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Multivariate Process Capability Indices:
A Directional Approach

MIROSLAV ŠIMAN
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Prague, Czech Republic

We propose a unified, universal, natural, and very intuitive way how to obtain new
multivariate and tool wear extensions of univariate process capability indices by means
of projection pursuit. We also illustrate the methodology in detail of the popular precision
and accuracy indices, generalize the latter in a few different ways in the same spirit,
add some personal insight, discuss the computational issues involved, and demonstrate
the advantages of our approach in a small data example.

Keywords Process capability index; Projection pursuit; Quantile regression.

Mathematics Subject Classification Primary 62P30; Secondary 62H99.

1. Introduction

Process capability indices (PCIs) were introduced for evaluating the acceptability of man-
ufacturing processes, and since they have become essential for any quality improvement
program.

In the standard univariate case, we assume that there is only one important stochastic
feature Y ∈ R of the output and that we have an idea about the optimal target value T ∈ R

of the process as well as about the range T = [LSL,USL] of all its conforming output
values. The goal of PCIs is to quantify how much Y meets our expectations, and many
univariate PCIs have already been proposed and thoroughly investigated for this purpose.
Naturally, they are often based on the scalar quantities T , USL, and LSL as well as on
some parameters of the distribution L(Y ) of Y; see Pearn and Kotz (2006) or Kotz and
Lovelace (1998) for a survey.

Those books also briefly summarize current proposals of PCIs in the multivariate
context, where we have to deal with a stochastic vector process characteristic Y ∈ R

m, with
its optimal target value T ∈ R

m and with the tolerance region T ⊂ R
m of all conforming

values of Y. These proposals often assume a special shape of T or a special distribution of
Y such as normal or elliptical, employ variance matrices and related Mahalanobis distances
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1950 Šiman

and principal or axial vectors, use ellipsoids, and consider either their volumes or their
largest inflated copies still contained in the tolerance region.

Of all these ideas, it is only that of considering some directions that seems somewhat
related to our approach of employing all directions at all in the projection pursuit method-
ology, see, e.g., Friedman (1987) and Huber (1985), that we use to generalize univariate
PCIs to the multivariate and regression/tool wear context in a systematic way and without
any limiting assumptions on T and the distribution of Y.

The only other work combining projection pursuit methodology with process capability
indices is probably that of He et al. (2007), written in Chinese. After examining its formulae
and English abstract, we still believe that our contribution is substantially different for it is
partly based on some very recent results, discusses general PCIs in the general multivariate
and regression context, proposes no less than four different multivariate generalizations of
the accuracy index, presents much of unique personal insight, and does not use projections
of the tolerance region.

In what follows, we present basic definitions and notation in Sec. 2, introduce the mul-
tivariate generalization of PCIs in Sec. 3, illustrate it on precision and accuracy indices in
Secs. 3.1 and 3.2, describe the regression (multivariate) generalization in Sec. 4, briefly dis-
cuss the computational aspects in Sec. 5, and conclude with a simple data example in Sec. 6.

2. Definitions and Notation

Let us consider a multivariate product or process Y ∈ R
m, m ≥ 1, whose engineering

specification is given by a convex and compact tolerance region T ⊂ R
m and by a target

value T ∈ T in the interior of T . The convexity assumption on T is satisfied by all the
common tolerance regions of elliptical and polyhedral shapes, and it guarantees that any
segment linking T ∈ T with any y ∈ T lies in T , which is often highly desirable. The
compactness of T is not limiting at all because its boundary ∂T is too negligible to have
any effect, and everything real and material is bounded anyway.

Furthermore, we will always assume T = 0 without any loss of generality as we can
always shift the coordinate system accordingly. And if the target value T = 0 is given, then
any u ∈ Sm−1 := {u ∈ R

m, ‖u‖ = 1} leads to the unique point Lu on ∂T of the form ruu
for some ru > 0, ru = ‖Lu − T‖ = ‖Lu‖.

