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Abstract: We prove the existence of long-range order at sufficiently low temperatures,
including zero temperature, for the three-state Potts antiferromagnet on a class of quasi-
transitive plane quadrangulations, including the diced lattice. More precisely, we show
the existence of (at least) three infinite-volume Gibbs measures, which exhibit sponta-
neous magnetization in the sense that vertices in one sublattice have a higher probability
to be in one state than in either of the other two states. For the special case of the diced lat-
tice, we give a good rigorous lower bound on this probability, based on computer-assisted
calculations that are not available for the other lattices.
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1. Introduction and Main Results

1.1. Introduction. We are interested here in the three-state antiferromagnetic Potts model
on a class of infinite plane quadrangulations. Recall that a graph embedded in the plane
is called a quadrangulation if all its faces are quadrilaterals (i.e., have four vertices and
four edges).1 Some examples of infinite plane quadrangulations are drawn in Fig. 1:

1 In this paper we restrict attention to nondegenerate quadrangulations, i.e., each face has four distinct
vertices and four distinct edges. Some discussion of degenerate plane quadrangulations (in the case of finite
graphs) can be found in [39].
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these include the square lattice Z
2 (with nearest-neighbor edges) and the so-called diced

lattice.
On the square lattice, the three-state Potts antiferromagnet at zero temperature can

be mapped into a special case of the six-vertex model that admits an exact (but nonrig-
orous) solution [5, section 8.13]. This model is therefore believed to be critical at zero
temperature but disordered for any positive temperature.2

On the diced lattice, by contrast, a proof was outlined in [47] showing that the
three-state Potts antiferromagnet has a phase transition at nonzero temperature and has
long-range order at all sufficiently low temperatures (including zero temperature). In the
present paper, we present the details of this proof and we extend the result to a large
class of quasi-transitive quadrangulations, including some hyperbolic lattices.

To explain the class of lattices that we can cover, let us start by observing that a
quadrangulation is a connected bipartite graph G = (V, E), so that the vertex set has a
canonical bipartition V = V0∪V1. We may view the two sublattices V0 and V1 as graphs
in their own right by connecting vertices along the diagonals of the quadrilateral faces
of the original lattice: this yields graphs G0 = (V0, E0) and G1 = (V1, E1) as shown
in Fig. 1. Note that G0 and G1 are duals of each other, i.e., each face of G0 contains
a unique vertex of G1, and vice versa; and each edge of G0 crosses a unique edge of
G1, and vice versa (see Fig. 2). Conversely, given any dual pair of (finite or infinite)
graphs G0 = (V0, E0) and G1 = (V1, E1) embedded in the plane, we can form a plane
quadrangulation G = (V, E) by setting V = V0 ∪ V1 and placing an edge between
each pair of vertices v ∈ V0 and w ∈ V1 where w lies in a face of G0 that has v on its
boundary (or equivalently vice versa). The main assumption that we will make in this
paper is that one sublattice (say, G0) is a triangulation. In particular, our proofs cover
the lattices shown in b–d of Fig. 1, but not the square lattice (a).

To explain the nature of the phase transition, note that ground states of the three-
state Potts antiferromagnet are simply proper three-colorings of the lattice. On any
bipartite lattice, we may construct special ground states by coloring one sublattice (say,
V0) in one color and using the other two colors to color the other sublattice in any
possible way. Note that in this way, the second sublattice carries all the entropy. Of
course, the special ground states in which the first sublattice uses only one color are
atypical of the Gibbs measure, even at zero temperature. Nevertheless, the underlying
idea applies more generally: there may be a preference for the first sublattice to be
colored mostly in one color because this increases the freedom of choice of colors on
the other sublattice. Otherwise put, integrating out the colors on the second sublattice
may induce an effective ferromagnetic interaction on the first sublattice. If this effective
interaction is strong enough, it may result in long-range order on the first sublattice. We
call this an entropy-driven phase transition.3 In [47] a proof was sketched along these
lines that an entropy-driven transition indeed occurs on the diced lattice. Here we will
present the details of this proof and extend it to a large class of plane quadrangulations
in which one sublattice is a triangulation. The extension uses a variant of the Peierls
argument that works whenever the Peierls sum is finite (even if it is not small), followed
by a random-cluster argument.

2 See, e.g., the discussion below formula (2.8) in [58]. See also [24,65] for Monte Carlo data supporting
these beliefs.

3 The method for encoding such entropy costs in terms of certain Peierls contours was suggested already
in [46], but in that paper it led to a proof of the transition only for some toy models including the three-state
Potts antiferromagnet on the “decorated cubic lattice”.
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(b)(a)

(d)(c)

Fig. 1. Four quasi-transitive quadrangulations with their sublattices G0 (open circles joined by dashed red
edges) and G1 (filled circles joined by solid green edges). In these examples, the sublattice G0 is a the square
lattice, b the triangular lattice, c the union-jack lattice, and d the hyperbolic lattice with Schläfli symbol {3, 7}.
Note that in b–d, G0 is a triangulation. In a and b, the quadrangulations G are, respectively, the square lattice
and the diced lattice

In all the cases handled in this paper, there is a strong asymmetry between the two
sublattices, so that it is entropically favorable to ferromagnetically order the triangulation
(G0) and place the entropy on the other sublattice (G1). By contrast, in the square lattice,
where no finite-temperature phase transition is believed to occur, the two sublattices
are isomorphic. It is therefore natural to ask whether asymmetry is a necessary and/or
sufficient condition for the existence of a finite-temperature phase transition. This is a
subtle question, and we discuss it further in Sect. 1.3 below.

1.2. Statement of the results. Let us now formulate our results precisely. We first need
to define more precisely the class of graphs we will be considering. We quickly review
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(b)(a)

(d)(c)

Fig. 2. The two sublattices G0 and G1 for each of the four lattices from Fig. 1. The graph G0 (red open circles
and dashed edges) is dual to the graph G1 (green filled circles and solid edges)

here the essential definitions; a more thorough summary of the needed theory of infinite
graphs can be found in the Appendix.

A graph G = (V, E) is called locally finite if every vertex has finitely many neighbors;
in this paper we will consider only locally finite graphs. If G has at least k + 1 vertices,
then G is called k-connected if one needs to remove at least k vertices to disconnect it.
A graph G is said to have one end if after the removal of finitely many edges, there is
exactly one infinite connected component; note that this implies in particular that G is
infinite.

A graph is said to be planar if it can be drawn in the plane R
2 with vertices repre-

sented by distinct points and edges represented by closed continuous arcs joining their
endvertices, mutually disjoint except possibly at their endpoints. A plane graph is a
planar graph with a given embedding in the plane. An embedding of a connected graph
in the plane is called edge-accumulation-point-free (or EAP-free for short) if there are
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no points in the plane with the property that each neighborhood of the point intersects
infinitely many edges.4 An EAP-free embedding divides the plane into connected open
sets called faces. The boundary of a face is either a finite cycle or a two-way-infinite
path.5

Consider an EAP-free embedding of a 3-connected graph G. Then one may define a
dual graph G∗ = (V ∗, E∗) whose vertex set V ∗ is the set of faces of G and with edge
set E∗ � E , where by definition two faces of G (or equivalently two vertices of G∗)
are linked by an edge e∗ ∈ E∗ if and only if the corresponding edge e ∈ E lies in the
border of both faces. Clearly G∗ is locally finite if and only if every face of G is bounded
by a finite cycle. In this case we can embed G∗ in an EAP-free way in the plane such
that each face of G contains exactly one vertex of G∗ and each edge of G is crossed
by exactly one edge of G∗, and vice versa; in particular, G is also the dual of G∗. We
say that G is a triangulation (resp. quadrangulation) if every face of G is bounded by
a triangle (resp. quadrilateral), or equivalently if each vertex of G∗ has degree 3 (resp.
4). It turns out that triangulations and quadrangulations, defined in this way, are always
graphs with at most one end.6

The final set of definitions we need concerns some form of “translation invariance”
of our lattices. An automorphism of a graph G = (V, E) is a bijection g : V → V
that preserves the graph structure. Two vertices u, v ∈ V are of the same type if there
exists an automorphism that maps u into v. This relation partitions the vertex set V into
equivalence classes called types. The graph G is called vertex-transitive if there is just
one equivalence class, and vertex-quasi-transitive if there are finitely many equivalence
classes. Edge-transitivity and (for plane graphs) face-transitivity are defined similarly.
The corresponding forms of quasi-transitivity are all equivalent (see Lemma A.1 in the
Appendix), which is why we simply talk about quasi-transitivity without specifying
whether in the vertex-, edge- or face-sense.

We will study the three-state antiferromagnetic Potts model on plane quadrangu-
lations G, constructed from mutually dual sublattices G0 and G1, such that G0 is a
locally finite 3-connected quasi-transitive triangulation with one end.7 Note that quasi-
transitivity refers only to the structure of G0 (or G1 or G) as an abstract graph (i.e.,
without reference to any embedding). It turns out [3, Theorem 4.2] (see also [67, The-
orem 1]) that any locally finite 3-connected quasi-transitive planar graph with one end
can be periodically embedded in either the Euclidean or hyperbolic plane, i.e., so that
the automorphisms of G correspond to a discrete subgroup of the group of isometries
of the embedding space. But we do not use this fact anywhere in this paper.

4 The “one-way-infinite ladder” plane graph with vertices at points (0, 1/n) and (1, 1/n) [n = 1, 2, . . . ] and
straight-line edges joining the pairs {(0, 1/n), (1, 1/n)}, {(0, 1/n), (0, 1/(n+1))} and {(1, 1/n), (1, 1/(n+1))}
is an example of a locally finite plane graph that is not EAP-free. Indeed, each point (t, 0) with t ∈ [0, 1] is
an edge accumulation point.

5 By “two-way-infinite path” (or “double ray”) we mean simply a graph that is isomorphic to Z with
nearest-neighbor edges. In an EAP-free embedding, a two-way-infinite path has no accumulation points in
the finite plane R

2, but both of its outgoing rays tend to infinity. Therefore, in the sphere S = R
2 ∪ {∞},

the closure of a two-way infinite path is homeomorphic to a circle S
1. See Appendix A.3 for more details

concerning plane graphs and their faces.
6 A more general definition, which allows for multiple ends, is discussed in Sect.A.2 of the Appendix.

Briefly, we say that a locally finite 3-connected graph G is a triangulation (resp. quadrangulation) if G has an
abstract dual in which each vertex has degree 3 (resp. 4); see Sect. A.2 for the definition of abstract duals.
With this more general definition, it can be shown that a triangulation (resp. quadrangulation) has an EAP-free
embedding in the plane if and only if it is finite or has one end: see Proposition A.13 in Sect. A.3.

