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Abstract. The Tsallis entropy, as a generalization of the standard Shannon-type entropy,
was introduced by Constantino Tsallis (1988). Since that the concept has been extensively
studied (see, e.g., Tsallis (2009)).
In the present paper we address the problem of generalizing the concept for infinite-
dimensional systems, i.e., the random processes and fields. Apparently, rather well suited
models are the Gibbs distributions (cf. e.g., Georgii (1988)).
We construct the appropriate Tsallis entropy rate either asymptotically by limit over
a sequence of expanding volumes or by analogy with the exponential finite-dimensional
distributions. Basic properties, taking into account the possible phase transitions, are also
introduced.
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1. Introduction

The Tsallis entropy is a generalization of the standard Shannon-type entropy. It was
introduced by Constantino Tsallis (1988) as a basis for generalizing the standard
statistical mechanics. In the scientific literature, the physical relevance of the Tsallis
entropy was occasionally debated (see, e.g., Curado and Tsallis (1992)).

Recently, an increasingly wide spectrum of natural, artificial and social complex
systems have been identified which confirm the predictions and consequences that
are derived from this nonadditive entropy.

There are various fields and topics in finance and economics where entropy in
general has brought interesting perspective. The list of relevant areas includes the
general financial mathematics (see, e.g., Michael et al. (2002), Ramos et al. (1999),
or Anteneodo et al. (2002)).

There are also many particular results and topics connected to the mathematical
theory provided in the present paper, e.g., Bera and Park (2008) utilize entropy as
an additional instrument for portfolio optimization, Eom et al. (2008) study rela-
tionship between predictability and efficiency using approximate entropy, Giglio et
al. (2008) study complexity and relative efficiency of the financial markets, Kris-
toufek and Vosvrda (2014a,2014b) utilize entropy as a component of an efficiency
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measure, Maasoumi and Racine (2002) utilize entropy for series predictability de-
tection, Ortiz-Cruz et al. (2012) study the crude oil efficiency using the entropy
analysis, Qin et al. (2009) use cross-entropy for portfolio selection, Rompolis (2010)
utilizes entropy for option pricing, or Shi and Shang (2013) use cross-entropy as an
alternative to cross-correlations. Some of these results could be with an appropriate
effort generalized for the depended data models treated here, but such task is behind
the scope of this paper.

The Gibbs distributions, as defined within the area of statistical physics, repre-
sent natural models for dependent data. Moreover, the Gibbs random fields are well
suited for generalizing the various concepts of entropy in the form of the appropriate
rate. That means, first of all, the standard Shannon entropy, as well as the Rényi
entropy (see Janzura(1999)). Tsallis entropy constitutes a rival to Rényi entropy
(see, e.g., Nielsend and Noch (2011)) in the sense that it is also given as a parametric
class which coincides with Shannon entropy at parameter point equal to 1.

The results on Gibbs random fields are partly from Künsch’ paper (1982) and
Georgii’s book (1988), the statistical analysis results from Janžura (1997).

After recalling the definition of Tsallis entropy including the basic properties in
Section 2, the following Sections 3,4, and 5 are devoted to the concept of Gibbs
random fields. Finally Section 6 contains the new results concerning the Thallis
entropy rate for Gibbs random fields, including again some fundamental properties.
A short comment on the eventual performance is added in Section 7.

For the sake of simplicity, within this paper we consider only the finite state
space. With an appropriate effort, the generalization is possible.

2. Tsallis entropy

Let X0 = {x1, . . . , xM} be a finite set, and P0 the set of all probability measures on
X0. In particular, let R(x) = 1

M
be the uniform distribution and δx0 the distribution

concentrated to the single point x0 ∈ X0.
Then the Tsallis entropy for P ∈ P0 is defined as

Sq(P ) =
1

q − 1
[1−

∑
x∈X0

P (x)q]

where q 6= 1 is a real-valued parameter.
For pro q = 1 we obtain by limit the standard Shannon type entropy, namely

S1(P ) = lim
q→1

Sq(P ) =
∑
x∈X0

[− logP (x)]P (x)

Let us introduce the basic properties. We may easily verify that

Sq(P ) ∈ [Sq(δx0), Sq(R)]

where
Sq(δx0) = 0

and
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Sq(R) =
1

q − 1
[1−M1−q]

for q 6= 1, resp.
S1(R) = logM.

