
IEEE SIGNAL PROCESSING LETTERS, VOL. 20, NO. 12, DECEMBER 2013 1227

A Two-Stage MMSE Beamformer for
Underdetermined Signal Separation
Zbyněk Koldovský, Petr Tichavský, Anh Huy Phan, and Andrzej Cichocki

Abstract—Blind separation of underdetermined instantaneous
mixtures is a popular solution to inverse problems encountered in
audio or biomedical applications where the number of sources ex-
ceeds the number of sensors. There are two non-equivalent tasks:
to identify the mixing matrix and to separate the original sources.
In this paper, we focus on the latter task by proposing a novel beam-
former that minimizes the theoretical mean square error distance
between the separated and original signals. The beamformer has
two stages: one for the estimation of signals and one for their re-
finement. Within the former stage, the signals are assumed to be
random and locally stationary, while the latter stage is based on a
semi-deterministic model. The experiments prove superior perfor-
mance of the proposed method compared to conventional MMSE
beamforming.

Index Terms—Beamforming, blind source separation, nonsta-
tionary processes, underdetermined mixtures.

I. INTRODUCTION

T HE goal of Underdetermined Blind Source Separation
(UBSS) is to retrieve unknown signals from mixtures

when . An instantaneous mixture is described by

(1)

where is a matrix whose rows contain samples of
original zero-mean independent signals, is an mixing
matrix, and is the matrix of the mixed signals. The
tasks of finding and are not equivalent since . Most
UBSS methods thus consist of two steps: is identified first,
and then are separated using the estimated . In this paper,
we focus on the latter problem.
Finding in (1) when is known (or estimated) is a classic

inverse problem. Numerous array processing techniques [1] and
methods exploiting sparsity of [2], [3] have been proposed. In
this paper, we revise the popular minimum mean-squared error-
based (MMSE) beamforming approaches and apply them for the
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UBSS. MMSE beamforming techniques were recently studied
by Eldar et al.; see e.g. [4].
Nomenclature: Matrices will be denoted by the boldface

upper case letter; e.g., . The th element of will be denoted
by upper case letter or as , and the th column of
the matrix will be denoted by the boldface lower case letter,
that is . The superscripts , and denote the
Hermitian transpose, the transpose and the conjugate operator,
respectively.
The MMSE beamformer estimates as

where is the minimizer of ; stands for
the expectation operator. The solution is [1]

(2)

where denotes the covariance matrix of , that is
, and is the variance of .

Knowledge of and is the key problem [5]. In the
blind scenario, where only are known, a conventional ap-
proach assumes local stationarity of signals within blocks of
length and replaces by the sample covariance estimator

; see Section 7.3 in [1]. A common

estimator of is then where
denotes theMoore-Penrose pseudoinverse of .Wewill refer to

as to the conventional MMSE beamformer.
In the following section, we propose a novel two-stage

MMSE beamformer tailored to the underdetermined mixtures
given by (1). In Section III, we derive its spatio-temporal
variant exploiting the non-whiteness of , which achieves
improved signal-to-interference ratio. Simulations comparing
and verifying the efficiency of the beamformers are conducted
in Section IV, and Section V concludes the article.

II. TWO-STAGE MMSE BEAMFORMER

The beamformer retrieves the original signals using estima-
tion and refinement stages that are based on different models.
Within the former stage, are assumed to be random and lo-
cally stationary. The refinement is based on a semi-deterministic
model where every target signal is assumed to be deterministic
while the other signals are stochastic and locally stationary [4].

A. Estimation

The estimation step comes from (2). However, compared to
the conventional MMSE beamformer, more accurate estimates
of and are obtained using the structure of . The struc-
ture follows from (1), that is,

(3)
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and it holds that where is the th element of .
Here, denotes a diagonal matrix with diagonal elements
of the argument.
To estimate , we solve the nonnegative quadratic program-

ming optimization problem

w.r.t

(4)
where is the Frobenius norm, and is a weighting matrix
whose choice will be discussed later. An efficient solver of (4) is
the interior-point method [6] initialized using the unconstrained
solution of (4), which is

(5)

where , denotes the Khatri-Rao (a column-
wise Kronecker) product, and is the vectorization oper-
ator. Provided that all elements of are non-negative1,
is already the solution of (4).

is estimated as , so the estima-
tion beamformer reads

(6)

where is the th element of . The samples of are

thus estimated as .
In practice, it is reasonable to assume block-stationarity of

signals in this stage and to perform the estimation block-by-
block with the length of block where , , , ,
and thus are constant within the block. This leads to com-
putational savings.

