, the resulting log-
likelihood image (cf. the right-hand part of Fig.1) tends to break down to small nearly
point-like disconnected regions. The identification of micro-calcifications seems to con-
trast even more, but the contour lines vanish almost completely.



Mixtures of Gaussian Dependence Trees 11

Figure 2: Gaussian dependence-tree mixture for local statistical model of screening mam-
mogram - examples of estimated component means µmn in the search-window arrange-
ment. The superimposed dependence-tree structures reflect statistical relations between
the window fields.

It can be concluded that a simple product mixture model provides highly specific log-
likelihood images characterized by connected dark regions, which are partly emphasized
by contour lines (cf. [12] for detailed discussion). The typical features of the images can
be explained by a certain “topological” continuity of product mixtures. Recall that a one-
pixel shift of the search window generally yields a completely different data vector (despite
the great overlap), because the shared gray-levels are assigned to different variables.
Consequently, the likelihood values of neighboring window positions may generally differ,
even by many orders. However, the differences are partly suppressed in the case of product
components because the means µ

(m)
n are almost uniform for any given component. Thus

the shift of the search window by one pixel actually changes only the order of product
terms which are nearly the same and therefore, unlike dependence-tree components, the
resulting product does not change very much.

Fig.2 illustrates the fact that the component means (in window arrangement) are
almost uniform. The superimposed dependence-tree structures reflect statistical relations
between the window fields. In view of the smooth background the most informative pairs
of variables are nearly always neighboring.

6 Conclusion

It is intuitively clear that we can increase the approximation potential of density mixtures
by using dependence-tree components instead of product densities. However, it appears
that the increased approximation power of dependence trees is more relevant in case of
a small number of multidimensional components. A large number of components makes
the properties of density mixtures more similar to non-parametric Parzen estimates which
are often optimized by a single smoothing parameter and very simple kernel functions.
Accordingly, in the early paper [6] we observed in a numerical example, that the high
approximation accuracy of dependence-tree mixture is simply achievable by increasing
the number product components.
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