Finally, we will consider an auxiliary univariate process Z ∈ R with the target
value T = 0 in the tolerance interval [LSL,USL], and we will assume that C =
C(L(Z), LSL,USL, T ) is an arbitrary univariate PCI whose value, roughly speaking,
decreases with the worsening behavior/capability of Z. Usually, C depends on the distribu-
tion L(Z) of Z only through a few of its scalar characteristics such as moments or quantiles.

3. Multivariate Extension

We suggest to generalize C to the multivariate index CM for Y ∈ R
m with target T = 0 by

means of the projection pursuit:

CM = inf
u∈Sm−1

C(L(u′Y),−r−u, ru, 0). (1)

In other words, CM is the least favorable of all values of C computed from projections u′Y,
u ∈ Sm−1, with [LSL,USL] replaced with [−r−u, ru]. Of course, this coefficient might
also be scaled or shifted by a suitable constant if it were found more convenient, which
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On Multivariate Process Capability Indices 1951

holds for any other PCI as well. Furthermore, new multivariate PCIs could be obtained by
combining a few of such multivariate indices into a single one, which is already a common
practice in the univariate setting. For example, one might generalize C∗

pk on p. 184 in Pearn
and Kotz (2006) to C∗

pk,M = C∗
p,M (1− ka,M ) with C∗

p,M and any version of ka,M considered

below, and possibly also with C∗
p,M replaced with the multivariate precision index of Šiman

(2014).
If the infimum in (1) is achieved for a vector d ∈ Sm−1, i.e., CM =

C(L(d′Y),−r−d, rd, 0), then such a critical direction d indicates where the problems with
capability are the most serious, which is also an interesting piece of information.

Note as well that the index naturally degenerates to the univariate case forS0 = {−1, 1},
and that many distributional parameters influencing common univariate PCIs are the same
for processes Z and −Z if indeed T = 0. In fact, many univariate process capability indices
can easily be rewritten in the form of CM for m = 1, which makes their multivariate
generalization very straightforward.

3.1 Example 1: Multivariate Precision Index

For example, the univariate precision index C∗
p, discussed on p. 183 of Pearn and Kotz

(2006), can be rewritten as follows:

C∗
p = min

{
USL − T

3
√

var(Y )
,
T − LSL

3
√

var(Y )

}
= inf

u∈S0

ru

3
√

var(u′Y)
.

Consequently, it could be generalized to the multivariate context as

C∗
p,M = inf

u∈Sm−1

ru

3
√

var(u′Y)
.

Still, we continue to prefer the multivariate precision index introduced in the accompanying
paper Šiman (2014) because we are deeply convinced that any precision index should be
independent of the target value.

3.2 Example 2: Multivariate Accuracy Indices

We believe that process accuracy is well defined only with respect to a given target and
that it should depend on the process only through its parameter of location. In the setting
considered above, with Y ∈ R

m and T = 0, we therefore propose the following definition
of multivariate accuracy index ka,M of Y:

ka,M = sup
u∈Sm−1

u′μ
ru

, (2)

where μ stands for a location parameter of Y. This definition works for any sensible choice
of μ and falls into the general framework introduced above for μ = EY when u′μ = Eu′Y.
Nevertheless, other location parameters might be employed as well. For example, we would
recommend to set μ equal to an affine equivariant multivariate median of Y whenever there
is no a priori information about the distribution of Y available; see Small (1990) for an
inspiration. Furthermore, this index could be modified in several ways, for example

kI
a,M = sup

u∈Sm−1

u′μ
0.5(ru + r−u)

, kII
a,M = sup

u∈Sm−1

|u′μ|
ru

, or kIII
a,M = supu∈Sm−1 u′μ

infu∈Sm−1 ru
(3)
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1952 Šiman

where the last two alternatives might be found useful for processes whose output is expected
to be conforming even when it is reversed (taken with the opposite sign) or rotated arbitrarily.
Each index in (2) and (3) is defined as a supremum over all directions because the univariate
index C behind it, i.e. the version for m = 1, increases with the worsening capability of the
underlying process.

