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Abstract—Accurate detection of iris eyelids and reflec-
tions is the prerequisite for the accurate iris recognition,
both in near-infrared or visible spectrum measurements.
Undected iris occlusions otherwise dramatically decrease the
iris recognition rate. This paper presents a fast multispectral
iris occlusions detection method based on the underlying
multispectral spatial probabilistic iris textural model and
adaptive thresholding. The model adaptively learns its pa-
rameters on the iris texture part and subsequently checks
for iris reflections, eyelashes, and eyelids using the recursive
prediction analysis. Our method obtains better accuracy with
respect to the previously performed Noisy Iris Challenge
Evaluation contest. It ranked first from the 97+2 alternative
methods on this large colour iris database.
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I. INTRODUCTION

Biometrics based human identification systems have ever

growing importance in recent trends towards more secure

modern information society. Diverse biometric data can

be exploited for numerous practical applications, such as

bank access, airport entry points, or criminal evidence

gathering but also for smart homes, cars control, or hand-

icapped help systems. It can be human voice, fingerprint,

eye, face, gait, veins, handwriting and many more. Various

biometric data differ in ways how to acquire them, their

durability, reliability, safety, and necessary technology for

their acquisition and evaluation.

In this work we focus on preprocessing part of the

iris recognition - iris occlusion detection. The possibility

for the eye-based human identification was originally

suggested by [1] and later estimated that the probability

of two similar iris is 1 in 1072 [2]. For recent surveys of

the iris recognition related problems and results see [3],

[4].

The iris identification is complex task composed from

several steps (see the processing schema on Fig.1 with

iris occlusion detection elaborated part) that have to be

solved. The whole process starts with image acquisition

which hardly produces ideal noise-free, focused, and ho-

mogeneously illuminated images, thus the corresponding

preprocessing steps for data normalization, denoising, or

geometric corrections are inevitable before the iris seg-

mentation can be performed. The iris segmentation results

are typically coordinates of two circles, inner and outer

border of iris. Additionally, a normalization step has been

introduced to simplify the subsequent processing steps.
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Figure 1. Iris recognition processing pipeline .

Normalization is usually done transforming the iris into

a fixed size rectangle. The selected features are then

computed from the normalized rectangle and used in a

classifier to recognize a corresponding human.

Unconstrained iris measurements contain numerous oc-

clusion defects such as eyelid, eyelash, and reflections

which have to be detected in the preprocessing step of any

iris recognition algorithm. Undetected occlusions would

otherwise confuse the recognition method and impair its

recognition rate. While the unconstrained visible wave-

length iris image acquisition is cheap and widely available

it requires more demanding iris processing methods to

achieve comparable recognition rate with the rigid optimal

acquisition conditions.

A. Iris Occlusions Detection

Unconstrained iris measurements inevitably introduce

various sensing imperfections, such as reflections, upper /

lower eyelids or eyelashes occlusions, or eyelid shadows.

Such undetected occlusions significantly degrade iris clas-

sifiers performance. Thus it is necessary to remove such

areas from the iris texture prior to the classification process
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what constitutes on of the most challenging problem in

the iris recognition research [2]. Some detection methods

are specialized to single imperfection category only, while

others [5]–[16] can detect several types of imperfections.

Methods focused only on reflections are based on

(adaptive) thresholding (eg. [17]). Eyelid detectors are

mostly based on edge detection followed with polynomial

fitting (eg. [18], [19]). Chen et al. [20] or He et al. [21]

proposed methods of eyelash detection based on simple

thresholding, One of the first general imperfection detec-

tion methods was presented by Proenca [11]. His method

is based on training classifier on manually detected irises

and the eye representation is based on textural GLCM [22]

features and the detector uses a neural network classifier.