7 The quasi-transitivity of G0 implies that also G1 is quasi-transitive: see Theorem A.3(v) in the Appendix.
It is not hard to see that now also G must be quasi-transitive.
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Let us now define the q-state Potts antiferromagnet on an arbitrary infinite graph
G = (V, E), for an arbitrary positive integer q. The state space is the set

S := [q]V = {
σ = (σv)v∈V : σv ∈ [q] ∀v ∈ V

}
, (1.1)

where we have used the shorthand notation [q] = {1, 2, . . . , q}. We also let

Sg :=
{
σ ∈ S : σu 	= σv ∀{u, v} ∈ E

}
(1.2)

denote the set of proper q-colorings of G. We sometimes use the terms “spin configu-
ration” for σ ∈ S and “ground-state configuration” for σ ∈ Sg. For each finite subset
Λ ⊂ V we let

∂Λ := {
v ∈ V \Λ : {v, u} ∈ E for some u ∈ Λ}

(1.3)

denote the external boundary ofΛ. For any boundary condition τ : V → [q] and any spin
configuration σ : Λ→ [q] on Λ, we define the Hamiltonian of σ under the boundary
condition τ by

HΛ(σ | τ) :=
∑

u,v∈Λ{u,v}∈E

δσu ,σv +
∑

u∈Λ, v∈∂Λ{u,v}∈E

δσu ,τv (1.4)

where δσu ,σv is the Kronecker delta, i.e.,

δab = δ(a, b) =
{

1 if a = b
0 if a 	= b

(1.5)

For β ∈ [0,∞), we define the Gibbs measure in volume Λ with boundary condition τ
at inverse temperature β:

μτΛ,β(σ ) :=
1

Z τΛ,β
exp[−βHΛ(σ | τ)]. (1.6)

For β = ∞, we define

μτΛ,∞(σ ) := lim
β→∞μ

τ
Λ,β(σ ). (1.7)

That is, μτΛ,∞ is the uniform distribution on configurations σ that minimize HΛ(σ | τ).
[Note that for some τ this minimum energy might be strictly positive, i.e., there might not
exist proper colorings of Λ ∪ ∂Λ that agree with τ on ∂Λ.] Of course, these definitions
actually depend on τ only via the restriction τ∂Λ := (τu)u∈∂Λ of τ to ∂Λ.

We then define infinite-volume Gibbs measures in the usual way through the
Dobrushin–Lanford–Ruelle (DLR) conditions [30], i.e., we say that a probability mea-
sure μ on S is an infinite-volume Gibbs measure for the q-state antiferromagnetic Potts
model at inverse temperature β ∈ [0,∞] if for each finite Λ ⊂ V its conditional
probabilities satisfy

μ(σΛ| σV \Λ = τV \Λ) = μτΛ,β(σΛ) for μ-a.e. τ . (1.8)

For the remainder of this paper we specialize to q = 3. Here is our main result:
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Theorem 1.1 (Gibbs state multiplicity and positive magnetization). Let G = (V, E)
be a quadrangulation of the plane, and let G0 = (V0, E0) and G1 = (V1, E1) be its
sublattices, with edges drawn along the diagonals of quadrilaterals. Assume that G0 is
a locally finite 3-connected quasi-transitive triangulation with one end. Then there exist
β0,C < ∞ and ε > 0 such that for each inverse temperature β ∈ [β0,∞] and each
k ∈ {1, 2, 3}, there exists an infinite-volume Gibbs measure μk,β for the 3-state Potts
antiferromagnet on G satisfying:

(a) For all v0 ∈ V0, we have μk,β(σv0 = k) ≥ 1
3 + ε.

(b) For all v1 ∈ V1, we have μk,β(σv1 = k) ≤ 1
3 − ε.

(c) For all {u, v} ∈ E, we have μk,β(σu = σv) ≤ Ce−β .

In particular, for each inverse temperature β ∈ [β0,∞], the 3-state Potts antiferromag-
net on G has at least three distinct extremal infinite-volume Gibbs measures.

Remarks. 1. The bound (c) shows in particular that the zero-temperature Gibbs measure
μk,∞ is supported on ground states.

2. Any subsequential limit as β →∞ of the measures μk,β with β <∞ also satisfies
the bounds (a)–(c). Therefore, there exist zero-temperature Gibbs measures with these
properties that are limits of finite-temperature Gibbs measures with these properties.
To see that this is a nontrivial property, consider on the square lattice Z

2 the configu-
ration τ ∈ S of the 3-state Potts antiferromagnet defined by τ(i, j) = 1+(i + j mod 3).
Then τ ∈ Sg is a ground-state configuration such that its restriction to any row and
any column, suitably shifted, is the sequence (. . . , 1, 2, 3, 1, 2, 3, . . . ). Since for any
finite Λ ⊂ Z

2 there is precisely one ground-state configuration that agrees with τ
on Z

2\Λ, namely τ itself, we see that the Dirac measure δτ is a zero-temperature
infinite-volume Gibbs measure. But this measure is not a limit of positive-temperature
Gibbs measures: the reason can be traced to the fact that at β < ∞ with boundary
condition τ in a sufficiently large volume Λ, there exists a configuration τ̄ [namely,
τ̄(i, j) = 1 + (i + j mod 2)] such that we can replace τ on the internal boundary ofΛ
by τ̄ at an energetic cost of order |∂Λ|, while gaining a bulk entropic advantage (with
the boundary condition τ̄ , one can color Λ with 1 on one sublattice and arbitrarily 2
or 3 on the other sublattice).

3. We construct the infinite-volume Gibbs measures μβ,k as subsequential limits of
finite-volume Gibbs measures. We expect that there is no need to go to a subse-
quence and that our approximation procedure yields extremal infinite-volume Gibbs
measures, but we have not proven either of these assertions.

In the special case where G is the diced lattice, we have a good explicit bound on the
probabilities in Theorem 1.1(a,b):

Theorem 1.2 (Quantitative bound for the diced lattice). Let G = (V, E) be the diced
lattice and let G0 = (V0, E0) and G1 = (V1, E1) be its triangular and hexagonal
sublattices, respectively. Then there exists C <∞ such that for each inverse temperature
β ∈ [0,∞] and each k ∈ {1, 2, 3}, there exists an infinite-volume Gibbs measure μk,β
for the 3-state Potts antiferromagnet on G satisfying:

(a) For all v0 ∈ V0, we have μk,β(σv0 = k) ≥ 0.90301− Ce−β .
(b) For all v1 ∈ V1, we have μk,β(σv1 = k) ≤ 0.14549 + Ce−β .
(c) For all {u, v} ∈ E, we have μk,β(σu = σv) ≤ Ce−β .
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The lower bound 0.90301 should be compared with the estimated zero-temperature
value 0.957597± 0.000004 from Monte Carlo simulations [47].8

1.3. Discussion. The phase diagram of non-attractive (i.e., non-ferromagnetic) spin sys-
tems is generally harder to predict than for attractive (ferromagnetic) spin systems, and
may sometimes depend subtly on the microscopic details of the model. In particular, this
is true for the two-dimensional 3-state Potts antiferromagnet, for which we have shown
that it has a phase transition at positive temperature on the diced lattice, while no such
phase transition is believed to occur on the square lattice—even though both lattices are
bipartite and are in fact plane quadrangulations.

The existence of a positive-temperature transition in the diced-lattice model was a sur-
prise when it was first discovered [47], for the following reason: Some two-dimensional
antiferromagnetic models at zero temperature have the property that they can be mapped
exactly onto a “height” model (in general vector-valued) [38,65]. In such cases one can
argue heuristically that the height model must always be in either a “smooth” (ordered)
or a “rough” (massless) phase; correspondingly, the underlying zero-temperature spin
model should either be ordered or critical, never disordered. Experience teaches us (or
at least seemed to teach us) that the most common case is criticality.9 In particular,
when the q-state zero-temperature Potts antiferromagnet on a two-dimensional peri-
odic lattice admits a height representation, one ordinarily expects that model to have
a zero-temperature critical point. This prediction is confirmed (at least non-rigorously)
in most heretofore-studied cases: 2-state (Ising) triangular [7,57], 3-state square-lattice
[11,43,58,65], 3-state kagome [36,45], 4-state triangular [55], and 4-state on the line
graph of the square lattice [44,45]. Indeed, before the work of [47], no exceptions were
known.

It was furthermore observed in [47] that the height mapping employed for the 3-state
Potts antiferromagnet on the square lattice [65] carries over unchanged to any plane
quadrangulation. One would therefore have expected the 3-state Potts antiferromagnet
to have a zero-temperature critical point on every periodic plane quadrangulation. The
example of the diced lattice showed that this is not the case; and the results of the
present paper provide further counterexamples. Clearly, the mere existence of a height
representation does not guarantee that the model will be critical. Indeed, criticality may
well be an exception—corresponding to cases with an unusual degree of symmetry—
rather than the generic case.

The mechanism behind all these transitions is what we have called an “entropy-driven
phase transition”: namely, ordering on one sublattice increases the entropy available to
the other sublattice; or said in a different way, integrating out the spins on the second
sublattice induces an effective ferromagnetic interaction on the first sublattice. If this
effective interaction is strong enough, it may result in long-range order. Such a phase
transition can therefore occur in principle in any antiferromagnetic model on any bipartite
lattice;10 whether it actually does occur is a quantitative question concerning the strength

8 The value M0 = 0.936395 ± 0.000006 reported in [47] is the spontaneous magnetization in the hyper-
tetrahedral representation, i.e. M0 = μ1,∞(σv = 1)− 1

2μ1,∞(σv 	= 1).
9 Some exceptions discussed in the physics literature prior to [47] were the constrained square-lattice 4-

state antiferromagnetic Potts model [11] and the triangular-lattice antiferromagnetic spin-s Ising model for
large enough s [73], both of which appear to lie in a non-critical ordered phase at zero temperature.

10 It can also occur in antiferromagnetic models on non-bipartite lattices: for instance, in the 4-state Potts
antiferromagnets on the union-jack and bisected-hexagonal lattices [14], which are tripartite, and for which
ordering on one sublattice increases the entropy available to the other two sublattices. However, we are
concerned here for simplicity with the bipartite case.



Low-Temperature Potts Antiferromagnets 1347

of the induced ferromagnetic interaction. Thus, such an entropy-driven phase transition
is believed not to occur in the 3-state Potts antiferromagnet on the square lattice Z

2; but
Monte Carlo evidence [31,32,71] suggests that it does occur in this same model on the
simple-cubic lattice Z

3 and presumably also on Z
d for all d ≥ 3; moreover, Peled [62]

and Galvin et al. [27] have recently proven this for all sufficiently large d and also for a
“thickened” version of Z

2 [62].
From the point of view of the Peierls argument, the relevant issue is the strength of

the entropic penalty for domain walls between differently-ordered regions, compared
to the entropy associated to those domain walls. In order to successfully carry out the
Peierls argument, one must consider all the relevant ordered phases, find an appropriate
definition of Peierls contours separating spatial regions resembling those ordered phases,
and prove that long Peierls contours γ are suppressed like e−c|γ | with a sufficiently large
constant c.

The simplest situation arises when there is an asymmetry between the two sublattices,
so that it is entropically more favorable for one of them (say, V0) to be ferromagnetically
ordered and for the other (V1) to carry all the entropy. This situation is expected to occur,
for instance, if V1 has a higher density of points than V0. The case treated in this paper,
in which G0 is a triangulation, achieves this in the strongest possible way: namely, for
the Euclidean lattices in our class, it is easy to see using Euler’s formula that the spatial
densities11 of the sublattices V0 and V1 are in the proportion 1:2, which is the most
extreme ratio achievable for two dual periodic Euclidean lattices.