If μ = EY, then kI
a,M degenerates to index k in the univariate case if the midpoint of

the tolerance interval is zero. Similarly, both kII
a,M and kIII

a,M always reduce to index k∗ for
m = 1; see p. 31 and p. 184 of Pearn and Kotz (2006) for the indices k and k∗, respectively.
To the best of our limited knowledge of PCIs, the most natural index ka,M has not yet been
considered in the literature even in the univariate case.

Note that these definitions virtually ignore the precision of the process and avoid any
complicated inflating of some level sets or quantile regions. As the univariate accuracy
index Ca is currently defined as 1 − k, we might also subtract ka,M , kI

a,M , kII
a,M , and kIII

a,M

from 1 to obtain its direct multivariate counterparts.

4. Regression Extension

The multivariate index introduced in the previous section could be generalized easily even to
the regression setup where Y is accompanied with a stochastic vector of regressors X ∈ R

p,
simply by considering the conditional distribution of the projections instead. Indeed,

CR = inf
u∈Sm−1

C(L(u′Y|X),−r−u, ru, 0)

is such a very natural regression multivariate index of Y generalizing CM to the regression
context. In other words, CR can be obtained from CM by replacing the distribution of
projections L(u′Y) with its conditional counterpart L(u′Y|X). While conditional means
and variances can be easily obtained from the least squares regression, conditional quantile-
based characteristics naturally follow from the quantile regression approach, introduced in
Koenker and Bassett (1978) and masterly reviewed in Koenker (2005). The latter approach is
very appealing both from the computational point of view and because it does not require any
limiting moment assumptions. Consequently, it might be beneficial to redefine all common
process capability indices in terms of reasonable quantiles (despite the resulting possible
mild increase in their sample variability), by replacing their moment-based distributional
parameters with their quantile-based equivalents under the assumption of normality; see,
e.g., p. 143 of Kotz and Lovelace (1998) for such an approach. For example, the mean could
be replaced with the median or with the midpoint of an interquantile range, the standard
deviation with a scaled interquantile range, and both skewness and kurtosis with their
quantile-based counterparts presented in White et al. (2010) and Kim and White (2004).
Although the choice of quantiles for this purpose is usually only a matter of convention, the
extreme quantiles should be avoided at any cost since their precise estimation from small
to moderate data samples is next to impossible.

Note that the multivariate accuracy indices described above might be generalized to
the regression context by replacing μ = μ(L(Y)) with μ(L(Y|X)). Needless to say that
there are also affine equivariant regression multivariate medians indicated in the literature;
see, e.g., Hallin et al. (2010) or Paindaveine and Šiman (2011) and references therein.

5. Computational Aspects

In the empirical case, the suprema and infima in the definitions of CM and CR could
always be approximated accurately by corresponding maxima and minima over a finite but
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On Multivariate Process Capability Indices 1953

dense grid of equispaced directions u ∈ Sm−1, which provides a clue how to compute these
coefficients in practice. Furthermore, the empirical (regression) quantiles of projections
u′Y can be obtained analytically for all u ∈ Sm−1 by means of parametric programming,
see Paindaveine and Šiman (2011, 2014). In fact, even some statistics based on projection
pursuit can be computed exactly despite the infimum or supremum involved, see Šiman
(2011), which might be true for some special indices CM or CR as well. In any case, C∗

p,M ,
ka,M , kI

a,M , kII
a,M , and kIII

a,M can be calculated trivially if T is a hypersphere centered at
T = 0, i.e., if ru is constant on Sm−1.

6. Practical Example

In this section, we illustrate the application and benefits of our methodology by applying it
to a small data example.

