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General multivariate quantiles are employed to extend the classic univariate process
precision index to the multivariate context under very mild conditions. Using
halfspace depth regions for this purpose is especially recommended because it
leads to both computational simplicity and natural generalizations to the tool-wear
setup thanks to some recent advances in multiple-output and projectional quantile
regression. A few examples are included to illustrate how the methodology might
work in practice.
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1. Introduction

Process capability indices (PCIs) were introduced for quantifying the acceptability
of manufacturing processes and soon became indispensable for any quality
improvement program.

The theory of PCIs is already rich and quite developed in the univariate case
where there is only one important stochastic feature Y ∈ � of the output. Typically,
we have an idea about the optimal target value T ∈ � of the process as well as
about the range � = �LSL�USL� of all conforming output values, and the goal of
PCIs then consists in quantifying how much Y meets the ideal. For example, the
potential capability of the process can be assessed by the popular precision index Cp

Cp =
USL− LSL

6�

where � stands for a scatter parameter of Y , typically � = √
var�Y�. This important

index is also a cornerstone on which more sophisticated indices are built, see e.g.,
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378 Šiman

Pearn and Kotz (2006), and this is why its natural generalization to the multivariate
setup is highly desirable and in the center of our current interest.

In the multivariate context, we have to deal with a stochastic vector process
characteristic Y ∈ �m, with its optimal target value T ∈ �m and with the tolerance
region � ⊂ �m of all conforming values of Y. Current proposals of multivariate
precision indices are briefly summarized in Pearn and Kotz (2006) and Kotz and
Lovelace (1998). Basically, these suggestions often assume � in a special shape and
the distribution of Y normal or elliptical, employ variance matrices and related
principal vectors or Mahalanobis distances, use elliptical quantile regions, and
consider their volumes or their largest inflated copies still contained in the tolerance
region. And if some ellipsoids are considered, they are often centered around T or
a location parameter � of the distribution of Y.

Of all these ideas, we loosely employ only that of inflation, see, e.g., Chen
(1994) and Taam et al. (1993), but without any information about T or �
required. Contrary to the prevailing practice, we are now going to introduce a
nonparametric multivariate precision index without any limiting assumption on �
and the distribution of Y, i.e. without any restrictive condition on its moments,
location, or quantile regions. This is possible only because we build our definition
on a general nonparametric multivariate quantile concept.

Although our proposal could be based on any notion of nonparametric
multivariate quantile mentioned in the literature, see, e.g., Serfling (2002) and
references therein, we formulate our definition only for multivariate quantile regions
defined as halfspace depth regions because they beat the others in many respects
and have many favorable properties that simplify their application and computation
considerably, see, e.g., Rousseeuw and Ruts (1999) and Zuo and Serfling (2000a,b).
For example, they are always closed, convex, compact, and fully affine equivariant.
In the empirical case, they are moreover polyhedral and thus easy to handle
and compute, and all of them together fully determine the underlying empirical
distribution. In the population case, this equivalence between the knowledge of
distribution and of halfspace depth regions has been fully established only when all
the regions have smooth boundaries, but what is more important, the population
halfspace depth regions are always elliptical for elliptical distributions and the
deepest one always coincides with the center of symmetry if such a point exists,
see also Struyf and Rousseeuw (2005), Kong and Mizera (2012), and Kong and
Zuo (2010). Consequently, these halfspace depth regions can be viewed as a natural
extension of elliptical quantile regions to the general multivariate context.

If the manufacturing process is stable (stationary), then we can easily obtain
a random sample from the distribution of Y and use it for sophisticated statistical
inference, especially if we have a concrete idea about the distribution of Y.
This distribution is often automatically assumed perfectly normal after some
questionable invocations to simplicity and central limit theorems so as the fraction
of nonconforming items P�Y � � � could be estimated easily, which is a quantity
of paramount importance in the quality management context. Unfortunately, the
reality tends to be far more complicated and, what is even worse, P�Y � � � is
usually highly sensitive even to changes in the distribution of Y too small to be
detected reliably by any statistical test even from quite large random samples. This
is why we do not feel bound by the normality dogma any more and formulate our
concept without any distributional assumption at all, at the expense of obscuring
P�Y � � �. Nevertheless, if a specific and reliable assumption about the distribution
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Precision Index in the Multivariate Context 379

of Y is available, then P�Y � � � might still be estimated by means of Monte Carlo
simulations. That is to say that current computers can easily generate billions of
random vectors in a moment or two.