In this asymmetric situation, one knows in advance which sublattice (V0) is going to
be ferromagnetically ordered (if the entropic effect is strong enough to produce any long-
range order at all); therefore, for the 3-state Potts antiferromagnet on G, one expects at
low temperature to have (at least) three distinct ordered phases, corresponding to the three
possible choices for the color that dominates on V0. One may therefore define Peierls
contours just as one would for a ferromagnetic Potts model on G0 (see Sect. 2.1 below
for details), and then try to show that long Peierls contours are sufficiently suppressed,
i.e. that it is sufficiently costly to create an interface between regions where one and
another color are used on V0. This is a quantitative problem, which is made difficult by
the fact that (unlike in a ferromagnetic model) one does not have any parameter that can
be varied to make the suppression of long contours as large as one wishes.

The situation is even more delicate for lattices, such as Z
d , where the two sublattices

play a symmetric role (in the sense that there exists an automorphism of G carrying one
sublattice onto the other). Indeed, for models with symmetry between the sublattices,
for every Gibbs measure where one sublattice is ordered (in the sense of being colored
more often with one preferred color), there must obviously exist a corresponding Gibbs
measure where the other sublattice is ordered. Therefore, the system has two “choices” to
make: first, of the sublattice to be ordered, and then of the color in which it is ordered—
which leads to a total of (at least) six distinct ordered phases for the 3-state model. For
this sort of long-range order to occur, it must be sufficiently costly to create an interface
between any pair of distinct ordered phases; in particular, it must be costly to create an
interface between regions where one and the other sublattice are ordered (in whatever
colors). To prove such a result will almost certainly require a different (and more subtle)
definition of Peierls contour than is used in the asymmetric case.

11 We say that a subset W ⊆ V has spatial density λ if, for any sequence of finite sets V(n) increasing to
V such that proportion of vertices in V(n) that are adjacent to V \V(n) tends to zero (i.e., van Hove–Følner
convergence), the fraction |V(n) ∩W |/|V(n)| tends to λ.
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The example of Z
d for d large [27,62] shows that asymmetry is not necessary for

the existence of a finite-temperature phase transition. But one can nevertheless say
heuristically that asymmetry enhances the effect driving the transition, by increasing
the strength of the effective ferromagnetic interaction on the favored sublattice (while
of course decreasing it on the disfavored sublattice).

Everything said so far holds for an arbitrary bipartite lattice. But the case in which
G is a plane quadrangulation is special, because G0 and G1 are not merely the two
sublattices: they are a dual pair of plane graphs.12 In particular, there is a symmetry
between G0 and G1 if and only if G0 is self-dual; and there may be special reasons,
connected with the topology of the plane, that make this self-dual case special (e.g.
critical at zero temperature). Now, it is well known that the square lattice is self-dual;
what seems to be less well known13 is that there exist many other examples of self-dual
periodic plane graphs [2,60,61,66,67,72,74], including the “hextri” lattice [60, Fig. 1]
[67, Fig. 16] [72, Fig. 1b], the “house” lattice [60, Fig. 2], and the martini-B lattice
[66, Fig. 8]. Preliminary results [13] of Monte Carlo simulations on a variety of plane
quadrangulations suggest that

(a) If G0 is self-dual, then the 3-state Potts antiferromagnet on the associated quad-
rangulation G has a zero-temperature critical point; and

(b) If G0 is not self-dual, then the 3-state Potts antiferromagnet on G has (always?
usually?) a finite-temperature phase transition.

In other words, it seems that for plane quadrangulations—unlike for general bipartite
lattices—asymmetry may be both necessary and sufficient for the existence of a finite-
temperature phase transition. It would be very interesting to find a deeper theoretical
explanation, and ultimately a proof, of this apparent fact. We conjecture that there is
an exact duality mapping that explains why (a) is true. As for (b), one could argue for
it heuristically as follows: Because the model at zero temperature has a height repre-
sentation, it should be either critical or ordered. If the self-dual cases are critical, then
the non-self-dual cases should be ordered, since asymmetry enhances the phase transi-
tion; and if the self-dual cases are ordered, then the non-self-dual cases should be even
more strongly ordered. It goes without saying that this heuristic argument is extremely
vague—no criterion for comparing lattices is given—and hence very far from suggesting
a strategy of proof.

Entropy-driven phase transitions are also possible in the q-state Potts antiferromagnet
for q > 3, but now one must consider the possibility of Gibbs measures associated to
other partitions [q] = Q0∪Q1, in which the vertices in V0 (resp. V1) take predominantly
colors from Q0 (resp. Q1). Depending on the size and shape of V0 and V1 and the value
of q, such measures might be entropically favored. For instance, such ordering with
|Q0| = |Q1| = 2 has been claimed to occur in the 4-state Potts antiferromagnet on
the simple-cubic lattice Z

3 [4,37]. Naive entropic considerations suggest that if the
densities of the sublattices V0 and V1 are in the ratio α:1−α, then the dominant ordering
would have |Q0| ≈ αq. In general, one would expect to have

( q
|Q0|

)
ordered phases

in the asymmetric case, and 2
( q
|Q0|

) = 2
( q
�q/2�

)
in the symmetric case. The cases with

|Q0| > 1 will require a different (and more subtle) definition of Peierls contour than the
one used here for |Q0| = 1.

12 For any connected bipartite graph G = (V, E) with vertex bipartition V = V0 ∪ V1, one can define
graphs G0 = (V0, E0) and G1 = (V1, E1) by setting E0 =

{{u, v} : u, v ∈ V0 and dG (u, v) = 2
}

and
likewise for E1. But if G is non-planar, or is planar but not a quadrangulation, it is not clear whether these
definitions will be useful.

13 Including to the authors until very recently.



Low-Temperature Potts Antiferromagnets 1349

The foregoing considerations are purely entropic; a more complicated phase diagram,
involving tradeoffs between entropy and energy, can presumably be obtained by adding
additional couplings into the Hamiltonian (1.4). Suppose, for instance, that in the 3-state
Potts antiferromagnet on a plane quadrangulation G where G0 is a triangulation, we
add an explicit ferromagnetic interaction, of strength λ, between adjacent vertices in the
sublattice G1. Then for small λ we expect that the favored ordering at low temperature
will be the same as for λ = 0, namely monocolor on V0 and bicolor on V1; but for large
positive λ the favored ordering will instead be monocolor on V1 and bicolor on V0. It is
then natural to guess that for largeβ there is either a switchover between the two orderings
at some particular value λt (β), or else a pair of phase transitions λt1(β) < λt2(β)with a
disordered phase in-between [and possibly λt1(∞) = λt2(∞)]. It is an interesting open
question to determine the correct qualitative phase diagram in the (λ, β)-plane and the
order of the phase transition(s).

1.4. Some further open problems. Here are some further open problems suggested by
our work:

(1) Prove (or disprove) that
(a) the finite-volume measuresμk

Λ,β used in the proof of Theorem 1.1 (see
Sect. 2.3 below) converge as Λ ↑ V (i.e., there is no need to take a
subsequence);

(b) the resulting infinite-volume Gibbs measures μβ,k are extremal Gibbs
measures; and

(c) μβ,k are invariant with respect to the automorphism of the graph G.
(2) Prove (or disprove) that for our lattices there are no more than three extremal

translation-invariant Gibbs measures at small but strictly positive temperature.
For this, one would need to control more general boundary conditions than the
uniform colorings on V0 that we have used here.
Please note that at zero temperature, there are in fact more than three extremal
infinite-volume Gibbs measures on the diced lattice, since there exist ground-
state configurations τ , similar to the example on Z

2 sketched in Remark 2 after
Theorem 1.1, such that for any finiteΛ ⊂ V there exists only one ground state that
agrees with τ on V \Λ (namely, τ itself). The delta measure on such a ground state
is therefore a zero-temperature Gibbs measure; but by the argument sketched at
the end of that Remark, this Gibbs measure is not a limit of positive-temperature
Gibbs measures.
It is worth pointing out, however, that this latter argument makes essential use
of the fact that the lattice is Euclidean (in particular, its isoperimetric constant
is zero). This raises the question whether on hyperbolic lattices there might
exist delta-measure zero-temperature Gibbs measures that are limits of positive-
temperature Gibbs measures.

(3) Extend these techniques to the q-state Potts antiferromagnet with q > 3 on
suitable lattices. For instance, one might hope to prove the existence of an entropy-
driven phase transition in the q-state Potts antiferromagnet on Z

d for suitable
pairs (q, d), i.e., for q < some qc(Z

d). In this case it is not completely clear,
even heuristically, how qc(Z

d) should behave as d → ∞. The example of the
infiniteΔ-regular tree, which has multiple Gibbs measures when q ≤ Δ [8] and
a unique Gibbs measure when q ≥ Δ + 1 [42], suggests that we might have
qc(Z

d) ≈ 2d.
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1.5. Plan of this paper. The remainder of this paper is organized as follows: In Sect. 2
we introduce the Peierls-contour representation of our model and sketch the main ideas
underlying our proofs. In particular, we formulate the key steps in our proof as precise
lemmas (Lemmas 2.1–2.5) that will be proven later, and we show how they together
imply Theorems 1.1 and 1.2. In Sect. 3 we prove Lemmas 2.1 and 2.5 in the zero-
temperature case β = ∞, using a Peierls argument. In Sect. 4 we extend these proofs
to the low-temperature case β ≥ β0, and we also prove the technical Lemmas 2.2
and 2.4. In Sect. 5 we use a random-cluster argument to deduce positive magnetization
(Lemma 2.3). In the Appendix we review the needed theory of infinite graphs.

2. Main Structure of the Proofs

2.1. Contour model. Our proofs of Theorems 1.1 and 1.2 are based on suitable bounds
for finite-volume Gibbs measures, uniform in the system size and in the inverse tem-
perature above a certain value. We will concentrate on finite-volume Gibbs measures
with uniform 1 boundary conditions on the sublattice V0; by symmetry, all statements
immediately imply analogous results for boundary conditions 2 or 3. We will always
employ finite setsΛ ⊂ V whose external boundary lies entirely in the sublattice V0, i.e.
∂Λ ⊂ V0. We will also assume thatΛ ⊂ V is simply connected, by which we mean that
bothΛ and V \Λ are connected in G. Thus, let us fix any configuration τ that equals 1 on
V0, and let μ1

Λ,β denote the finite-volume Gibbs measure inΛ with boundary condition
τ and inverse temperature β ∈ [0,∞]. (Since ∂Λ ⊂ V0, this measure is the same for all
configurations τ that equal 1 on V0.)

Our proofs are based on a version of Peierls argument relying on a contour refor-
mulation of the measure μ1

Λ,β . Our goal is to prove that the sublattice V0 exhibits
ferromagnetic order of a suitable kind. Therefore we will define Peierls contours just as
one would for studying the ferromagnetic Potts model on G0. Thus, for any configura-
tion σ , we look only at the restriction of σ to V0, and we define E0(σ ) to be the set of
“unsatisfied edges”, i.e.

E0(σ ) :=
{{u, v} ∈ E0 : u, v ∈ V0 ∩ (Λ ∪ ∂Λ) and σu 	= σv

}
. (2.1)

Letting

E1(σ ) := {e ∈ E1 : e crosses some f ∈ E0(σ )} (2.2)

denote the edges in the dual graph G1 that cross an edge in E0(σ ), we see that edges in
E1(σ ) correspond to boundaries separating areas where the vertices of G0 are uniformly
colored in one of the colors 1, 2, 3. Note that since ∂Λ ⊂ V0 and ∂Λ is uniformly colored,
every edge of E1(σ ) has both of its endpoints in Λ.

