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Abstract. Appearance of many real world materials is not static but changes in time. In case
of spatially and temporally homogeneous changes the material can be represented by means of
dynamic texture. Dynamic texture modelling is a challenging problem. In this article we present
possible solution based on eigen analysis of input data and subsequent processing and modelling
of temporal interpolation eigen coefficients using a combination of piecewise linear approximation
and normal distribution sampling. The proposed method shows good performance, enables
compress significantly the original data and extremely fast synthesis of arbitrarily long extension
of the original texture.
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Abstrakt. Vzhled mnoha skutečných materiálů není statický, ale mění se v čase. V případě
prostorově a časově homogenních změn může být materiál reprezentován pomocí dynamické
textury. Modelování dynamických textur představuje složitý problém. V tomto článku uvádíme
možné řešení založené na vlastní analýze vstupních dat a následném zpracování a modelování
časových interpolačních vlastních koeficientů pomocí kombinace po částech lineární aproximace
a vzorkování z normálního rozdělení. Navržená metoda dosahuje dobrých výsledků, umožňuje
výraznou kompresi původních dat a velmi rychlou syntézu libovolně dlouhého rozšíření původní
textury.

Klíčová slova: Dynamická textura, analýza textur, syntéza textur, komprese dat, počítačová
grafika

1 Introduction
Dynamic textures (DT) can be understood as spatially repetitive motion patterns exhibit-
ing homogenous temporal properties. Good examples might be smoke, fire or liquids. Also
waving trees or straws or some moving mechanical objects can be considered as dynamic
textures. A sequence of images which are called frames is a basic representation of DT.
Original data are always represented by finite length sequence. This property may limit
the use of DTs in virtual reality systems so temporally unconstrained modelling of DT
is an interesting problem in research such as computer vision, pattern recognition and
computer graphics.
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Already published works dealing with DTs can be divided according to the application
to: recognition, representation and synthesis [1]. The DT synthesis is apparently the most
difficult task and there are only few papers on this topic available [2]. For example: spatio
temporal causal auto regressive model [7], auto regressive moving average model applied
on responses of dimensionality reduction filter based on singular value decomposition [6],
generative mono spectral DT model based on moving object structure modelling and
trajectory modelling by means of dictionary containing Gabor bases for particle elements
and Fourier bases for wave elements [8], combination of spatial steerable pyramid and
temporal wavelet transformation [3]. All of them are limited by time consuming synthesis
algorithm. In addition method [7] requires some high level of temporal homogeneity of
the input and method [3] is restricted on monospectral DTs.

Another possibility is utilize so called video editing techniques, developed for general
video sequences originally, which can be used for DT synthesis as DT can be considered
as a special case of general video sequence. Several examples: video textures genera-
tion based on searching for transition points for looping with additional blending and
morphing [5], further extended in [4], or tree structured vector quantization [9]. These
techniques are also time demanding, but some of them produce very high visual quality
results [9].

The contribution of this paper is to propose straightforward colour DT modelling
method with low computational demands enabling extremely fast synthesis of arbitrarily
long DT sequence and in addition compression of original data. The method is based on
combination of input data dimensionality reduction using eigen analysis and modelling of
resulted temporal coefficients by means of combination of piece wise linear interpolation
and uncorrelated noise sampling. It was inspired by the method described in [2] and
represents interesting alternative.

The rest of paper is organized as follows: Section 2 explains input data dimension-
ality reduction using eigen analysis, Section 3 describes temporal coefficients modelling,
Section 4 deals with DT synthesis, Section 5 presents some achieved results and Section
6 summarizes the article with a discussion.

2 Dynamic Texture Eigen Analysis

The first step is so called normalization of analysed DT in which average frame from all
frames in the sequence is computed and then this frame is subtracted from each frame
in this sequence. Values corresponding to pixels intensities of individual frames from the
normalized sequence are arranged into column vectors forming (n× t) matrix C where n
is a number of values equals frame width × frame height × number of spectral planes in
the frames and t is a number of frames. Then a covariance (t× t) matrix A is computed
as: A = CTC . The matrix A is decomposed using singular value decomposition so that
A = UDUT where U is an orthogonal matrix of eigen vectors and D is a diagonal matrix
of corresponding eigen numbers.

Only k < t eigen vectors corresponding to eigen numbers representing the most of
the information are saved. The number k can be determined by several techniques. The
threshold selecting vectors which are not used may be computed from the values of the
eigen numbers. Assuming that the eigen numbers i.e. the elements D(i,i) are ordered by
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their value then the threshold δ can be computed as for example:

δ =
1

t

t∑
i=1

D(i,i) or

δ = D(i,i) where i = argminj∈{1,...,k−1}(|D(j,j) −D(j+1,j+1)|) .

Only eigen vectors which fulfill that their corresponding eigen number is higher than
the treshold δ are saved. The effects of selecting the threshold δ and therefore the number
of preserved vectors k and the other possibilities are further discussed in Section 5 and
Section 6.

Eigen images (n×k) matrix I is computed as: I = CT , where T is (t×k) matrix with
elements: T(i,j) =

U(i,j)√
D(j,j)

. Finally a matrix of temporal mixing coefficients of individual

eigen images I for all frames from the sequence is computed as: M = ITC . The (k × t)
matrix M is a subject of further processing described in following section.

3 Temporal Mixing Coefficients Processing

A threshold α is computed first: α = 1
k

∑k
i=1(σi) where

σj =

√√√√ 1

n− 1

n−1∑
i=1

(|M(j,i) −M(j,i+1)| − µj)(|M(j,i) −M(j,i+1)| − µj) ,

µj =
1

n− 1

n−1∑
i=1

(|M(j,i) −M(j,i+1)|) .