This paper introduces basic definitions and notation in Section 2, presents a
multivariate precision index in Section 3, illustrates the concept in Section 4, and
concludes with some further proposals, possible extensions, and final remarks in
Section 5.

2. Definitions and Notation

Let us consider a multivariate product or process described by a continuous random
vector Y ∈ �m, m ≥ 1, and assume that its engineering specification is always given
by a convex and compact tolerance region � ⊂ �m of all conforming values,
and sometimes also by a target value T ∈ � in the interior of � . The convexity
assumption on � still allows for all the common tolerance regions of elliptical and
polyhedral shapes, and it guarantees that the segment linking any T ∈ � with any
y ∈ � contains only conforming points, which is usually a highly desirable property.
The compactness of � is not limiting at all because everything real and material is
bounded anyway and �� is too negligible to have any effect.

If the target value T ∈ � is also provided, we will always assume it zero without
any loss of generality as we can always shift the coordinate system accordingly.

We will also write ���·� for the multivariate halfspace depth region of the
argument that is indexed by � ∈ � where � may stand either for the coverage
probability p ∈ �0� 1� or for the probability mass 	 ∈ �0� 0
5� cut off by supporting
hyperplanes. The corresponding halfspace depth median of the argument will be
denoted by m�·� ∈ �m, and the sample counterparts to ���·� and m�·� will be
denoted by �̂��·� and m̂�·�, respectively. The argument will be omitted if it clearly
follows from the context or if we speak about halfspace depth regions or medians
in general.

Figure 1. These two plots show empirical halfspace depth regions (with the thick black
border) for 	 = 1/6 that are constructed from n = 8 visible dark gray points (left) or from
n = 1 000 invisible points coming from the uniform distribution on �−0
5� 0
5�2 (right). The
light gray lines (passing through at least m = 2 points) border all the closed halfspaces
containing n− k+ 1 data points where k = �n	� + 1.
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380 Šiman

Recall that �	�Y� is defined as the intersection of all closed halfspaces H with
P�Y ∈ H� ≥ 1− 	 and that this region is always non empty at least for any 	 ≤
1/�m+ 1�, see Rousseeuw and Ruts (1999). In the empirical case with n ≥ m+ 1
observations and with a positive 	 ∈ ��k− 1�/n� k/n� for some integer k ≤ n,
the empirical halfspace depth region �̂	�Y� can equivalently be obtained as the
intersection of all closed halfspaces (a) containing at least n− k+ 1 observations,
(b) containing exactly n− k+ 1 observations, or, if the interior of �̂	�Y� is non-
empty, (c) containing exactly n− k+ 1 observations with at least m of them in the
boundary, see Donoho and Gasko (1992) and Fukuda and Rosta (2005). Halfspace
depth median is then usually defined as a specific point in the deepest non empty
halfspace depth region. The remaining properties of halfspace depth regions are
summarized in Section 1, their construction is illustrated in Figure 1, and their
computation is discussed at the end of Section 4. Note as well that �̂	�Y� is equal
to the convex hull of all the data points for any positive 	 < 1/n.

3. Multivariate Extension

We believe that the true multivariate precision index CP should be independent of
the target value and of any parameter of location. Therefore, we propose to define
it as follows:

CP = �P��smax� smax = sup
{
s > 0 � ���sY + cs� ⊂ � for some cs ∈ �m

}
(1)

where �P�� > 0 is a normalizing scale factor. This definition makes sense for both
� ≡ p and � ≡ 	. Besides, each value of this parameter can give rise to a different
definition since, in general, ���sY� need not have the same shape for different values
of � any more. The constant �P�� then may be used to calibrate the index to match
Cp in the univariate case, for example. Of course, fully affine equivariance of ��

guarantees ���sY + c� = s���Y�+ c.
Note that smax has a very natural interpretation. It says how many times we

can uniformly increase the production error on condition that the multivariate
halfspace depth region �� of the output characteristic still lies inside � after a
suitable adjustment (shift). In other words, it really measures the potential capability
of the multivariate process. Therefore, CP might be used as a perfect single scalar
characteristic for measuring the performance of a multivariate process and for
comparing two processes.

In fact, the well-known univariate index Cp can also be interpreted in the
same way, for it tells us (up to a scalar multiplicative constant) how much the
(non-extreme) confidence/quantile interval of a pre-agreed width c�, c ∈ �+, or of
the corresponding (non extreme) level can be stretched while still remaining in the
tolerance interval after a suitable shift.