Since G0 is a triangulation, each vertex of G1 is of degree 3. If the three vertices
of G0 surrounding a vertex v ∈ V1 are colored with three different colors, then one of
these vertices must have the same color as v. This is clearly not possible for a ground
state σ (i.e., a proper coloring), so at β = ∞ at most two different colors can surround
any vertex v ∈ V1. It follows that at zero temperature, either zero or two edges of E1(σ )

emanate from the vertex v. Hence E1(σ ) consists of a collection Γ (σ) of disjoint simple
circuits that we call contours.

At positive temperature, we define contours to be connected components of E1(σ ),
which can be much more complicated than a circuit. Nevertheless, we will show that at
low temperatures, contours that are not simple circuits are rare.



Low-Temperature Potts Antiferromagnets 1351

2.2. The basic lemmas. Let us now sketch in broad lines the main ideas of our proofs,
and formulate a number of precise lemmas, to be proven later, that together will imply
our main results. We have seen that uniformly colored areas in the sublattice G0 are
separated by contours in the sublattice G1, which at zero temperature are simple circuits.
The number of different simple circuits of a given length L surrounding a given point
is roughly of order αL , where α is the connective constant of the lattice G1. Since each
vertex in G1 has degree 3, a contour entering a vertex has two possible directions in
which to continue. In view of this, it is easy to see that α ≤ 2. With a bit more work
using quasi-transitivity, this can be improved to α < 2. On the other hand, each vertex
v in G1 that lies on a contour is surrounded by vertices in G0 of two different colors. At
zero temperature, this means that there is only one color available for v, compared to two
for a vertex in G1 that does not lie on a contour. As a result, for each contour of length
L we have to pay an entropic price 2−L . In view of this, we will prove in Sect. 3 below
that the expected number of contours surrounding a given site is of order

∑
L α

L2−L ,
which is finite.

Note that this reasoning tells us that the Peierls sum is finite, but not necessarily that
it is small. In a traditional Peierls argument (such as, for example, the proof of [51,
Theorem IV.3.14]), one argues that if the Peierls contour sum is smaller than a certain
model-dependent threshold (typically a number somewhat less than 1), then the model
has spontaneous magnetization. This is indeed how we will prove Theorem 1.2 for the
diced lattice. But for the general class of lattices in Theorem 1.1, all one can hope to
prove is that the Peierls sum is finite; it need not be small. To handle this situation, we
use a trick that we learned from [22, section 6a], where it is used for percolation. We
observe that if Δ0 ⊂ V0 is connected in G0, then Δ0 is uniformly colored in one color
if and only if no contours cut through Δ0. On the other hand, if Δ0 is sufficiently large,
then by the finiteness of the Peierls sum, Δ0 is unlikely to be surrounded by a contour.
It follows that, conditional on Δ0 being uniformly colored (which is of course a rare
event), it is much more likely forΔ0 to be uniformly colored in the color 1 than in either
of the other two colors.

More precisely, for each k ∈ {1, 2, 3} and each finite set Δ0 ⊂ V0, let Jk,Δ0 denote
the event that all sites in Δ0 have the color k, and let JΔ0 =

⋃3
k=1 Jk,Δ0 denote the

event that all sites in Δ0 are colored with the same color. By the arguments sketched
above for the case of zero temperature, together with a careful estimate of non-simple
contours at small positive temperatures, we are able to prove the following lemma:

Lemma 2.1 (Long-range dependence). There exists β0 <∞ such that for each ε > 0,
there exists Mε <∞ such that for every finite set Δ0 ⊂ V0 that is connected in G0 and
satisfies |Δ0| ≥ Mε , one has

μ1
Λ,β(J1,Δ0 | JΔ0) ≥ 1− ε (2.3)

uniformly for all β ∈ [β0,∞] and all simply connected finite sets Λ ⊇ Δ0 such that
∂Λ ⊂ V0.

In order for Lemma 2.1 to be of any use, we need to show that the event on which
we are conditioning in (2.3) has positive probability, uniformly in the system size:

Lemma 2.2 (Uniformly colored sets). LetΔ0 ⊂ V0 be finite and connected in G0. Then
there exists a constant δ > 0 such that

μ1
Λ,β(JΔ0) ≥ δ (2.4)
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uniformly for all 0 ≤ β ≤ ∞ and all finite and simply connected Λ ⊇ Δ0 such that
∂Λ ⊂ V0.

Of course δ gets very small as Δ0 gets large, but we do not care, as we will take Δ0 to
be large but fixed.

Let us note that Lemmas 2.1 and 2.2 are sufficient, by themselves, to prove the
existence of at least three distinct infinite-volume Gibbs measures at all β ∈ [β0,∞].14

These infinite-volume Gibbs measures may or may not have spontaneous magnetization,
but they do at least have long-range order of a special kind: namely, they assign unequal
probabilities to the (rare) events Jk,Δ0 (k = 1, 2, 3) for some large but finite set Δ0.
This part of the argument is quite general and applies to other models as well, as long
as it can be shown that the Peierls sum is finite, even if it is not necessarily small.15

But for our particular model, we can actually do better and prove that there is spon-
taneous magnetization, thanks to the following lemma, which says that if a sufficiently
“thick” block is more likely to be uniformly colored in one color than in the other two
colors, then the same must be true for single sites within that block. Let us say that a set
Δ ⊂ V is thick16 if there exists a nonempty finite subset Δ1 ⊂ V1 that is connected in
G1 and such that Δ = {v ∈ V : dG(v,Δ1) ≤ 1}. Then Δ is connected in G, and we
have Δ1 = Δ ∩ V1; we write Δ0 := Δ ∩ V0.

Lemma 2.3 (Positive magnetization). Fix β0 > 0 and let Δ ⊂ V be thick. Then there
exists ε > 0 such that for each v0 ∈ Δ0,

μ1
Λ,β(σv0 = 1)− μ1

Λ,β(σv0 = 2) ≥ ε[μ1
Λ,β(J1,Δ0)− μ1

Λ,β(J2,Δ0)
]
, (2.5)

and similarly, for each v1 ∈ Δ1,

μ1
Λ,β(σv1 = 2)− μ1

Λ,β(σv1 = 1) ≥ ε[μ1
Λ,β(J1,Δ0)− μ1

Λ,β(J2,Δ0)
]
, (2.6)

uniformly for all β ∈ [β0,∞] and all simply connected finite sets Λ ⊇ Δ such that
∂Λ ⊂ V0.

The proof of Lemma 2.3 is not very complicated but is very much dependent on the
specific properties of our Potts model. Inspired by the cluster algorithm introduced in
[70,71], we condition on the position of the 3’s and use the random-cluster representation
for the Ising model of 1’s and 2’s on the remaining diluted lattice. We show that the
difference of probabilities that Δ0 is uniformly colored in the color 1 or in the color 2
equals the probability that Δ0 is uniformly colored and there is a 1–2 random-cluster
connection betweenΔ0 and the boundary ofΛ. Using this latter quantity, it is then easy
to produce (by a finite-energy argument) a lower bound on the probability that there is
a 1–2 random-cluster connection between a fixed lattice site v0 and the boundary of Λ;
and this, in turn, equals the magnetization.

14 To see this, just follow the proof of Theorem 1.1 given in Sect. 2.3 below and disregard all references to
Lemma 2.3. The bound (2.10) and its analogues for k = 2, 3 survive to the (subsequential) infinite-volume
limit and hence show that the Gibbs measures μk,β for k = 1, 2, 3 are distinct.

15 For example, consider the Ising model on Z
2, with the contours constructed as in [30, Lemma 6.14]

by taking a circuit on the dual lattice that is the external boundary of the connected (by nearest-neighbor
edges in Z

2) region of constant spin containing origin. Then this argument gives the existence of at least
two distinct infinite-volume Gibbs measures whenever e−2βαSQ < 1 (i.e. β > 1

2 logαSQ), where αSQ is
the connective constant for self-avoiding polygons (or equivalently, self-avoiding walks [53, Corollary 3.2.5])
on the square lattice, and β is the inverse temperature in the standard Ising normalization. (It is known that
αSQ < 2.679192495 [63]; the current best numerical estimate is αSQ ≈ 2.63815853031(3) [40].)

16 Notice that the sublattices V0 and V1 enter the definition of thickness in an asymmetric way.
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The last main missing ingredient of Theorem 1.1 is the following lemma, which
shows that improperly colored edges are rare when β is large; in particular it shows that
any limit as β → ∞ of the finite-temperature infinite-volume Gibbs measures that we
will construct is concentrated on the set Sg of ground states.

Lemma 2.4 (Rarity of improperly colored edges). There exists C <∞ such that

μ1
Λ,β

(
σu = σv

) ≤ Ce−β (2.7)

for all β ∈ [0,∞], all {u, v} ∈ E, and all finite and simply connected Λ � u, v such
that ∂Λ ⊂ V0.

Finally, to prove Theorem 1.2 for the diced lattice, we need the following quantitative
bound:

Lemma 2.5 (Explicit Peierls bound for the diced lattice). If G is the diced lattice, then
there exists C <∞ such that

μ1
Λ,β(σv0 = 1) ≥ 0.90301− Ce−β (2.8)

uniformly for all β ∈ [0,∞], all v0 ∈ V0, and all simply connected finite sets Λ � v0
such that ∂Λ ⊂ V0.

2.3. Proof of the main theorems, given the basic lemmas. Let us now show how to prove
Theorems 1.1 and 1.2, given Lemmas 2.1–2.5.

Proof of Theorem 1.1. Fix ε > 0, let β0,Mε andΔ0 be as in Lemma 2.1, and let δ be as
in Lemma 2.2. Since the colors 2 and 3 play a symmetric role under the measure μ1

Λ,β ,
we have

μ1
Λ,β(J2,Δ0 | JΔ0) = 1

2

[
1− μ1

Λ,β(J1,Δ0 | JΔ0)
]

(2.9)

and hence

μ1
Λ,β(J1,Δ0) − μ1

Λ,β(J2,Δ0) = 1
2

[
3μ1

Λ,β(J1,Δ0 | JΔ0)− 1
]
μ1
Λ,β(JΔ0)

≥ 1
2 [3(1− ε)− 1]δ = 1

2 (2− 3ε)δ, (2.10)

which is positive for ε < 2/3 (which we henceforth assume). Then, for any v0 ∈ V0, we
may choose a thick set Δ ⊂ V such that |Δ0| ≥ Mε and v0 ∈ Δ0 (with Δ0 := Δ ∩ V0
as defined earlier). By (2.10) together with Lemma 2.3, there exists ε(v0) > 0 such that

μ1
Λ,β(σv0 = 1) − μ1

Λ,β(σv0 = 2) ≥ ε(v0) (2.11)

uniformly for all β ∈ [β0,∞] and all finite and simply connected Λ ⊃ Δ0 such that
∂Λ ⊂ V0. Since the measure μ1

Λ,β treats the colors 2 and 3 symmetrically, it follows
that

μ1
Λ,β(σv0 = 1) − 1

2

[
1− μ1

Λ,β(σv0 = 1)
] ≥ ε(v0) (2.12)

and hence

μ1
Λ,β(σv0 = 1) ≥ 1

3 + 2
3ε(v0). (2.13)
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Similarly, for any v1 ∈ V1, we may choose a thick set Δ such that |Δ0| ≥ Mε and
v1 ∈ Δ1. An analogous argument then shows that

μ1
Λ,β(σv1 = 1) ≤ 1

3 − 2
3ε(v1), (2.14)

again uniformly in Λ.
In this argument ε depends on v0 or v1. But since all the quantities under study are

invariant under graph automorphisms, ε actually depends only on the type of v0 or v1.
And since by quasi-transitivity there are only finitely many types, we may choose ε such
that (2.13) and (2.14) hold uniformly for all v0 ∈ V0 and v1 ∈ V1.