B. Refinement

In this stage, the samples are refined assuming, consecu-
tively for each , that is deterministic while ,

, are random and locally stationary. The MMSE beam-
former (2) for this model reads [4]

(7)

where .
We propose to replace the unknown and , , by the

best available estimators obtained due to the estimation stage.
Namely, we replace in (7) by and , ,

by . Then, the refinement beamformer can be written in the
form

(8)

Using the matrix inversion lemma, we obtain

(9)

1It can be shown that is always a real-valued vector when .

where, after some simplifications,

(10)

Indeed, is just a scaling correction factor due to the refine-
ment stage. If , then .

III. SPATIO-TEMPORAL MMSE BEAMFORMING

This section describes an extension of the proposed beam-
former for spatio-temporal (ST) beamforming. An ST beam-
former estimates using also previous values of the ob-
servation vector where is a free integer parameter. The
beamformer is represented by a vector of length ,
and the output is where .
A straightforward computation yields that the STMMSE beam-
former is given by

(11)

where denotes the Kronecker product, and is a vector of
autocovariances of of length , that is, its th element is

, .
Before deriving the estimation and refinement steps, we ex-

plore the structure of the covariance matrix , from here
denoted as . It holds that

...
...

...
...

(12)

where , (note that
). has the structure

where denotes the diagonal of and it holds that
and . Hence,

(13)

where , , and , respectively, denote a
symmetric block-Toeplitz matrix composed of blocks given
by the argument, a block-diagonal matrix, and a symmetric
Toeplitz matrix with the first column given by the argument.
is the identity matrix, and is the vec-per-

mutation matrix that for every matrix satisfies
.

A conventional ST MMSE beamformer does not take the
structure of into account and estimates it using the sample
estimates of , , denoted as .
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Namely, and the con-
ventional beamformer reads where

.

A. Estimation

As in Section II.A, the estimation stage is based on computing
the estimates and building the estimate of
according to (13) as

(14)

While is estimated as in (4) with the non-negativity con-
straint, the unconstrained estimation as in (5) is used to esti-
mate the other vectors, that is, for

.
However, the resulting need not be positive definite

(PD), which is required due to the stability2 of the beamformer.
From the last equation in (13) it follows that is PD iff

, , are also PD, and this is guaranteed

when the autocovariances correspond to positive definite
functions. We therefore apply a correction procedure to each

to ensure that all poles of the corresponding AR sequence
lie inside the complex unit circle. Poles whose magnitude is
greater than one are put equal to their inverse conjugate values.
Once the PD of is ensured, (11) is estimated as

(15)

and the output is .

B. Refinement

The refinement stage of the ST beamformer uses the esti-
mated scale of signals, that is, in order to make
the estimation of (11) more accurate. We define the refined au-
tocovariance of as

(16)

This is used to build the refined covariance matrix with the im-
proved estimate of scale of the th source, as

(17)

By comparing (14) and (17), the latter can be written as

2The output power of the beamformer, which is , must be
non-negative. Therefore, must be PD.

Fig. 1. Variances of the artificial signals on blocks.

This expression can be used to speed-up the inversion of
using known from the estimation stage and the matrix
inversion lemma. The refined beamformer is then given by

(18)

It can be verified that both stages described in Section II co-
incide with their ST variants when .

C. Choice of the Weighting Matrix

In [7], a method for separation of underdetermined instan-
taneous real-valued mixtures called UDSEP has been derived.
UDSEP assumes block-stationary white Gaussian signals and
performs a weighted tensor decomposition to estimate and
the variances of signals on blocks. The criterion for the tensor
decomposition is

(19)

where the summation goes over the blocks of signals’ station-
arity, is the vector of variance of signals on the th block, and

(20)

are the weighting matrices with a suitable small positive to re-
strain the regularity. These weights are optimized for the block-
stationary real-valued white Gaussian model of signals.
By comparing (4) with the argument of (19), it follows that (4)

is the optimum criterion for the estimation of ( ) when the
signals obey the aforementioned model. Therefore, we choose
the same weighting matrices as in (20) to estimate the (auto)co-
variances of signals, although there is no claim of inherited op-
timality as the beamformer does not rely on a specific model of
signals.