It remains to describe how such an index could be computed in the empirical
case. As any convex body can be well approximated by an intersection of a
sufficiently large number of supporting halfspaces, we may always replace � with its
accurate polyhedral approximation, say �̂ , without any significant loss of generality.
Of course, this �̂ can be described by coordinatewise vector inequalities, say
Ay ≤ rA, where rA must have all its coordinates positive if T = 0 lies in the interior
of � . Furthermore, all the empirical halfspace depth regions �̂��sY� are polyhedral
by definition.
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Precision Index in the Multivariate Context 381

Let us define Vs = �vs�1�� 
 
 
 � vs�NV �� as a matrix containing all the vertices
vs�i�� i = 1� 
 
 
 � NV , of �̂��sY� in its columns, obviously Vs = sV1. Then the set
�̂��sY + cs� lies in �̂ for some cs if and only if each of its vertices does, i.e. if and
only if the system of linear inequalities A�vs�1�+ c� ≤ rA, 
 
 
 , A�vs�NV �+ c� ≤ rA
has a feasible solution c, which can be checked for any specific s quickly and easily
by means of linear programming. Note also that the system of linear inequalities
can be simplified to Ac ≤ rA − smaxi=1�


�NV

Av1�i� where the maximum is considered
coordinatewise.

Therefore, smax can be easily determined at least approximately by considering
s from a sufficiently dense uniform grid of cardinality K. In fact, one can speed
up the search for smax by employing the core idea of the binary search algorithm
as s1 ≤ smax implies s2 ≤ smax for any 0 < s2 ≤ s1. Consequently, only some log2�K�
values of s have to be investigated for finding a good approximation to smax, see
Section 4 for an illustration.

If all the conforming values of Y were equally good, then m̂�smaxY + csmax
� =

smaxm̂�Y�+ csmax
would probably be a natural candidate for the best target value T

from this point of view. Of course, this observation is useful only if the target value
T can be controlled and possibly adjusted.

4. Illustration

Let us consider an artificial example to illustrate the concept introduced in the
previous section. Concretely, let us assume (irrelevant) T = 0 and � ⊂ �2 as the set
of all y = �y1� y2� ∈ �2 meeting the following inequalities:

−4 ≤ y1 ≤ 5� −4 ≤ y2 ≤ 5� y1 + y2 ≥ −4� and

y21 + y22 ≤ 25 if both y1 > 0 and y2 > 0


This set � is still convex but already more complicated than those usually employed.
As it is not polyhedral, we will replace it with its fine polyhedral approximation �̂
obtained by replacing the last constraint with the set of N linear limitations

cos
(

i�

2�N + 1�

)
y1 + sin

(
i�

2�N + 1�

)
y2 ≤ 5� i = 1� 
 
 
 � N�

say N = 45 here. Figure 2 shows (in black) the border lines of all the linear
constraints defining �̂ .

We would like to convince the reader that our concept works well even in
the standard case, i.e., when applied to a moderate number of data points drawn
from a normal distribution. This is why we first considered n = 199 (dark gray)
observations simulated from the multivariate normal distribution with the mean
vector � = �2�−1�′ and the variance matrix V with vech�V� = �0
5� 0
25� 1�′. For
(arbitrarily chosen) � ≡ 	 = 0
10, we quickly obtained the (black) sample halfspace
depth region �̂	 and its (light gray) shifted and inflated version smax�̂	 + csmax

still
inside �̂ , where csmax

= �−5
39� 3
17�′ and smax = 3
33; see the left panel of Figure 2.
We can also add that the original sample halfspace depth region has its volume
equal to 3.19, 22 vertices, and 109 observations inside.

How did we find smax? We started with s = 250 and with the lower bound
Smin = 0 and upper bound Smax = 500 on smax. Next we set Smin = s if s lead to
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382 Šiman

Figure 2. These two plots demonstrate how the new method works for 	 = 0
1, n (dark
gray) observations and the tolerance region � approximately bordered by the straight black
lines. The original sample halfspace depth region �̂	 is circumscribed by the black curve
while its maximal inflated copy still inside � after a suitable shift is enclosed by the
light gray one. The left plot contains n = 199 data points generated from the multivariate
normal distribution with the mean vector � = �2�−1�′ and the variance matrix V , vech�V� =
�0
5� 0
25� 1�′, while the right plot displays n = 999 points simulated from the distribution of
�Y1� Y2�

′ = �−1�−3�′ + �Z2
1� Z

2
2�

′/2 where Z1 ∼ N�0� 1� and Z2 ∼ N�0� 1� are independent.

a feasible solution and Smax = s otherwise, defined s = �Smin + Smax�/2 for the next
step, and repeated all that till the difference between two consecutive values of s was
sufficiently small.