The conventional approach for defect detection [23] is

to compute a texture features in a local sub-window and

to compare them with the reference values representing a

perfect pattern. The method [24] preprocesses a gray level

textile texture with histogram modification and median

filtering. The image is subsequently thresholded using the

adaptive filter and finally smoothed with another median

filter run. Another approach for detection of gray level

textured defects using linear FIR filters with optimized

energy separation was proposed in [25]. Similarly the

defect detection [26] is based on a set of optimized

filters applied to wavelet sub-bands and tuned for a defect

type. Method [27] uses translation invariant 2D RI-Spline

wavelets for textile surface inspection. The gray level

texture is removed using the wavelet shrinkage approach

and defects are subsequently detected by simple threshold-

ing. The method [16] is based on textural Gabor features

and the Gaussian mixture model to model the underlying

probability distributions of both defect and iris regions.

Contrary to above approaches the presented method uses

the visible wavelength multispectral information.

Recent state-of-the-art non-iris occlusions detectors

were mostly competing in the 2008 NICE.I (Noisy Iris

Challenge Evaluation) focusing especially on detection ac-

curacy. Nearly hundred various methods from 22 countries

were submitted to this challenge and the best-ranked algo-

rithms were published in [28]. The presented method uses

these best-ranked algorithms for comparison. Anyhow,

contrary to our method none of these NICE methods use

true multispectral information. The source images (which

are in RGB colour space) are typically either converted to

grey-scale before any analytical steps or only one spectrum

channel is used.

The 2008 NICE.I best method by Tan et al. [13] uses

clustering based on coarse iris localization after previously

removed reflections. In the subsequent step it refines the

iris and pupil location using the Daugman’s integrodif-

ferential operator. Finally, the prediction and curvature

models are learned to deal with eye occlusions such as

eyelids and eyelashes.

The second best method by Sankowski et al. [12] con-

sists of three steps - threshold based reflections detection,

iris boundaries detection based on the modified Daug-

man’s integro-differential operator, and eyelids detection

upper lower

eyelid (a) eyelid (b) reflection (c)

Figure 2. Iris region occlusions containing all three (a,b,c) occlusion
types.

based on parametric modelling. The iris outer boundary is

searched in greyscale image based on YIQ model while the

inner is searched in red channel. Lastly, the lower eyelid

boundary is modeled as circular arc and upper eyelid

boundary is modeled as straight edge.

The third method by Pedro Almeida [6] is based on

an expert system with set of decision rules which mainly

present novel iris boundary detection and upper and lower

eyelid arc fitting. These rules were based on concepts

identified by human (the teaching system) as the criteria

identified by him when performing the same task.

The fourth NICE.I 2008 contest method is from Li et al.

[9]. It starts with eye detection and then localize iris and

pupil boundaries using K-Means algorithm combined with

the modified Hough transformation. In the case of detected

wrong localization they try to localize iris using the second

algorithm based on skin information. Then lower eyelid

is detected by fittin parabola and upper eyelid is detected

by running parabolic integrodifferential operator combined

with RANSAC-like technique.

Jeong et al. [7] presented another algorithm to detect

eye occlusions. The inner and outer boundaries of iris

region are detected using circular edge detector. In case of

bad detection (based on the existence of corneal specular

reflection) they run additional Adaboost classificator to

roughly localize the eye position. For eyelids they use

parabolic Hough transform and for reflections color seg-

mentation. Lastly, they proposed a classification model to

detect closed eye.

Chen et al. [5] proposed an algorithm composed from

five steps. They firstly locate the rough position of eye

using the extracted sclera area. Then detect the outer iris

boundary with circular Hough transform followed by de-

tection of upper and lower eyelids by detecting linear edge

using Hough transform. Lastly they detect the pupil area

by threshold detection. Several other NICE.I algorithms

(Markovian texture model [15], Zernike feature based

classification [14], are used to compare the presented

method.