Further, with the aid of an appropriate notation, we may also introduce a uni-
fying approach. Namely, let us denote

logq z =
1

q − 1
[1− z1−q].

Then we may write

Sq(P ) = EP [logq(
1

P (•)
)]

and, consequently,

Sq(P ) ∈ [0, logqM ].

Let us introduce the exponential distribution with a statistics f : X0 → R , i.e.,

P f (x) = exp(f(x)− c(f))

where
c(f) = log

∑
x∈X0

exp(f(x))

is the normalizing constant.
Then, by direct substituting, we have

Sq(P
f ) =

1

q − 1
{1− exp[ c(q f)− q c(f)]}

for q 6= 1 and

S1(P f ) = c(f)−
∫
fdP f .

3. Gibbs random fields

Let X0 be again a finite set, and, for some d ≥ 1, let Zd be the d-dimensional integer
lattice and X = XZd

0 the corresponding product space. For V ⊂ Zd we denote by
FV the σ-algebra generated by the projection ProjV : X → XV

0 , and by BV the set
of (bounded) FV -measurable functions. Further, we shall write xV = ProjV (x) for
x ∈ X , and we shall denote by V = {W ⊂ Zd; 0 < |W | < ∞} the system of finite
non-void subsets of Zd.

We denote by P the set of all probability measures on X (with the product σ-
algebra F). Further, by PS we denote the set of stationary (translation invariant)
probability measures, i. e. PS = {P ∈ P ;P = P ◦ τ−1

j for every j ∈ Zd}, where τj :

X → X is for every j ∈ Zd the corresponding shift operator defined by [τj(x)]t = xj+t
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for every t ∈ Zd, x ∈ X . Finally, by PE we denote the set of ergodic probability
measures, i. e. PE = {P ∈ PS;P (F ) ∈ {0, 1} for every F ∈ E} where E = {F ∈
F ;F = τ−1

j (F ) for every j ∈ Zd}.
The functions from B =

⋃
V ∈V BV will be quoted as (finite range) potentials.

For a potential Φ ∈ BV , V ∈ V , we define the Gibbs specification as a family of
probability kernels

ΠΦ
Λ(xΛ|xΛc) = [ZΦ

Λ (xΛc)]−1 exp

{ ∑
j∈Λ−V

Φ ◦ τj(x)

}

with the normalizing constant

ZΦ
Λ (xΛc) =

∑
yΛ∈XΛ

0

exp

{ ∑
j∈Λ−V

Φ ◦ τj(yΛ, xΛc)

}

for every Λ ∈ V . Note that Λ− V = {j ∈ Zd; (j + V ) ∩ Λ 6= ∅}.
A probability measure P ∈ P is a Gibbs distribution (Gibbs random field) with

the potential Φ ∈ B if

PΛ|Λc (xΛ|xΛc) = ΠΦ
Λ (xΛ|xΛc) a. s. [P ]

for every Λ ∈ V . The set of such P ’s will be denoted by G(Φ), while the set of
stationary (resp. ergodic) Gibbs distributions will be denoted by GS(Φ) = G(Φ) ∩
PS (resp. GE(Φ) = G(Φ) ∩ PE). In general GE(Φ) 6= ∅. We may say that the
(first-order) phase transition occurs if |G(Φ)| > 1. Then, some elements are not
ergodic, and some even may be not translation invariant (stationary) though the
specification is so. For a detailed treatment and the examples see, e. g., Georgii
(1988), Chapter 6.2. Unfortunately, the phase transitions, which are inherent for the
infinite-dimensional models and cannot be easily avoided, mean the non-smoothness
and non-regularity and make the treatment much more complicated.

Let us end this section with the observation that, since for Φ ∈ BV we have
ΠΦ

Λ ∈ BΛ+V−V for every Λ ∈ V , the above defined Gibbs random fields obey the
(spatial) Markov property.