We also considered an example of a highly non normal bivariate distribution.
With the same 	 = 0
10 as above, we generated n = 999 (dark gray) observations
from the distribution of �Y1� Y2�

′ = �−1�−3�′ + �Z2
1� Z

2
2�

′/2 where Z1 ∼ N�0� 1� and
Z2 ∼ N�0� 1� were independent. The resulting (black) original halfspace depth region
and its (light gray) shifted and inflated version are plotted in the right panel of
Figure 2. The latter region corresponds to csmax

= �2
46� 12
55�′ and smax = 4
88. In
this case, the original sample halfspace depth region has its volume equal to 1.55,
66 vertices, and 469 observations inside.

Finally, we include Figures 3 and 4 that display the results for fixed n =
100 observations coming from four different distributions and for a fixed normal
distribution with the number of observations increasing from n = 100 to n = 400,
respectively.

In all cases, we used Matlab 7.11 with SeDuMi 1.21 for necessary computations,
see Sturm (1999) and Pólik (2005). Any concrete halfspace depth region can
be determined simply from all the halfspaces with at least m points in the
boundary because the number of available observations is usually quite small. Many
sophisticated algorithms avoiding the need of all such halfspaces for computing a
single halfspace depth region are also described in the literature, and some of them
have already been implemented for bivariate data in Fortran, C++, C, R or Matlab;
see Rafalin and Souvaine (2004) with references therein. The algorithms and Matlab
codes presented in Paindaveine and Šiman (2012b,c) can even handle data beyond
dimension two and in a general regression context.
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Precision Index in the Multivariate Context 383

Figure 3. These plots show how the new method works for n = 100 (dark gray) data
points, 	 = 1/�2n�, and the tolerance region � approximately bordered by the straight
black lines. The original sample halfspace depth region (i.e., the convex hull of the
observations) �̂	 is circumscribed by the black curve while its maximal inflated copy
still inside � after a suitable shift is enclosed by the light gray one. The independent
observations �Y1� Y2�

′ were simulated as follows: (a) �Y1� Y2�
′ = �−1�−3�′ + �Z2

1� Z
2
2�

′/2 where
Z1 ∼ N�0� 1� and Z2 ∼ N�0� 1� are independent, (b) �Y1� Y2�

′ = �0� 3�′ + R�cos��� sin���′

where  ∼ U��0� 2��� and R ∼ U��0� 2�� are independent, (c) �Y1� Y2�
′ are uniformly

distributed in the equilateral triangle with vertices �0�−1�, �4�−1�, and �2� 2
√
3− 1�,

(d) �Y1� Y2�
′ are uniformly distributed in the square with vertices �−1� 0�, �2� 0�, �2� 3�,

and �−1� 3�.

We can conclude that the method usually leads to satisfactory results, even if the
characteristic of the process is highly non-normal and the number of observations
is small such as n = 100. Of course, larger numbers of data points can be expected
to result in neater and less volatile outputs.

5. Final Remarks

Finally, we would like to point out several facts and bring up some ideas about what
to do next.
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384 Šiman

Figure 4. This figure demonstrates how the new method works for the tolerance region
� approximately bordered by the straight black lines, 	 = 0
158655, and increasing number
n of data points generated from the multivariate normal distribution with the mean vector
� = �2�−1�′ and the variance matrix V , vech�V� = �0
5� 0
25� 1�′, where (a) n = 100 [smax =
3
77], (b) n = 200 [smax = 3
83], (c) n = 300 [smax = 4
06], and (d) n = 400 [smax = 3
84]. The
original sample halfspace depth region �̂	 is circumscribed by the black curve while its
maximal inflated copy still inside � after a suitable shift is enclosed by the light gray one.