Then the matrixM is processed following manner: if j-th row ofM fulfils σj > α then
mean µ̂j and dispersion σ̂j of normal distribution from elements of this row are estimated
as:

µ̂j =
1

t

t∑
i=1

M(j,i) , σ̂j =
1

t

t∑
i=1

(M(j,i) − µ̂j)
2 .

The row which is under σj ≤ α is disjoint into several sub intervals. We denote the
set of the indices representing end points of the rows as L . The right edge i1 of the
block is detected by the threshold µj applied to |M(j,i1) −M(j,i1+1)| so that at least one
row j0 ∈ L satisfies |M(j0,i1)−M(j0,i1+1)| > µj0 . Then values of M(j,i0) and M(j,i1) ∀j ∈ L,
where i0 is the left edge of the block, are saved instead of all values in corresponding
interval. In addition blocks with less than two elements are not saved at all. The set of
all saved blocks will be denoted as B . The division is driven by the row j∗ which both
fulfils σj∗ ≤ α and the average value of all elements of this row is the higher than any
other such value of the rest of the rows j ∈ k̂ under σj ≤ α.

Another possibility is to disjoint rows into the sub intervals with the same length. The
length of intervals affects overall dynamics of the synthesized sequence and it appears
that each DT need different division to achieve the best result. Although we have not
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developed any technique to detect this optimal division yet it is apparent that some semi
optimal division sufficient enough exists and it was verified by many experiments that this
semi optimal length equals to two percents of the total length of the original sequence.

4 Synthesis
The goal of the synthesis is to create certain number of DT frames so that overall visual
appearance is close enough to the original. Unfortunately there does not exist any appli-
cable criterion to decide if the synthesized DT is close enough to the original as explained
in Section 5.

During the synthesis a matrix (k × t†) of temporal mixing coefficients M †, where t†
is a length of the synthesized sequence, in general different from t, is created block wise
from the blocks occurring the set B . Element M †

i,j is linearly interpolated if j ∈ L or
sampled from uncorrelated noise with mean µ̂j and dispersion σ̂j otherwise. Blocks may
be chosen even non deterministically but |Mi1,j −Mi0,j| < µj must hold for all j ∈ L, i1
is the right edge of previously used block and i0 is the left edge of the following one.

New DT sequence C† which is (n × t†) matrix can be then computed simply as:
C† =M †U . Final step is addition of the average frame to each frame in the synthesized
sequence. Since only matrix operations occur in this step it can be easily performed on
contemporary graphics hardware which considerably increases the synthesis speed.

5 Results
We used the dynamic texture data sets from DynTex texture database 1 as a source of
test data. Each dynamic texture from this sets is typically represented by a 250 frames
long video sequence, that is equivalent to ten second long video. An analysed DT is
processed frame by frame. Each frame is 400 × 300 RGB colour image. As a test DT
were chosen: smoke, steam, streaming water, sea waves, river, candle light, close shot of
moving escalator, sheet, waving flag, leaves, straws and branches.

Some results can be seen on Figures 1 and 2, showing selected synthesized frames and
corresponding frames from original sequence. In this case the deterministic version of the
algorithm with fixed length intervals were use to reproduce the sequence.

From the shown results can be seen that although there are some differences between
original and synthesized frames the overall dynamic stayed preserved. Unfortunately it is
really hard to express this similarity exactly. Robust and reliable similarity comparison
between two static textures is still unsolved problem up to now. Moreover, when we switch
to the dynamic textures the complexity of comparison between original and synthesized
DT sequence increase even more.

In some cases the synthesized DT is visually similar to the original except for less
details (for example: river and straws on Figure 1, sea waves on Figure 2), sometimes
the moves in synthesized sequence are blurred (for example: waving leaves and sheet
on Figure 2). Less detailed appearance is mainly caused by information loss during the
dimensionality reduction phase when only about 15% of the original information is saved.

1http://www.cwi.nl/projects/dyntex/
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Figure 1: Original frames (odd rows) versus corresponding synthesized ones (even rows),
sequences: candle light, smoke, river, straws.
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Figure 2: Original frames (odd rows) versus corresponding synthesized ones (even rows),
sequences: sea waves, sheet, waving leaves, flag.
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Figure 3: The synthesis of several textures (candle light, river, straws and waving leaves)
300th and 400th frames.

The approximation of coefficients is reflected in the blurring. The worst result is the flag
sequence synthesis (Figure 2), maybe it is because this is not real DT but rather dynamic
scene and this method is limited to DTs.

Main advantage of this method to the solution published in [2], where Causal Auto
Regressive (CAR) model is used to process matrixM , is its stability in the synthesis step.
Another issue of using CAR model is that the overall dynamics of synthesized sequence
decreases with time which is serious problem in case of sequences longer than original
one. The general dynamic of the sequence is preserved in time in case of our method as
presented on some results on Figure 3 showing selected frames from synthesized sequence
longer than original one. The computational demands are identical for both methods.

6 Conclusion and discussion

We presented a novel method for fast synthesis of dynamic multispectral textures in this
article. The main part of the approach is based on modelling of temporal coefficients
resulted from input data dimensionality reduction step. This solution enables extremely
fast synthesis of arbitrary number of multispectral DT frames, which can be even more
efficiently performed by contemporary graphical hardware. There are still some unsolved
tasks. The detection of optimal number of component which should be saved is still
discussed, because this step is essential and affect overall performance and resulting visual
quality. The division of temporal matrix is not always the best solution and sometimes
the fixed length sub intervals serves as the universal semi optimal solution. On the other
we have not developed any method for optimal fixed sub interval length detection yet but
many experiments demonstrated that for most DTs 2% of the total length of the sequence
is sufficient. Although this method is still under development it represents interesting
alternative to the existing approaches.
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