IV. EXPERIMENTAL EVALUATION

A. Artificial Signals
Our first experiment consists of the separation of

four artificial signals of the length sam-
ples that are mixed into three channels. The mixing
matrix has columns where

. The signals obey the
block-stationary AR Gaussian model, where there are
blocks. Variances of the signals on the blocks are defined as
shown in Fig. 1. We define AR coefficients in the following
order: , , . Using
this order, the AR model of the th signal on the th block has
the th coefficients. Consequently,
the signals never have the same variance and spectrum in any
block, up to the case .
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Fig. 2. Average SIR of extracted signals.

Fig. 3. SINR of 16 separated speech signals from their 9 noisy mixtures.

For comparison, we consider two cases, respectively, when
is known or estimated by an UBSS algorithm. For the latter

case, we consider the UDSEP algorithm from [7] with
(the number of blocks in the block Gaussian white stationary
model).
The signals are separated by the following methods to be

compared: the conventional MMSE beamformer (MMSEconv),
the estimation stage of the proposed MMSE beamformer (MM-
SEest), and the output of the novel beamformer after the refine-
ment (MMSEnew). Each beamformer is tested with and

. MMSEnew is also tested when the weighting matrices
are equal to the identity matrix. The sample covariance ma-

trices are estimated with . The estimation stage is
running with (described at the end of Section II.A).
100 independent trials were run for each and

the separated signals were evaluated in term of Signal-to-Inter-
ference ratio (SIR); averages of SIR over all trials and separated
signals are shown in Fig. 2.MMSEconv achieves the lowest SIR
of about 10 dB. MMSEest improves the results by about 1 dB,
which is improved by one more dB by MMSEnew. For ,
the beamformers achieve approximately the same SIR for all
while their performances grow when . This is due to the
fact that the ST beamforming is able to exploit the non-white-
ness of signals ( ). Only the ST conventional beamformer
fails to improve the SIR due to large errors in the estimation of
signals’ (auto)covariances.
For close to zero, the beamforming with is overpa-

rameterized and is slightly worse than with . The signals
are white for so is optimal. The last observa-
tion is that the weighting matrices give a
slightly better performance than ; here demonstrated for
MMSEnew with .

B. Instantaneous Noisy Mixture of Speech Signals

16 speech signals were mixed into 9 channels using
a mixing matrix whose columns are defined as

where ,
, and a white Gaussian noise was added to

the mixture at the ratio of 20 dB. The speech signals are
utterances 7.5 seconds long sampled at 16 kHz, normalized
to zero mean and unit variance3. The other parameters of this
experiment are as follows: is known, , ,
the ST beamforming is performed with . For clarity, the
results of only selected methods are shown in Fig. 3.
MMSEconv achieves significantly lower Signal-to-Interfer-

ence-plus-Noise Ratio (SINR) than MMSEest and MMSEnew.
The performance of its ST variant is even worse, not shown here
for clarity. By contrast, the ST variants of MMSEest as well
as of MMSEnew achieve improved performance with a higher
value of , here, . Next, MMSEnewwith achieves
higher SINR than MMSEest with , which is practical in
view of the fact that the former method is computationally sim-
pler than the latter one.
This example demonstrates that the proposed beamformer

yields improved SINR on noisy mixtures of real-world signals
that do not obey any specific mathematical model such as the
block Gaussian AR model in the previous example.

V. CONCLUSIONS

The proposed two-stage MMSE beamformer is an effective
tool to separate underdetermined mixtures of signals. Its accu-
racy in separation of nonstationary signals was shown to be
better than that of the conventional MMSE beamformer. The
beamformer does not rely on sparsity of signals and can be ap-
plied to signals of a wide class, such as biological signals EEG,
ECG, etc; see also [8]. The Matlab implementation is available
at [9].
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