First, our method is not at all limited by the dimension m of Y, at least
theoretically. Unfortunately, the computation of sample halfspace depth regions
becomes more time and space consuming with growing m, which currently makes
this method impractical for m ≥ 4 or 5, see Paindaveine and Šiman (2012b,c). In
the previous section, we chose m = 2 only for the sake of clarity and simplicity,
mainly because any plotting in spaces of dimensions higher than two is notoriously
troublesome.

Second, this method can be easily generalized to the regression/tool-wear
context. The only thing required is to replace halfspace depth regions with
multivariate quantiles of the conditional distribution, that are again polyhedral
in the empirical case. There are already some natural candidates for this post in
the literature, including the regression cuts considered in Hallin et al. (2010) and
Paindaveine and Šiman (2012a), and the local polynomial variants of halfspace
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Precision Index in the Multivariate Context 385

depth regions of Hallin et al. (accepted). In fact, the idea of using regression
quantiles for such a purpose may be new even in the univariate case where it could
be applied as well and based on the single-response regression quantiles, introduced
in Koenker and Bassett (1978) and masterly reviewed in Koenker (2005).

Third, the technique presented here might also be successfully combined with
the standard elliptical approach. That is to say that the standard elliptical quantile
might be approximated by a polyhedron that could be subsequently inflated and
shifted as described above, still without any use of T or �. The same approach
could be used even with any other concept of convex quantile regions. To be honest,
there are also some quantile regions described in the literature that need not be
necessarily convex, see, e.g., Hlubinka et al. (2010), but their convex hulls could still
be employed in the same way.

Fourth, the value of � influences the robustness of the halfspace depth region
as well as the overall computational time, see Paindaveine and Šiman (2012b,c).
In fact, � ≡ 	 can be easily employed as it is directly linked to the definition of
halfspace depth regions. On the contrary, their coverage probability can be assessed
only indirectly (and thus many halfspace depth regions would have to be computed
to pick up the right one). Although the best choice of � should be left for some real
experts to decide, we would definitely suggest to use � ≡ 	.

Note that if the population distribution is elliptical or with identical
independent symmetric stable marginals as in Chen and Tyler (2004), then the
selection of 	 is virtually irrelevant as it only scales the resulting coefficients CP

because all the halfspace depth regions are then of the same shape, i.e. only
inflated copies of one another. Therefore the choice of 	 is roughly irrelevant in the
corresponding sample case as well. But it matters in general because the shapes of
the halfspace depth regions may vary for different 	’s.

In principle, there are a few possible approaches to choosing 	: (a) as a neat
number as in Figure 2, (b) as an m-dependent neat number such as 	 = 1/�2�m+ 1��
in Figure 1, which ensures �̂	 non empty in any dimension, (c) as a number with a
direct link to the normal case such as 	 = 0
158655 in Figure 4, which leads to the
coefficient CP three times higher than Cp in the normal univariate case if �P�	 = 1, (d)
	 = 1/�2n� as in Figure 3, which produces empirical halfspace depth regions equal to
the convex hulls of the data points. It would also be possible to consider several 	’s
at once. Clearly, each choice has its benefits and drawbacks. We find (d) especially
appealing because it is very intuitive and avoids any sophisticated theory, but it is
up to the practitioners to agree on the selection rule for 	 that best fits their needs,
just as they decided to use the 6� methodology rather than the 7� one.

Fifth, the method could be easily modified by scaling only the individual
coordinates of Y = �Y1� 
 
 
 � Ym�

′. Indeed, we might define m precision indices Ci
P =

�P��s
i
max, i = 1� 
 
 
 � m,

simax = sup
{
s > 0 � ����Y1� 
 
 
 � sYi� 
 
 
 � Ym�

′ + cis� ⊂ � for some cis ∈ �m
}

(2)

and consider them together to assess the precision of a multivariate process. They
could be interpreted and computed like CP , thanks to the affine equivariance of
halfspace depth regions.

Sixth, in the sample case, smax and simax, i = 1� 
 
 
 � m, become random variables
whose quantiles or variances are clearly essential for evaluating the results.
These quantities might be naturally estimated by a resampling procedure such as
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386 Šiman

jacknife or bootstrap, but the optimal construction, finite-sample performance, and
asymptotic behavior of such estimators are yet to be investigated.

Seventh, those univariate PCIs using the target value should also be generalized
to the multivariate context, and a natural way to do so is discussed in the
accompanying paper Šiman (in press).

Eighth, all the PCIs mentioned in this paper could also be used quite naturally
in control charts for monitoring the evolution of multivariate processes in the course
of time.
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