II. IRIS LOCALIZATION

The iris occlusions (Fig.2) detection starts with search-

ing for reflections (Fig.3-left) in the blue spectral channel

where they are the most visible (according to our extensive

experiments) using an adaptive threshold. The binarization

threshold is obtained using the cross-correlation between

pixel-centered windows and the Gaussian window. The
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Figure 3. Iris detected reflections (middle) and their corrections.

resulting binary mask is firstly slightly dilated (Fig.3-

middle) to ensure full coverage of reflections and than the

detected reflective regions are corrected (Fig.3-right) using

the inpainting algorithm preseted in [29]. The corrected

image is subsequently used to detect iris location in the

image. The eye area is found using the modified integro-

differential Daugman operator [30]

max
ρ,r̃1,r̃2

∣∣∣∣Gσ(ρ) ∗ ∂

∂ρ

∮
ρ,r̃1,r̃2

Yr,B

2πρ
dsdρ

∣∣∣∣ , (1)

where r = {r1, r2}, s = {s1, s2} are multiindices with

the row and column indices, r̃ the radius centre, ρ
is the radius, Yr,B is the blue component of the r-th

eye pixel, and Gσ(ρ) denotes a Gaussian filter of scale

σ. However the circle integral is not taken for full circle

but only for degrees from 0◦ to 45◦ and from 135◦ to

360◦. This is to better deal with possible upper eyelid

occlusions in image (which would otherwise obviously

obstruct the correct localization of iris region). Fig.4-left

illustrates local maxima (white dots) in the accumulator

of this operator. Fig.4-right images show the localized

iris regions where the outer circles correspond to global

maxima of this accumulator.

Figure 4. The accumulator of the integro-differential Daugman operator
(1) in the blue spectral channel (left) and the resulting iris localization.

Figure 5. Imprecisely detected iris region (left), its correction (middle)
and the corrected pupil (right).

The next step is the pupil detection in the red spectral

channel to separate iris region due to its best separability

spectrum. The inner circle representing pupil border is

found in a similar way as the iris location described above

but in its respective smaller area. The pupil is detected

using the original (unmodified) Daugman operator inside

the iris region. Detected iris region is then verified by

checking the candidate pupil region mean with comparison

of the closest left and right neighbourhood iris regions.

This is to deal with possible mislocalization of iris border

as can be seen in Fig.5.

III. IRIS OCCLUSIONS AND REFLECTION DETECTION

Once we locate the iris region, this region is then

normalized to rectangular shape and we subsequently

search for each of the selected occlusions (as can be

seen in Fig.1). Possible occlusions are searched in the

red spectral channel and reflections in the blue spectral

channel, respectively.

A. Upper Eyelid

The normalization step iris transformation concentrates

the lower eyelid near the image center but the upper eyelid

is separated at the left and right margins of the image.

Hence, the image is first vertically swapped to place the

potential upper eyelid (Fig.2-left) to the center. Then the

rays are drawn from the top center point in the angular

range 0◦ to 180◦ with 5◦ spacing. The pixels on these

rays are sampled to lines, they are convolved with the

Gaussian kernel, and the maximum is located on each of

them. Finally, the third order fitted polynomial denotes the

upper eyelid occlusion region border.

B. Lower Eyelid

Most iris images are not obstructed with the lower

eyelid. The occasional lower eyelid occlusions (Fig.2-

middle) are detected using mean and standard deviation

estimates μle and σle of the top center region. Rows are

in the range of r1 ∈ 〈0; N
2 〉 and columns r2 ∈ 〈M4 ; 3M

4 〉,
where N (M ) is number of rows (columns) in the

normalized iris image. If the standard deviation is larger

than 25% of μle, i.e.,

σle >
μle

4

then the lower eyelid is detected by simple thresholding

with the threshold τ = μ+σle

2 . The topmost central region

is detected as the lower eyelid in the resulting binarized

image.

C. Iris Reflections

The precise localization of reflections (Fig.2-right) is

based on fusion of similar (without dilatation) adaptive

thresholding as in section II and detection based on the

multispectral Markovian iris texture model.
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1) Iris Spectral Texture Model: We assume that the

multispectral iris texture can be represented by an adaptive

3D causal simultaneous auto-regressive model [31]:

Xr =
∑
s∈Ic

r

AsXr−s + εr , (2)

where εr is a white Gaussian noise vector with zero

mean, and a constant but unknown covariance matrix Σ.

The noise vector is uncorrelated with data from a causal

neighbourhood Icr , and r = {r1, r2}, s = {s1, s2} are

multiindices with the row and column indices, respec-

tively.