Assume the target T = 0 and the tolerance region T in the form of a convex quadri-
lateral given by vertices [8, 0], [0, 8], [−8, 0], and [0,−16]. Suppose that n = 100 ob-
servations Y1, ...,Yn of the bivariate process Y can be represented as a random sample
drawn from the multivariate normal distribution with independent components N (m, V)
with m = (0.5, 2)′ and V = diag(1, 2); see Fig. 1. If T were different from 0, we would
shift the coordinate system and consider new observations Y1 − T, . . . , Yn − T with zero
target and the tolerance region T − T instead.

−10 −5 0 5 10

−15

−10

−5

0

5

y
1

y
2

∂ T

PQA

B

u
0

µ

Figure 1. This figure partly explains the proposed methodology for an example of n = 100 (light
gray) observations Y 1, . . . , Y n of (the output of) a manufacturing process Y, represented here by
a random sample from the multivariate normal distribution N (m, V) with m = (0.5, 2)′ and V =
diag(1, 2). We further assume zero target T = 0 and the tolerance region T (with its thick black
border ∂T ) in the form of the convex quadrilateral given by vertices [8, 0], [0, 8], [−8, 0], and
[0, −16]. The picture also displays points μ = (Y 1 + · · · + Y n)/n, A = Lu, B = L−u, P = Lv, and Q
= Lw, where u = (−0.62, 0.78)′, v = (0.51, 0.86)′, and w = (0.59, 0.81)′ are the critical directions
where the extreme in the definition of C∗

p,M , ka,M , and kI
a,M is achieved, respectively. The line segments

〈0, A〉, 〈0, B〉, 〈0, P 〉, and 〈0,Q〉 are of length ru, r−u, rv, and rw, in that order. The small black dots
on the line segment 〈A, B〉 stand for the projections of observations Y 1, . . . , Y n onto the line with
directional vector u.
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1954 Šiman

How can we compute the multivariate generalization of a univariate capability
index C = C(L(Z), LSL,USL, 0) of process Z with target 0 and tolerance interval
[LSL,USL]? Ideally, we would consider each direction u ∈ Sm−1, use it to compute
the univariate index C from the scalar process of projections u′Yi , i = 1, . . . , n, with zero
target and the tolerance interval [LSL,USL] = [−r−u, ru], and find the infimum of all
such values (if C decreases with deteriorating capability). In practice, we usually cannot
work with infinite numbers of directions, and this is why we typically employ only a large
dense subset of them (or use parametric programming if it is possible).

In our empirical bivariate example, we considered Nφ = 360,000 equispaced directions
ui = (cos(i/Nφ), sin(i/Nφ))′, i = 0, . . . , Nφ −1, which made the error caused by the finite-
sample approximation truly negligible. Then,

rui
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8/((1, 1)ui), 0 ≤ i < Nφ/4

8/((−1, 1)ui), Nφ/4 ≤ i < Nφ/2

−16/((2, 1)ui), Nφ/2 ≤ i < 3Nφ/4

−16/((−2, 1)ui), 3Nφ/4 ≤ i < Nφ

, (4)

μ = (Y 1 + · · · + Yn)/n = (0.64, 2.16)′, and

ka,M
.= max

i=0,...,Nφ−1

{u′
iμ

rui

}
= 0.37 (5)

was achieved for u59263 = (0.51, 0.86)′. The other indices such as C∗
p,M or kI

a,M can be
computed quite analogously: C∗

p,M

.= 1.45 was achieved for u128679 = (−0.62, 0.78)′ and
kI
a,M

.= 0.31 was achieved for u53638 = (0.59, 0.81)′.
That clearly shows that it is not generally enough to examine only a few orthonormal

directions (semiaxial directions, principal vectors, and the like) as is typically done in
practice nowadays. For example, if we considered only four semiaxial directions (1, 0)′,
(0, 1)′, (−1, 0)′ and (0,−1)′, i.e., if Nφ = 4, then we would obtain the same critical vector
(0, 1)′ for all the three indices considered, for which the univariate process capability
indices behind ka,M , C∗

p,M , and kI
a,M are equal to quite different values 0.27, 2.00, and 0.18,

respectively. See also Fig. 1 for a graphical illustration of this data example.
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