To construct the desired infinite-volume Gibbs measures, we use a compactness
argument. For any β ∈ [0,∞] and finite Λ ⊂ V , let μΛ,β := μ1

Λ,β ⊗ δτV \Λ , i.e., if

σ ∈ {1, 2, 3}V is distributed according to μΛ,β , then (σv)v∈Λ is distributed according to
μ1
Λ,β and σv = τv for all v ∈ V \Λ. Choose finite and simply connected Λn ↑ V such

that ∂Λn ⊂ V0. Since S = {1, 2, 3}V is a compact space, the set of measures {μΛn ,β
}

is automatically tight. It follows from [30, Theorem 4.17] that each weak subsequential
limit μβ as Λn ↑ Λ is an infinite-volume Gibbs measure at inverse temperature β.
Taking the limit Λn ↑ V in (2.13)/(2.14), we see that

μβ(σv0 = 1) ≥ 1
3 + ε for v0 ∈ V0 (2.15)

μβ(σv1 = 1) ≤ 1
3 − ε for v1 ∈ V1 (2.16)

Taking the limit Λn ↑ V in Lemma 2.4, we obtain

μβ
(
σu = σv

) ≤ Ce−β for {u, v} ∈ E . (2.17)

��
Proof of Theorem 1.2. (a) and (c) follow from the same arguments as in the proof of
Theorem 1.1, but with the inequality (2.13) replaced by (2.8).

To prove (b), consider any v1 ∈ V1 ∩Λ and let w1, w2, w3 ∈ V0 ∩ (Λ ∪ ∂Λ) be its
neighbors in G. Then the DLR equations for the volume {v1} imply that

μ1
Λ,β(σv1 = 1|σw1 = σw2 = σw3 = 1) = e−3β

2 + e−3β (2.18a)

μ1
Λ,β(σv1 = 1|σw1 = σw2 = 1, σw3 	= 1) = e−2β

1 + e−β + e−2β (2.18b)

(we call these the “good” cases). In the “bad” cases (i.e., those with two or three spins
σwi 	= 1) we will use only that the conditional probability is ≤ 1. On the other hand,
using (a) we can bound the probability of the “bad” cases by

μ1
Λ,β(two or three spins σwi 	= 1) ≤ 1

2 Eμ1
Λ,β
(# spins σwi 	= 1)

≤ 1
2 × 3 × (1− 0.90301 + Ce−β)

≤ 0.14549 + C ′e−β, (2.19)

and we bound the probability of the “good” cases trivially by 1. Putting together
(2.18ba,b) and (2.19), we conclude thatμ1

Λ,β(σv1 = 1) ≤ 0.14549 + C ′e−β + e−2β . ��
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3. The Zero-Temperature Case

In the present section, we will prove Lemmas 2.1 and 2.5 in the zero-temperature case
β = ∞. Then, in Sect. 4, we will show how our arguments can be adapted to cover
the (more complicated) case of low positive temperatures; there we will also prove the
technical Lemmas 2.2 and 2.4. The proof of Lemma 2.3 is postponed to Sect. 5.

3.1. Contour model for zero temperature. LetΛ ⊂ V be finite and simply connected in
G and such that ∂Λ ⊂ V0. Recall that μ1

Λ,∞ is the uniform distribution on the set (Sg)
1
Λ

of all proper 3-colorings of Λ ∪ ∂Λ that take the color 1 on ∂Λ, i.e. all configurations
σ ∈ {1, 2, 3}Λ∪∂Λ such that σu 	= σv for all u, v ∈ Λ∪ ∂Λ with {u, v} ∈ E and σv = 1
for all v ∈ ∂Λ. Since ∂Λ ⊂ V0, the set (Sg)

1
Λ is nonempty: for instance, it includes all

configurations in which all sites of V0 are colored 1 and all sites of V1 are colored 2
or 3.

As explained in Sect. 2.1, for any σ ∈ (Sg)
1
Λ, we let E1(σ ) be the collection of edges

in G1 that separate areas where the vertices of G0 are uniformly colored in one of the
colors 1, 2, 3. And since at zero temperature at most two different colors on V0 can
meet at any vertex in V1, the set E1(σ ) consists of a collection Γ (σ) of disjoint simple
circuits that we call contours. [This is what makes the zero-temperature case so easy to
handle. At positive temperature, a connected component of E1(σ ) can be much more
complicated than a circuit: see Sect. 4 below.]

In the zero-temperature case, therefore, we use the term contour to denote any simple
circuit in G1. We write |γ | to denote the length of a contour γ , defined as the number
of its edges (or equivalently the number of its vertices). For a collection Γ of disjoint
contours, we write |Γ | := ∑

γ∈Γ |γ | for the total length of the contours in Γ , and #Γ
for the number of contours in Γ . Each contour γ divides V0 into two connected (in the
sense of G0) components, of which one is infinite and the other is finite and simply
connected. We call these the exterior Ext(γ ) and interior Int(γ ) of γ , respectively. We
will say that a contour γ surrounds Δ0 if Δ0 ⊆ Int(γ ). We say that a contour lies in Λ
if all its vertices are in V1 ∩Λ. Note that if γ lies in Λ, then by our assumption that Λ
is simply connected, we have Int(γ ) ⊆ Λ.

To each configuration σ ∈ (Sg)
1
Λ, there thus corresponds a unique collection Γ (σ)

of disjoint contours in Λ. Conversely, to each collection Γ of disjoint contours, there
are 2#Γ 2|V1∩Λ|−|Γ | distinct configurations σ ∈ (Sg)

1
Λ that yield the collection Γ (σ) =

Γ . Here the first and second factor are the number of restrictions σV0∩Λ and σV1∩Λ,
respectively, that are consistent with the specified collection of contours and the fixed
boundary condition σv = 1 for v ∈ ∂Λ. To understand the first factor, observe that in
passing through any contour (from outside to inside) we have 2 (=q − 1) independent
alternatives for the choice of the color on V0 just inside the contour. The second factor
comes from the fact that there are either one (=q − 2) or two (=q − 1) colors available
for a vertex in G1, depending on whether this vertex lies on a contour or not. Notice
that, given Γ , this latter number is independent of the configuration σV0∩Λ.

Let us therefore introduce the probability measure

νΛ(Γ ) = 1

ZΛ
2#Γ 2−|Γ | (3.1)

on the set of all collections Γ of disjoint contours in Λ, where ZΛ =∑
Γ 2#Γ 2−|Γ | is

the normalizing constant. We have just shown that, under the probability measureμ1
Λ,∞,

the contour configuration Γ (σ) is distributed according to νΛ.
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The first step in any Peierls argument is to obtain an upper bound on the probability
that Γ contains a given contour γ :

Lemma 3.1 (Bound on probability of a contour). Let Λ ⊂ V be a simply connected
finite set such that ∂Λ ⊂ V0. Then, for any contour γ in Λ,

νΛ({Γ : γ ∈ Γ }) ≤ 21−|γ |

1 + 21−|γ | . (3.2)

Proof. We have

νΛ({Γ : γ ∈ Γ }) =
∑

Γ �γ
νΛ(Γ ) = 21−|γ | ∑

Γ �γ
νΛ(Γ \{γ })

≤ 21−|γ | ∑

Γ 	�γ
νΛ(Γ ) = 21−|γ |[1− νΛ({Γ : γ ∈ Γ })

]
, (3.3)

which proves (3.2). ��
Now let Δ0 ⊆ Λ ∩ V0 be connected in G0. Let us say that a contour γ cuts Δ0 if γ

contains an edge that separates some pair of vertices v,w ∈ Δ0 that are adjacent in G0.
Then, obviously, the event that Δ0 is uniformly colored corresponds to the event that
no contour γ ∈ Γ cuts Δ0. Let νΛ|Δ0 denote the measure νΛ from (3.1) conditioned on
this event. Let SΔ0(Γ ) denote the number of contours in a contour configuration Γ that
surroundΔ0. We obtain a lower bound for the conditional probability in (2.3) by writing

μ1
Λ,∞

(J1,Δ0

∣
∣JΔ0) ≥ νΛ|Δ0({Γ : SΔ0(Γ ) = 0})

≥ 1−
∑

Γ

νΛ|Δ0(Γ )SΔ0(Γ )

= 1−
∑

γ : Int(γ )⊇Δ0

νΛ|Δ0({Γ : γ ∈ Γ }). (3.4)

Then the probability thatΓ contains a given contour γ is bounded under νΛ|Δ0 in exactly
the same way as it was bounded under νΛ [cf. (3.3)], yielding

νΛ|Δ0({Γ : γ ∈ Γ }) ≤
21−|γ |

1 + 21−|γ | (3.5)

for every γ that surrounds Δ0. Inserting this into (3.4) yields:

Lemma 3.2 (Peierls bound for zero temperature). Let Λ ⊂ V be a simply connected
finite set such that ∂Λ ⊂ V0, and let Δ0 ⊆ Λ ∩ V0 be connected in G0. Then

1− μ1
Λ,∞

(J1,Δ0

∣
∣ JΔ0) ≤

∑

γ : Int(γ )⊇Δ0

21−|γ |

1 + 21−|γ | =
∞∑

L=3

NΔ0(L)
21−L

1 + 21−L
, (3.6)

where NΔ0(L) denotes the number of contours of length L surrounding Δ0.

Our proofs of Lemmas 2.1 and 2.5 in the zero-temperature case will be based on the
estimate (3.6) and suitable bounds on the numbers NΔ0(L).
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Remarks. 1. In the special case thatΔ0 is a singleton, the event JΔ0 is trivially fulfilled
and the conditional probability in (3.6) reduces to an unconditional probability.

2. The simpler but slightly weaker bound

1− μ1
Λ,∞

(J1,Δ0

∣
∣JΔ0) ≤

∞∑

L=3

NΔ0(L) 21−L (3.7)

is sufficient for nearly all purposes. Indeed, even for quantitative bounds the differ-
ence between (3.6) and (3.7) is very small: for instance, when G is the diced lattice
and G1 is the hexagonal lattice, we have L ≥ 6, so one sees immediately that the
difference between (3.6) and (3.7) cannot be more than about 3 %. See also the proof
of Lemma 2.5 for β = ∞ in Sect. 3.4 below.

3.2. Bounds on contours for zero temperature. The main ingredient in the proof of
Lemma 2.1 will be a bound on the number of simple circuits in G1 of a given length
surrounding a given vertex in G0. We start by bounding the number of self-avoiding
paths in G1, or more generally in quasi-transitive graphs of bounded degree. We then
use this bound to obtain a bound on self-avoiding polygons, i.e. simple circuits.