As1,s2 =

⎛
⎜⎝
as1,s21,1 , . . . , as1,s21,d

...,
. . . ,

...

as1,s2d,1 , . . . , as1,s2d,d

⎞
⎟⎠ (3)

are d× d parameter matrices where d is the number of

spectral bands. r, r−1, . . . is a chosen direction of move-

ment on the image lattice (e.g. scanning lines rightward

and top to down). All parameters in this model can be

analytically estimated using numerically robust recursive

statistics hence it is exceptionally well suited for possibly

real-time recursive iris texture occlusion detectors.
The model adaptivity is introduced using the exponen-

tial forgetting factor technique in the parameter learning

part of the algorithm. The causality of the model, which is

artificial for visual iris data, does not create any problem

for our analytical application and furthermore, it is fully

compensated by the introduced adaptivity of the model.

The model can be alternatively written in the matrix form

Xr = γZr + εr , (4)

where

γ = [A1, . . . , Aη] ,

η = cardinality(Icr) ,

is a d× dη parameter matrix and Zr is a corresponding

vector of Xr−s. To evaluate the conditional mean values

E{Xr |X(r−1)} , where X(r−1) is the past process

history, the one-step-ahead prediction posterior density

p(Xr |X(r−1)) is needed. If we assume the normal-

gamma parameter prior for parameters in (2) this posterior

density has the form of Student’s probability density with

β(r) − dη + 2 degrees of freedom. The predictor in the

form of conditional mean value (9) uses the following

notation (5)-(8):

β(r) = β(0) + r − 1 , (5)

γ̂T
r−1 = V −1

zz(r−1) Vzx(r−1) , (6)

Vr−1 =

(
Ṽxx(r−1) Ṽ T

zx(r−1)

Ṽzx(r−1) Ṽzz(r−1)

)
+ I , (7)

Ṽuw(r−1) =

r−1∑
k=1

UkW
T
k , (8)

where β(0) > 1 and U,W denote either X or Z
vector, respectively. If β(r−1) > η then the conditional

mean value is

E{Xr|X(r−1)} = γ̂r−1Zr (9)

and it can be efficiently computed using the following

recursion [31]:

γ̂T
r = γ̂T

r−1 +
V −1
z(r−1) Zr(Xr − γ̂r−1Zr)

T

1 + ZT
r V

−1
zz(r−1)Zr

. (10)

The selection of an appropriate model support (Icr)
is important to obtain good iris representation. If the

contextual neighbourhood is too small it can not capture

all details of the random field iris texture model. Inclusion

of the unnecessary neighbours on the other hand adds

to the computational burden and can potentially degrade

the performance of the model as an additional source of

noise. The optimal Bayesian decision rule for minimizing

the average probability of decision error chooses the

maximum posterior probability model, i.e., a model Mi

corresponding to

max
j
{p(Mj |X(r−1))}

can be easily found analytically [31].

2) Reflection Detection: Single multispectral pixels are

classified as belonging to the defective (non-iris) area

based on their corresponding prediction errors. If the

prediction error is larger than the adaptive threshold:

|Ẽ{Xr |X(r−1)} −Xr| > (11)

α

l

l∑
i=1

∣∣∣Ẽ{Xr−i |X(r−i−1)} −Xr−i

∣∣∣ ,

then the pixel r is classified as a detected occlusion pixel.

The parameter l in (12) is a process history length of the

adaptive threshold and the constant α = 2.7 was found

experimentally and used for all three tested databases.

The one-step-ahead predictor

Ẽ{Xr |X(r−1)} = γ̂s Zr (12)

differs from the corresponding predictor (9) in using

parameters γ̂s which were learned only in the flawless

texture area (s < r). The small learning flawless texture

cutout is found automatically inside reflection-less iris

area. The whole algorithm is extremely fast because the

adaptive threshold is updated recursively:

|εr+1| > α

l

[
l−1∑
i=0

|εr−i|
]

, (13)

where εr is the prediction error

εr = Ẽ{Xr |X(r−1)} −Xr ,
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ground detected error

eye truth occlusions differece

Figure 6. Eye images, ground truth, detected occlusions masks, and their comparison with the ground truth.