4. Equivalence of potentials

Besides the phase transitions, there is another non-uniqueness that can complicate
the treatment, namely the possible equivalence of potentials. Two potentials Φ, Ψ ∈
B are equivalent, we write Φ ≈ Ψ, if G(Φ) = G(Ψ). There is a couple of equivalent
characterizations (see, e. g., Georgii (1988) or Janžura (1994)), e. g. Φ ≈ Ψ iff
ΠΦ
{0} = ΠΨ

{0}. For our purposes there will be also important the following one:

Φ ≈ Ψ iff

∫
Φ dP =

∫
Ψ dP + c for every P ∈ PS with some fixed constant c.

The equivalence can appear very easily, e. g.,

Φ ≈ Φ + g − g ◦ τj + c for some g ∈ B, j ∈ Zd, and a constant c.
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From the statistical analysis point of view the equivalence of potentials means break-
ing the basic identifiability condition, and, therefore, it seems better to avoid the
phenomenon unambiguously.

A rather standard way consists in dealing with the equivalence classes instead
of the particular potentials. But we prefer to restrict our considerations to a rich
enough subclass of mutually nonequivalent potentials. Such subclass should contain
representatives of all equivalence classes. That can be arranged by dealing with
the so called vacuum potentials. Let us fix some state v ∈ X0, quoted as the
vacuum state. For any V ∈ V , let us denote BvV = {Φ ∈ BV ; Φ(xV ) = 0 if xt =
v for some t ∈ V }. Further, in order to avoid equivalence by shifting, let us introduce
V0 = {V ∈ V ; mint∈V t = 0} where the minimum is with respect to some fixed
complete (e. g. the lexicographical) ordering. Now, for a finite subsystem A ⊂ V0

we set BvA = {Φ ∈ B; Φ =
∑

A∈AΦA,ΦA ∈ BvA for every A ∈ A}, and, consequently,
Bv =

⋃
A⊂V0,|A|<∞ BvA will be our class of vacuum potentials.

Proposition 1

i) For Φ, Ψ ∈ Bv it holds:
Φ ≈ Ψ iff Φ = Ψ.

ii) For every Φ ∈ B there exists Ψ ∈ Bv such that Φ ≈ Ψ.

Proof: i) We may observe that for Φ, Ψ ∈ Bv we have Φ−Ψ ∈ Bv, and Φ ≈ Ψ iff
Φ−Ψ ≈ 0.

That simplifies a bit the tedious calculation. For some Φ ∈ BvA with A =⋃
A∈AA we must deduce Φ ≡ 0 from the condition

∑
j∈A Φ ◦ τj ∈ BA−A\{0} (that

is equivalent to Φ ≈ 0) by a proper sequence of substituting. Let A1 ∈ A is
minimal in the sense: (A1)c ∩ (A + t) 6= ∅ for every A ∈ A \ {A1} at t ∈ Zd. Then∑

j∈−A Φ ◦ τj(xA1 , v(A−A)\A1) = ΦA1(xA1), and since by the assumption φA1 must
not depend on x0 we may always substitute x0 = v and obtain ΦA1 ≡ 0. Then we
repeat the consideration with A\{A1}, etc., and finally we obtain ΦA ≡ 0 for every
A ∈ A.

ii) The statement follows from Theorem 2.35 b) in Georgii (1988) or by direct
calculations with the aid of Möbius formula for constructing the vacuum potentials.
�

Thus, we can deal only with the set of potentials Bv.

5. Limit results

For a fixed configuration x ∈ X and every Λ ∈ V we define a probability measure
P̂Λ
x by ∫

Φ dP̂Λ
x = |Λ|−1

∑
t∈Λ

Φ ◦ τt(x) for every Φ ∈ B.

Such probability distributions will be called as empirical random fields. On the other
hand, for fixed Φ ∈ BV we have

∫
Φ dP̂Λ ∈ BV+Λ, which means that for specifying

the marginal distribution P̂Λ
x /FV we actually need to have xV+Λ ∈ XV+Λ

0 .
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Now, let us consider a sequence of growing subsets {Vn}∞n=1 in Zd, e. g., the cubes
Vn = [−n, n]d for simplicity.