Let H = (V, E) be any graph. It will be convenient to view H as a directed graph, by
introducing a pair of directed edges (one in each direction) corresponding to each edge
of the undirected graph H . So let A be the set of directed edges of H , i.e., A is the set of
all ordered pairs (v,w) of vertices such that {v,w} ∈ E . By definition, a self-avoiding
path in G of length n is a finite sequence of vertices v0, . . . , vn ∈ V , all different from
each other, such that (vk−1, vk) ∈ A for all k = 1, . . . , n. We call (v0, v1) the starting
edge and (vn−1, vn) the final edge of the path. For n ≥ 1 and a, b ∈ A, we denote by
Cn(a, b) the number of self-avoiding paths in G of length n with starting edge a and
final edge b. We then set

Cn(a) :=
∑

b∈A

Cn(a, b) and C∗n := sup
a∈A

Cn(a). (3.8)

Lemma 3.3 (Exponential bound on self-avoiding paths). Let H = (V, E) be an infinite
connected graph in which each vertex has degree at most k. Then the limit

α(H) := lim
n→∞ (C

∗
n )

1/n (3.9)

exists and equals infn≥1 (C∗n+1)
1/n; it satisfies 1 ≤ α(H) ≤ k − 1. Furthermore, if H

is quasi-transitive and is anything other than a tree in which every vertex has degree k,
then α(H) < k − 1.

Proof. For m, n ≥ 1 and a, c ∈ A we have

Cm+n−1(a, c) ≤
∑

b∈A

Cm(a, b)Cn(b, c) (3.10)

because any self-avoiding path of length m + n− 1 can be decomposed uniquely into its
first m steps and its last n steps, each of which is a self-avoiding path, which overlap in
a single directed edge (here called b). This implies the submultiplicativity

C∗m+n−1 ≤ C∗m C∗n . (3.11)
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We see that n �→ log C∗n+1 (n ≥ 0) is subadditive, which implies (see, e.g., [52, Theo-
rem B.22]) that the limit

α(H) := lim
n→∞(C

∗
n+1)

1/n = inf
n≥1

(C∗n+1)
1/n (3.12)

exists, with 0 ≤ α(H) <∞.
By Lemma A.2(a), there exists an infinite self-avoiding path (v0, v1, v2, . . .); so

taking a = (v0, v1) we see that Cn(a) ≥ 1 for all n ≥ 1. Hence α(H) ≥ 1.
Since each v ∈ V is of degree at most k, self-avoidance trivially implies that

C∗n+1 ≤ (k − 1)n, (3.13)

so that α(H) ≤ k − 1.
If H is anything other than a k-regular tree, then since H is connected, for each

a ∈ A there exists an integer m (depending only on the equivalence class of a under the
automorphism group of H ) such that Cm+1(a) < (k−1)m : it suffices to walk to a vertex
of degree < k and then one step more, or else walk into and around a circuit. Using the
submultiplicativity (3.11) together with (3.13), it follows that Cn+1(a) < (k − 1)n for
all n ≥ m. If now H is (vertex-)quasi-transitive, then it is not hard to see that it is also
directed-edge-quasi-transitive (see Lemma A.1 for a proof), i.e. there are finitely many
equivalence classes of directed edges, so we can choose an m that works for all a ∈ A.
It follows that C∗n+1 < (k − 1)n for some n (in fact for all sufficiently large n), which
shows that the infimum in (3.12) is strictly less than k − 1. ��
Remark. Most of this proof can alternatively be carried out in terms of the more fa-
miliar vertex-to-vertex counts cn(u, v) for n ≥ 0 and the corresponding quantities
c∗n = supu∈V

∑
v∈V cn(u, v). (Since C∗n ≤ c∗n ≤ kC∗n , the two counts have identical

asymptotic growth.) Indeed for m, n ≥ 0 we have

cm+n(u, w) ≤
∑

v∈V

cm(u, v) cn(v,w) (3.14)

and hence c∗m+n ≤ c∗m c∗n , from which it follows that

α(H) = lim
n→∞ (c

∗
n)

1/n = inf
n≥1

(c∗n)1/n (3.15)

exists. But it is more difficult in this framework to prove that α(H) < k − 1, since the
bound c∗n ≤ k(k−1)n−1 has an extra factor k/(k−1) that we must somehow overcome.
It is for this reason that we found it convenient to work with directed edges instead of
vertices.

It follows from (3.9) that for each ε > 0 there exists Kε <∞ such that

C∗n ≤ Kε [α(H) + ε]n for all n ≥ 0. (3.16)

Now let G = (V, E) be as in Theorem 1.1 and let G0 = (V0, E0) and G1 = (V1, E1)

be its sublattices. Recall from Sect. 3.1 that NΔ0(L) denotes the number of simple circuits
of length L in G1 surrounding a set Δ0 ⊂ V0. Lemma 3.3 applied to H = G1 implies
the following bound on NΔ0(L):
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Lemma 3.4 (Exponential bound on circuits surrounding a point). We have α(G1) < 2.
Moreover, for every ε > 0, there exists a constant Cε <∞ such that

N{v}(L) ≤ Cε [α(G1) + ε]L (3.17)

for all v ∈ V0 and all L ≥ 1.

Proof. Since every vertex in G1 has degree 3 and G1 is not a tree (indeed, each vertex
in G0 is surrounded by a circuit in G1), it follows from Lemma 3.3 that α(G1) < 2.

Since G is infinite, connected and locally finite, it is not hard to show [see
Lemma A.2(a) in the Appendix] that for each v ∈ V0 we can find an infinite self-
avoiding path π = (v0, v1, . . .) in G0 starting at v0 = v such that the graph distance (in
G0) of vn to v is n. It is not hard to see that any simple circuit surrounding v must cross
some edge of π . With a bit more work, we can get a quantitative bound on how far this
edge can be from the starting point of π . Indeed, it follows from Proposition A.5 that
there exists a constant K < ∞, depending only on the graph G0, such that any simple
circuit of length L surrounding v must cross one of the first N edges of π , where

N := 1 + K + 1
2 (

3
2 − 1)L = 1 + K + L/4. (3.18)

So let γ be a simple circuit of length L surrounding v. Let (vk−1, vk) be the first edge
of π that is crossed by γ , and let a be the corresponding (dual) edge in γ . We can view
a as a directed edge by agreeing that we turn (vk−1, vk) anticlockwise to get a. Then we
can specify γ completely by specifying the first edge of π to be crossed by γ and by
specifying the self-avoiding path formed by the first L − 1 edges of γ , starting with a.
By (3.18), this yields the bound

N{v}(L) ≤ (1 + K + L/4)C∗L−1. (3.19)

By (3.16), the claim follows: it suffices to absorb the factor (1 + K + L/4) into a change
of the base of the exponential term. ��

3.3. Long-range dependence for zero temperature. We are now ready to prove
Lemma 2.1 for zero temperature.

Proof of Lemma 2.1 for β = ∞. of Lemma 2.1 for β = ∞ It follows from Proposi-
tion A.5 that for each L0 <∞, there exists M <∞ such that each finite, G0-connected
set Δ0 ⊂ V0 with |Δ0| ≥ M has the property that any simple circuit in G1 surrounding
Δ0 must be of length at least L0.

Then the weak Peierls bound (3.7) and Lemma 3.4 imply that for any ε > 0 there
exists Cε <∞ such that for every finite and simply connected Λ ⊃ Δ0 with ∂Λ ⊂ V0,
we have

μ1
Λ,∞

(J1,Δ0

∣
∣JΔ0

) ≥ 1− Cε

∞∑

L=L0

21−L [α(G1) + ε]L . (3.20)

Since α(G1) < 2, by choosing first ε small enough and then L0 large enough (and M
appropriately), we can make the conditional probability in (3.20) as close to 1 as we
wish, uniformly in Λ. ��
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3.4. Quantitative bound for the diced lattice. Let pL denote the number of simple cir-
cuits (i.e., self-avoiding polygons) of length L in the hexagonal lattice, modulo transla-
tion. And let qL denote the number of simple circuits of length L in the hexagonal lattice
that surround a given vertex of the triangular lattice. We have the following bounds:

Lemma 3.5 (Supermultiplicativity of hexagonal-lattice polygons). The number pL of
hexagonal-lattice self-avoiding polygons of length L, modulo translation, satisfies

pL+M−2 ≥ pL pM . (3.21)

Corollary 3.6 (Bound on hexagonal-lattice circuits surrounding a point). The number of
simple circuits in the hexagonal lattice G1 surrounding a given vertex in G0 is bounded
as

qL ≤ (L2/36) (2 +
√

2)(L−2)/2. (3.22)

Proof of Lemma 3.5. We use concatenation: Consider two polygons γ1 and γ2 contribut-
ing to pL and pM , respectively. Let (x, x + e2) be the highest vertical edge of γ1 in its
rightmost column, and let (y, y + e2) be the lowest vertical edge of γ2 in its leftmost
column, where e1 := (1, 0) and e2 := (0, 1) denote the natural basisvectors of R

2.
Uniting the polygon γ2 with γ1 shifted by y − x and erasing the edges (y, y + e2), we
get a contour γ = Ty−x (γ1) ∪ γ2\(y, y + e2) contributing to pL+M−2. To complete
the argument, we must show that different choices of γ1 and/or γ2 lead to a different
γ (modulo translation), i.e., we can reconstruct γ1 and γ2 (modulo translation) from γ .
To this aim, we observe that (y, y + e2) is the only vertical edge in its column that cuts
the interior of γ . Also, if another column cuts the interior of γ in a single edge, then
the contours γ ′1 and γ ′2 obtained by cutting γ at this edge into a left and right piece will
have lengths different from L and M . Thus, for fixed L and M , each different (modulo
translations) ordered pair (γ1, γ2) of polygons of lengths L and M yields a different
(modulo translations) polygon of length L + M − 2. ��
Proof of Corollary 3.6. The proof combines three ingredients. The first is the fact, con-
jectured in [56] and proven in [21], that the connective constant of the hexagonal lattice is

exactly α =
√

2 +
√

2 ≈ 1.847759. The second ingredient is the isoperimetric inequal-
ity for the hexagonal lattice: the number of faces surrounded by a circuit of length L is
at most L2/36. The third ingredient is a bound on the number pL of L-step hexagonal-
lattice self-avoiding polygons modulo translation in terms of the connective constant α
for self-avoiding walks on the hexagonal lattice, namely [47]

pL ≤ αL−2. (3.23)

Indeed, the supermultiplicativity pL+M−2 ≥ pL pM implies, by standard arguments, that
αSAP = limL→∞(pL)

1/L exists and that pL ≤ (αSAP)
L−2. On the other hand, since

pL ≤ cL−1/(2L)where cn is the number of n-step self-avoiding paths starting at a given
vertex, we manifestly have αSAP ≤ α. ��
Remarks. 1. The supermultiplicativity pL+M−2 ≥ pL pM for the hexagonal lattice is

stronger than the inequality pL+M ≥ pL pM that holds for the square lattice [53,
Theorem 3.2.3]. As a consequence, we are able to prove pL ≤ αL−2 rather than just
pL ≤ αL .
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2. For self-avoiding paths and polygons on Z
d it is known [53, Corollary 3.2.5] that

αSAP = α. The same presumably holds also for the hexagonal lattice and for other
lattices periodically embedded in Euclidean space, but we are not aware of any proof.
Since we need only an upper bound on αSAP, we have refrained from addressing this
question. Note also that αSAP < α on hyperbolic lattices (with the possible exception
of eight such lattices) [54], so the equality αSAP = α is a somewhat delicate matter.