Figure 7. Detected iris region occlusions on the MICHE database [32].

and γ̂s is the parametric matrix which is not changing.

Hence the algorithm can be easily applied in real time iris

occlusion detection.

IV. EXPERIMENTAL RESULTS

The presented method was tested on the eye UBIRIS.v2

database [33] and compared with the best results achieved

during the Noisy Iris Challenge Evaluation contest [28]

using exactly the same conditions which held for the

contest participants. These databases provide eye images

with or without different occlusion types (Fig.2), and thus

are an useful resource for the evaluation iris recognition

methods.

The UBIRIS.v2 database [34] contains 11102 images

collected from 261 persons. The RGB 400 × 300, 24 bit

images were captured with the Canon EOS 5D camera and

saved in the TIFF format. The presented method was com-

pared with the top eight results (from 97 participants) [5]–

[10], [12], [13] from the Noisy Iris Challenge Evaluation

Contest (NICE.I) [28] and results using the same NICE.I

data presented in the paper [14]. The contest was run on
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the UBIRIS.v2 database which contains highly noisy eye

images. The participants had 500 training images and a

disjoint test set of 500 images was used to measure the

pixel-by-pixel agreement between the binary maps made

by each participant and the ground-truth data, manually

built by the NICE.I organizers.

Fig.6 indicates several types of defective iris textures.

This example illustrates correct detection and localization

of the most frequented iris occlusion by the presented

method.

The presented method ranked first (Tab.I) according to

the contest criterion E1 [9]. Some methods evaluated also

the average between false-positives and false-negatives

criterion E2 [9]. No. par. is the number of parameters of

the listed methods. The Noisy Iris Challenge Evaluation

Contest winning algorithm [13] has slightly worse perfor-

mace than the presented method but it is very complex,

time consuming and suffers with numerous experimentally

set control parameters. Similarly the third ranked method

[12] based on the reflections localization, reflections filling

in, iris boundaries localization and eyelids boundaries

localization steps, relies on several experimentally found

parameters.

Table I
IRIS OCCLUSION DETECTION NOISY IRIS CHALLENGE EVALUATION

CONTEST [28] TOP EIGHT RESULTS ON THE CONTEST UBIRIS V2
DATABASE COMPARED WITH THE PRESENTED METHOD AND [14],

[15].

Rank Method No. par. Error E1 E2

1 presented method 7 0.0124 0.042

2 Tan et al. [13] 9 0.0131 -

3 Sankowski et al. [12] 6 0.0162 0.060

4 Haindl & Krupička [15] 2 0.0168 0.061

5 Almeida [6] 5 0.0180 -

6 Tan & Kumar [14] x 0.0190 -

7 Li et al. [9] 4 0.0224 0.068

8 Jeong et al. [7] 3 0.0282 0.144

9 Chen et al. [5] 5 0.0297 0.165

10 Scotti & Labbati [8] 12 0.0301 0.116

11 Luengo-Oroz et al. [10] 7 0.0305 -

The method was also tested on the Mobile Iris Chal-

lenge Evaluation database (MICHE) [32] with promising

results. There are not available ground truth data for this

database thus our results can be verified only visually and

no criteria value can be reported here. Fig. 7 illustrates two

images from this database together with the corresponding

iris detection results.

V. CONCLUSIONS

The most published iris occlusion detection methods

are monospectral, using either near-infrared or grey-scale

images, while our method advantageously fully exploits

both multispectral as well as the spatial information simul-

taneously. The method is very fast and numerically robust

in comparison with the top-ranking alternative methods

from the NICE.I contest. Our method ranked first when

evaluated on the the Noisy Iris Challenge Evaluation Con-

test from the 97 competing algorithms, the Tan method,

and our previously published method. Preliminary results

demonstrate its promising performance also on the Mobile

Iris Challenge Evaluation data. The presented method

can be easily generalized for gradually changing (e.g.,

illumination, colour, etc.) iris texture occlusion detection

by exploiting its adaptive learning capabilities.
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