Then, for a fixed potential Φ ∈ Bv let us denote by

c∞(Φ) = lim
n→∞

|Vn|−1 logZΦ
Vn

(xVn
c)

the pressure corresponding to the potential Φ. The limit exists uniformly for every
x ∈ X by, e. g., Theorem 15.30 in Georgii (1988).

In general, the pressure c∞ is a convex continuous function on B, strictly convex
on Bv, and even strongly convex on every compact subset of Bv (see Dobrushin and
Nahapetian (1974)).

Further, for every P ∈ PS we may set the entropy rate

S∞1 (P ) = lim
n→∞

|Vn|−1

∫
[− logPVn(xVn)] dP (x)

where the limit exists by Theorem 15.12 in Georgii (1988).
Moreover, for every Q ∈ PS and P ∈ GS(Φ) we may set also the I-divergence

rate

D∞(Q|P ) = lim
n→∞

|Vn|−1

∫ [
log

QVn(xVn)

PVn(xVn)

]
dQ(x)

where the limit exists by Chapter 15.3 again in Georgii (1988).

Proposition 2
For P ∈ PS, the following statements are equivalent:

i) P ∈ GS(Φ);

ii) |Vn|−1 logPVn(xVn)−
∫

Φ dP̂ Vn
x + c∞(Φ)→ 0 for n→∞;

iii) S∞1 (P ) = c∞(Φ)−
∫

Φ dP .

Proof: While i)⇒ ii) and ii)⇒ iii) are rather straightforward, the proof of iii)⇒
i) needs a rather sophisticated construction (see, e. g., Georgii (1988), Theorem 15.37
or Janžura (1999)). �

Proposition 3

i) For every Q ∈ PS and P ∈ GS(Φ) it holds:

D∞(Q|P ) = c∞(Φ)−
∫

Φ dQ− S∞1 (Q) = 0 .

ii) Every P ∈ GS(Φ) creates a tangent functional to c∞(•) at Φ, i.e.,

c∞(Φ + Ψ)− c∞(Φ) =
∫

Ψ dP for every Ψ ∈ Bv.
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iii) Function q�
∫

Φ dP q where P q ∈ GS(qΦ) is growing. In particular, we have

lim
q→1+

∫
Φ dP q = max

P∈GS(Φ)

∫
Φ dP

and

lim
q→1−

∫
Φ dP q = min

P∈GS(Φ)

∫
Φ dP .

Proof: While i) is rather straightforward by substituting, the proof of ii) can be
obtained from the formula for D∞(P |Q) = 0 for Q ∈ GS(Φ+Ψ). Finally, iii) follows
from the convexity of function c∞(•).

�

6. Tsallis entropy for Gibbs random fields

The Tsallis entropy can be generalized for random processes or fields only asymp-
totically, i.e., as the appropriate rate. Therefore, for P ∈ GS(Φ) with Φ ∈ Bv let us
denote

SVq (P ) =
1

q − 1
[1− (

∑
xV ∈XV

0

PV (xV )q)
1

|V | ].

Then we obtain the main result.

Theorem 1
For P ∈ GS(Φ) it holds

lim
n→∞

SVn
q (P ) = S∞q (P ) =

1

q − 1
{1− exp[c∞(qΦ)− qc∞(Φ)]}.

Proof.
We substitute for PVn(xVn) and calculate the limit with the aid of Proposition 2

ii).
�

We can obtain the same result by a direct analogy with the one-dimensional
exponential distributions.

Remark 1
The Gibbs random fields can be understood as infinite dimensional exponential

distributions. Then the function c∞(•) (within the statistical physics terminology
known as pressure) is a straightforward counterpart of the “moment-generating func-
tion” c(•) as defined for the exponential distributions. In particular, for the i.i.d.
case the notions coincide. Namely, for Φ ∈ Bv0 we have exactly c∞(Φ) = c(Φ).

Then the formula for S∞q (P ) can be obtained as a direct analogy of the formula
Sq(P ) for the exponential P = P f .