Proof of Lemma 2.5 for β = ∞. We use the explicit values of qL for L = 6, 8, . . . , 140
obtained by Jensen’s computer-assisted enumerations [41]17 together with the bound
(3.22) for even L ≥ 142. From [41] we get

140∑

L=6

qL 2−L = 22074233899340881133583692519761872405249

2139 < 0.03168.

(3.24)

On the other hand, we have

∑

even L≥142

(L2/36) (2 +
√

2)(L−2)/2 2−L = (2 +
√

2)70 (2907 + 1531
√

2)

9 · 2139 < 0.01731.

(3.25)

Putting these together, we have

∞∑

L=6

qL 2−L < 0.04899. (3.26)

Inserting this into the weak Peierls bound (3.7) specialized to Δ0 = {v}, we obtain

μ1
Λ,∞(σv = 1) > 1 − 2(0.04899) = 0.90202. (3.27)

A slight improvement of (3.27) can be obtained by using (3.6) in place of (3.7): we
have

140∑

L=6

qL
2−L

1 + 21−L
< 0.03119. (3.28)

(The improvement in the tail sum L ≥ 142 is of course utterly negligible.) The final
result (3.27) is then improved from 0.90202 to 0.90301. ��
Remarks. 1. Jensen [41] conjectured, based on his enumerations for L ≤ 140, that the

large-L asymptotic asymptotic behavior of qL is

qL = 1

4π
(2 +
√

2)L/2 L−1[1 + o(1)
]
. (3.29)

(At L = 140 the exact value for qL is already within 0.4% of this asymptotic form.)
Using this formula in place of the bound (3.22), we find for the tail

∑

even L≥142

qL 2−L ≈ 4.7× 10−8 (� 0.01731). (3.30)

17 The relevant series is called there the “first area-weighted moment” for honeycomb-lattice polygons and
is contained in the file hcsapmom1.ser.
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It follows that if we could know qL exactly for all L , then our Peierls argument using
(3.6) would be capable of proving a lower bound 0.93762 in (3.27). This should be
compared with the actual zero-temperature value 0.957597± 0.000004 obtained by
Monte Carlo simulations [47].18

2. When [47] was written, the exact result α =
√

2 +
√

2 ≈ 1.847759 was not yet
a rigorous theorem, so we used instead the bound α < 1.868832 due to Alm and
Parviainen [1]. Then, to get a sufficient final estimate, the additional factor α−2 from
the improved bound (3.23) implied by stronger supermultiplicativity (see Remark 1
after the proof of Corollary 3.6) was crucial.

4. The Positive-Temperature Case

In this section we extend the Peierls argument to positive temperature, allowing us to
complete the proof of Lemmas 2.1 and 2.5. We also prove the technical Lemmas 2.2
and 2.4.

4.1. Contour model for positive temperature. As before, we consider a graph G =
(V, E) satisfying the conditions of Theorem 1.1 and take a finite and simply connected
set Λ ⊂ V such that ∂Λ ⊂ V0. Our aim is to derive bounds on the probabilities
of certain events under the finite-volume Gibbs measures μ1

Λ,β which correspond to
uniform color-1 boundary conditions on ∂Λ.

We recall from Sect. 2.1 that every color configuration σ onΛ (2.1)/(2.2) a collection
E1(σ ) of edges in the sublattice G1 that separate differently colored vertices in G0 (or
equivalently faces in G1). Since ∂Λ ⊂ V0 and ∂Λ is uniformly colored (in color 1),
each edge of E1(σ ) has both its endvertices in V1 ∩ Λ. In general, we define contours
to be connected components of E1(σ ). [More precisely, we define contours to be the
connected components of the graph (V1 ∩Λ, E1(σ )) other than isolated vertices.] If σ
is a ground state, then at each v ∈ V1∩Λ, either zero or two edges of E1(σ ) are incident,
hence the connected components of E1(σ ) are simple circuits in G1. But for general
color configurations σ , the connected components of E1(σ ) may be more complicated.
In particular, it is possible that three edges of E1(σ ) are incident to a vertex v ∈ V1 ∩Λ.
Recall that a connected graph is called bridgeless (or 2-edge-connected) if it contains no
bridges (i.e., single edges the removal of which disconnects the graph). We observe that
for any color configuration σ , the connected components of E1(σ ) must be bridgeless,
since otherwise there would be a uniformly colored region of G0 that bounds such a
bridge on both sides, contradicting the definition of E1(σ ).

In view of this, in the positive-temperature model let us define a contour to be a
finite connected bridgeless subgraph γ of G1 containing at least one edge. Note that
each vertex of such a contour has degree 2 or 3. It is easy to see that the number of
vertices of degree 3 must be even (just notice that twice the number of vertices of degree
two plus three times the number of vertices of degree three equals twice the number of
edges). We let |γ | denote the number of edges of γ , to which we will refer as the length
of γ . We let t (γ ) be the number such that γ has 2t (γ ) vertices of degree 3. Then γ
has |γ | − 3t (γ ) vertices of degree 2. Moreover, γ divides V0 into 2 + t (γ ) connected
components, of which one is infinite and the others are finite and simply connected. We
say that a contour γ surrounds a setΔ0 ⊂ V0, denoted as γ � Δ0, ifΔ0 is contained in

18 See footnote 8 above.
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Fig. 3. A contour γ with χ(γ ) = 0

one of the finite components. We call the infinite component the exterior Ext(γ ) of γ ,
and we refer to the union of all the finite components as the interior Int(γ ) of γ . [Please
note that saying that γ surrounds a setΔ0 is stronger than saying thatΔ0 ⊆ Int(γ ), since
“surrounding” is defined asΔ0 being entirely contained in one of the finite components.]
Given that the exterior of γ is colored in one particular color, we let χ(γ ) denote the
number of possible three-colorings of the connected components of Int(γ ) in such a way
that along each edge of γ , two different colors meet.19 Please note that it is possible to
have χ(γ ) = 0: see Fig. 3. Obviously, such contours are “not allowed”, and we shall
soon see that their probability is zero.20 Finally, let us observe that χ(γ ) ≤ 2t (γ )+1.

We now claim that if σ is distributed according to μ1
Λ,β , and Γ (σ) is the collection

of connected components of (V1 ∩Λ, E1(σ )) other than isolated vertices, then Γ (σ) is
distributed according to the law

νΛ,β(Γ ) = 1

ZΛ,β

∏

γ∈Γ
χ(γ ) p|γ |β qt (γ )

β , (4.1)

where ZΛ,β is a normalizing constant and

pβ := 1 + e−β + e−2β

2 + e−3β , (4.2a)

qβ := 9e−2β(2 + e−3β)

(1 + e−β + e−2β)3
. (4.2b)

To see this, note that there are
∏
γ∈Γ χ(γ ) ways of coloring the sites in V0 ∩Λ in a way

that is consistent with Γ . Given a coloring of V0 ∩Λ, summing the probabilities of all
possible colorings of V1 ∩Λ yields for each site in V1 ∩Λ a factor

1 + 1 + e−3β, 1 + e−β + e−2β or e−β + e−β + e−β (4.3)

19 Otherwise put, χ(γ ) is 1
3 times the number of proper 3-colorings of the dual graph γ ∗.

20 We could, if we wanted, redefine the term “contour” to include only those having χ(γ ) > 0. But there
is little to be gained from complicating the definition in this way, since our counting of contours (Lemma 4.2
below) is too crude to distinguish between those having χ(γ ) > 0 or χ(γ ) = 0.
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depending on whether the site has neighbors with one, two or three different colors,
respectively. These cases correspond, respectively, to sites not on a contour, sites of
degree 2 on a contour, and sites of degree 3 on a contour. Absorbing the factor 1+1+e−3β

into the normalization constant ZΛ,β , we get a factor (1 + e−β + e−2β)/(2 + e−3β) for
each of the |γ | − 3t (γ ) sites of degree 2, and a factor 3e−β/(2 + e−3β) for each of the
2t (γ ) sites of degree 3. Putting this all together, we arrive at (4.1)/(4.2a,4.2b).

In the limit β →∞, we have pβ → 1
2 and qβ → 0; in particular, the only countours

that get nonzero weight in this limit are simple circuits, for which χ(γ ) = 2. Then the
contour law (4.1) reduces to (3.1), as expected.

More generally, it can be easily verified that pβ decreases monotonically from 1 to
1
2 as β runs from 0 to∞, and behaves for large β as 1

2 + O(e−β); and that qβ decreases
monotonically from 1 to 0 as β runs from 0 to∞, and behaves for large β as O(e−2η).

By the same arguments as in (3.4)–(3.5), and using χ(γ ) ≤ 2t (γ )+1, we find:

Lemma 4.1 (Peierls bound for positive temperature). LetΛ ⊂ V be a simply connected
finite set such that ∂Λ ⊂ V0, and let Δ0 ⊆ Λ ∩ V0 be connected in G0. Then

1− μ1
Λ,β

(J1,Δ0

∣
∣ JΔ0) ≤

∞∑

T=0

∞∑

L=3

NΔ0(L , T )
2T +1 pL

β qT
β

1 + 2T +1 pL
β qT

β

, (4.4)

where NΔ0(L , T ) denotes the number of contours γ surroundingΔ0 satisfying |γ | = L
and t (γ ) = T .

4.2. Bounds on contours for positive temperature. In this section, we prove Lemmas 2.1
and 2.5. We first need to generalize Lemma 3.4 to contours that are not simple circuits.
Recall that NΔ0(L , T ) denotes the number of contours γ surrounding Δ0 satisfying
|γ | = L and t (γ ) = T . Recall also from Lemma 3.3 that α(H) denotes the connective
constant of a graph H as defined in (3.9), and from Lemma 3.4 that α(G1) < 2.

Lemma 4.2 (Bound on number of contours). For every ε > 0 there exists a constant
C ′ε <∞ such that

N{v}(L , T ) ≤ (LT /T !)2 (C ′ε)T +1 [α(G1) + ε]L (4.5)

for all v ∈ V0 and all L , T ≥ 0.

Proof. Let γ be a contour surrounding {v} such that |γ | = L and t (γ ) = T . We
need a suitable way to encode γ . We begin, as in the proof of Lemma 3.4, by letting
π = (v0, v1, . . .) be an infinite self-avoiding path in G0 starting at v0 = v such that
the graph distance (in G0) of vn to v is n. According to Proposition A.5 and formula
(3.18), the contour γ intersects an edge (vb−1, vb) of π with b ≤ N := 1 + K + L/4,
where K is a constant depending only on the graph G0. Thus, we can find some directed
simple circuit γ ∗ = (u1, . . . , un1 , u1) contained in γ , such that (u1, u2) crosses the edge
(vb−1, vb) in the anticlockwise direction (see Fig. 4).