�
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Now, suppose Φ ∈ Bv, P ∈ GS(Φ), and Qq ∈ GS(qΦ). Then, we observe

D∞(P |Qq) = c∞(qΦ)− c∞(Φ) + (1− q)
∫

Φ dP = 0.

At the same time we have also

D∞(Qq|P ) = c∞(Φ)− c∞(qΦ)− (1− q)
∫

Φ dQq = 0.

Proposition 4
For P ∈ GS(Φ) and Q ∈ GS(qΦ) it holds

c∞(qΦ)− qc∞(Φ) = D∞(P |Q) + (1− q) (c∞(Φ)−
∫

Φ dP ),

and, simultaneously,

c∞(qΦ)− qc∞(Φ) = −D∞(Q|P ) + (1− q) (c∞(Φ)−
∫

Φ dQ).

Consequently, we have

(1− q) (c∞(Φ)−
∫

Φ dP ) 5 c∞(qΦ)− qc∞(Φ) 5 (1− q) (c∞(Φ)−
∫

Φ dQ),

and

1

q − 1
{1−exp[(1−q) (c∞(Φ)−

∫
Φ dQ)]} 5 S∞q (P ) 5

1

q − 1
{1−exp[(1−q) (c∞(Φ)−

∫
Φ dP )]}

whenever q > 1, while

1

q − 1
{1−exp[(1−q) (c∞(Φ)−

∫
Φ dP )]} 5 S∞q (P ) 5

1

q − 1
{1−exp[(1−q) (c∞(Φ)−

∫
Φ dQ)]}

for q < 1.

Proof.
The results follow directly from the above formulas.

�

Theorem 2
For P ∈ GS(Φ) it holds

lim
q→1+

S∞q (P ) = S∞1 (PM)

and
lim
q→1−

S∞q (P ) = S∞1 (Pm)
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where

PM = arg max
Q∈GS(Φ)

∫
Φ dQ and Pm = arg min

Q∈GS(Φ)

∫
Φ dQ.

In case of no phase transitions, i.e., GS(Φ) = {P}, we have

lim
q→1

S∞q (P ) = S∞1 (P ).

Proof.
The results follow directly from Proposition 3 iii) and Proposition 4.

�

7. A note on the performance

Unfortunately, for the Gibbs random fields, there is a lack of analytic formulas.
While for calculating the expectations

∫
Ψ dPΦ we can substitute the theoretic terms

by their simulated counterparts (cf., e. g., Younes (1989) ), for the pressure c∞(Ψ)
the lack is absolute but we may apply the following approach.

Let us observe

c∞(Φ) = c∞(Ψ) +

∫
(Φ−Ψ) dQε̃

where Qε̃ ∈ GS[Ψ + ε̃(Φ−Ψ)] and ε̃ ∈ (0, 1).
Now, we may choose Ψ ∈ Bv{0}. Then, just as in Remark 1 we have c∞(Ψ) = c(Ψ)

which can be easily calculated.
For expressing

∫
(Φ−Ψ) dQε̃ we can use the approximative Markov Chain Monte

Carlo procedure (cf., e. g., Younes (1989)). Unfortunately, we do not know the exact
value of ε̃. But, similarly as in Proposition 3 we observe∫

(Φ−Ψ) dQ0 5
∫

(Φ−Ψ) dQε̃ 5
∫

(Φ−Ψ) dQ1.

There will be no problem if all the values coincide but that would mean Φ ≈ Ψ
which is in a non-trivial case hardly possible. Nevertheless, we may try at least
to aim the eventuality, e.g., by taking Ψ in order to have Q0

{0} − Q1
{0} which is

easily feasible. Anyhow, there still will remain some gap, and, therefore we need an
additional approximation, e.g., in the form

1

N + 1

N∑
n=0

∫
(Φ−Ψ) dQ

n
N

with N of a reasonable size, which also imitates the alternative expression

c∞(Φ) = c∞(Ψ) +

∫ 1

0

[

∫
(Φ−Ψ) dQε]dε.

Then the whole procedure can be in the same way repeated also for c∞(qΦ)
in order to obtain both the terms needed for expressing the Tsallis entropy rate
S∞q (P φ).
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The method is rather complicated and tedious but it is caused by complexity of
the concept.
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