Let us write γ 1 = (u1, . . . , un1), which is a self-avoiding path. If T = 0, then γ = γ ∗
and our encoding is complete. Otherwise, let s1 := min{i ≥ 1 : ui is of degree 3 in γ }.
Then we can find a self-avoiding path

γ 2 = (us1 , un1+1, . . . , un2 , us′1) (4.6)
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Fig. 4. A contour γ in the case when G is the diced lattice and G1 is the hexagonal lattice. This contour γ
contains 8 vertices of degree 3, hence t (γ ) = 4. It is not hard to check that χ(γ ) = 2

in γ such that only the starting and ending points us1 and us′1 are in γ 1. If T =
1, then γ = γ ∗ ∪ γ 2 and we are done. Otherwise, let s2 := min{i > s1 : i 	=
s′1 and ui is of degree 3 in γ }. Then we can find another self-avoiding path

γ 3 = (us2 , un2+1, . . . , un3 , us′2) (4.7)

in γ such that only the starting and ending points us2 and us′2 are in γ 1∪γ 2. Continuing in
this way, we see that we can code all the information needed to construct γ by specifying
numbers

b ≤ N , 2 = n0 < n1 < · · · < nT +1 = L − T and 0 < s1 < · · · < sT < L − T

(4.8)

and self-avoiding paths γ 1, . . . , γ T +1 of lengths n1−n0+1, n2−n1+1, . . . , nT +1−nT +1
whose starting edges are uniquely determined by the information previously coded. By
Lemma 3.3 and its consequence (3.16), for each ε > 0 there exists Kε < ∞ such that
the number of self-avoiding paths of length n with a specified starting edge is bounded
from above by Kε[α(G1) + ε]n .

Therefore, there are at most

T +1∏

i=1

Kε[α(G1) + ε]ni−ni−1+1 = (Kε)T +1 [α(G1) + ε]L−1 (4.9)
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different contours γ associated with given data b, n1, . . . , nT , s1, . . . , sT . Since there

are

(
L − T − 3

T

)
and

(
L − T − 1

T

)
ways of choosing numbers 2 < n1 < · · · < nT <

L − T and 0 < s1 < · · · < sT < L − T , respectively, and since b ≤ N = 1 + K + L/4,
summing over all ways to choose the numbers b, n1, . . . , nT , s1, . . . , sT shows that the
total number of contours γ surrounding v with given |γ | = L and t (γ ) = T is bounded
by

(
1 + K + L/4

)
(

L − T − 3

T

)(
L − T − 1

T

)
(Kε)

T +1 [
α(G1) + ε

]L−1

≤ (C ′ε)T +1
(

L−T

T

)2[
α(G1) + 2ε

]L−1 ≤ (C ′ε)T +1(LT /T !)2[
α(G1) + 2ε

]L
, (4.10)

where the factor 1 + K + L/4 was absorbed into a change of base of the exponential term
followed by the change of constant into C ′ε . ��

4.3. Long-range dependence for positive temperature.

Proof of Lemmas 2.1 and 2.5 in the positive-temperature case. In the zero-temperature
case, both lemmas have already been proven in Sects. 3.3 and 3.4, respectively, by
showing that for some sufficiently large Δ0 (respectively for Δ0 = {v}) the right-hand
side of (3.6) can be made sufficiently small. To generalize the two lemmas to small
positive temperatures, it therefore suffices to show that the right-hand side of (4.4)
converges to the right-hand side of (3.6) as β → ∞ [for Lemma 2.5 we should also
show that the error is O(e−β)]. In view of this, Lemmas 2.1 and 2.5 are consequences
of the following lemma. ��
Lemma 4.3 (Large-β behavior of the Peierls bound). There exist β0,C <∞ such that

0 ≤
∞∑

T=0

∞∑

L=3

NΔ0(L , T )
2T +1 pL

β qT
β

1 + 2T +1 pL
β qT

β

−
∞∑

L=3

NΔ0(L)
21−L

1 + 21−L
≤ Ce−β (4.11)

and

∞∑

T=1

∞∑

L=3

NΔ0(L , T )
2T +1 pL

β qT
β

1 + 2T +1 pL
β qT

β

≤
∞∑

T=1

∞∑

L=3

NΔ0(L , T ) 2T +1 pL
β qT

β ≤ Ce−2β

(4.12)

uniformly for β ∈ [β0,∞] and for nonempty finite G0-connected sets Δ0 ⊂ V0.

Proof. The lower bound in (4.11) is a trivial consequence of pβ ≥ 1
2 and qβ ≥ 0. To

prove the upper bounds, we split the double sum in (4.11) into its contributions T = 0
and T ≥ 1 and bound them separately, using pβ = 1

2 + O(e−β) and qβ = O(e−2β).

T= 0. By Lemma 3.4, there exist C < ∞ and α < 2 such that NΔ0(L) ≤ CαL . The
term T = 0 can therefore be bounded (using pβ ≥ 1

2 ) as

∞∑

L=3

NΔ0(L)
2pL

β

1 + 2pL
β

≤
∞∑

L=3

NΔ0(L)
21−L

1 + 21−L
+ 2C

∞∑

L=3

αL
pL
β − ( 1

2 )
L

1 + 21−L
. (4.13)
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Choosing β0 large enough so that α pβ0 < 1, it is easy to see, using pβ = 1
2 + O(e−β),

that the last term in (4.13) is O(e−β).
T ≥ 1. By Lemmas 3.4 and 4.2, there exist C <∞ and α < 2 such that NΔ0(L , T ) ≤
(LT /T !)2CT +1αL . Therefore the terms T ≥ 1 in (4.11) can be bounded as

∞∑

T=1

∞∑

L=3

NΔ0(L , T )
2T +1 pL

β qT
β

1 + 2T +1 pL
β qT

β

≤
∞∑

T=1

∞∑

L=3

NΔ0(L , T ) 2T +1 pL
β qT

β

≤ 2C
∞∑

L=3

(αpβ)
L
∞∑

T=1

(2Cqβ)T

(T !)2 L2T

≤ 2C
∞∑

L=3

(αpβ)
L
∞∑

T=1

(8Cqβ)T

(2T )! L2T

= 16C2qβ

∞∑

L=3

L2 (αpβ)
L
∞∑

T=0

(8Cqβ)T

(2T + 2)! L2T

≤ 16C2qβ

∞∑

L=3

L2 (
αpβ e

√
8Cqβ

)L
, (4.14)

where we used
(2T )!
(T !)2 =

(
2T

T

)
≤ 22T . Choosing β0 large enough so that one has

α pβ0 e
√

8Cqβ0 < 1, we see that (4.14) is O(qβ) = O(e−2β), which proves (4.12)
and completes the proof of (4.11). ��

The bound (4.12) from Lemma 4.3 has a useful corollary. Let us say that a contour
γ is simple if it is a simple circuit, i.e. t (γ ) = 0. For any contour configuration Γ and
any v ∈ V0, let St

v(Γ ) denote the number of non-simple contours in Γ that surround
{v}. We then have the following bound showing that non-simple contours are rare at low
temperature:

Corollary 4.4 (Rarity of non-simple contours). Let νΛ,β be the contour measure from
(4.1). Then there exist β0,C <∞ such that

∑

Γ

νΛ,β(Γ ) St
v(Γ ) ≤ Ce−2β (4.15)

uniformly for β ∈ [β0,∞], for finite simply connected Λ ⊂ V such that ∂Λ ⊂ V0, and
for v ∈ Λ ∩ V0.

Proof. This is an immediate consequence of (4.12) together with the positive-temperature
analogue of Lemma 3.1. ��

4.4. Proof of the technical Lemmas. In this section we prove Lemmas 2.2 and 2.4.

Proof of Lemma 2.2. It is easy to show that for each β0 <∞ there exists an ε > 0 such
that μ1

Λ,β(JΔ0) ≥ ε, uniformly for all 0 ≤ β ≤ β0 and all finite and simply connected
Λ ⊃ Δ0 such that ∂Λ ⊂ V0. Indeed, this follows from a “finite energy” argument: given
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Fig. 5. Simple contours intersecting the square Δ0 colored with two colors: 1 (white) and 2 (gray). After
flipping all sites in Δ0 to the color 1, no contour is intersecting Δ0 and no triple point was created. The same
would be true when flipping all sites in Δ0 to the color 2

any configuration σ ∈ {1, 2, 3}Λ, we can recolor the sites in Δ0 in any color of our
choice at an energetic cost of at worst e−β|∂Δ0| and an entropic cost of at worst 3−|Δ0|.
Note that here Δ0 is fixed and finite, so the precise dependence of the costs on Δ0 is
irrelevant. The only difficulty is that the bound one obtains in this way is not uniform in
β as β →∞. Therefore, to complete the proof, it suffices to show that there exists some
β0 <∞ such that μ1

Λ,β(JΔ0) can be estimated from below uniformly in β0 ≤ β ≤ ∞
and Λ.

In order to prove this, letΔ0 ⊂ V0 be finite and G0-connected, and letΔ0 denote the
union of Δ0 with its boundary in G0, i.e., Δ0 := Δ0 ∪ {v ∈ V0 : ∃u ∈ Δ0 s.t. {u, v} ∈
E0}. By Corollary 4.4, the probability that a non-simple contour intersects Δ0 tends to
zero as β →∞, uniformly in Λ. Thus, we may choose β0 <∞ such that

νΛ,β
({Γ : �γ ∈ Γ s.t. t (γ ) ≥ 1, γ intersects Δ0}

) ≥ 1/2, (4.16)

uniformly in Λ and β0 ≤ β ≤ ∞. If all contours intersecting Δ0 are simple, then we
claim that we can change our contour configuration at a finite energetic cost uniformly in
β0 ≤ β ≤ ∞, so that no contour intersectsΔ0. To describe the algorithm of changing a
contour configurationΓ into a configurationΓ ′ with no contour intersectingΔ0, we first
observe that relying on the fact that all contours intersectingΔ0 are simple, we can color
the vertices in Λ ∩ V0 in three colors in such a way that boundaries between different
colors correspond to contours and only two different colors occur inΔ0. (Note that this
part of the argument uses that the contours intersectingΔ0 are simple everywhere and not
just that there are no triple points inside Δ0.) Now we change our coloring by painting
Δ0 uniformly in one of these two colors, defining thus the new contour configuration
Γ ′ (see Fig. 5). Since in the construction of Γ ′ a two-color configuration in Δ0 was
changed using the same two colors no new triple points are introduced. This, together
with (4.1) and a standard finite-energy argument proves our claim.

For completeness, we write down this finite-energy argument in detail. Let Γ and
Γ ′= ψ(Γ ) denote the old and new contour configuration obtained by the procedure
described above. We need to estimate the relative probability of Γ ′ with respect to Γ
and the number of different configurations Γ that can be mapped onto the same Γ ′,
|�−1(Γ ′)|. Let |Δ0| be the number of sites in Δ0, let MΔ0 be the number of edges in
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E1 that separate sites inΔ0 from each other and let M∂Δ0 be the number of edges in E1

that separate sites in Δ0 from sites in Δ0\Δ0. Further, let

χ(Γ ) :=
∏

γ∈Γ
χ(γ ), |Γ | :=

∑

γ∈Γ
|γ | and t (Γ ) :=

∑

γ∈Γ
t (γ ). (4.17)

Since all contours we remove or alter are simple contours with χ(γ ) = 2 and we remove
or alter no more than MΔ0 contours from our configuration and add no more than M∂Δ0

edges, we have

χ(Γ ′) ≥ 2−MΔ0χ(Γ ) and |Γ ′| ≤ |Γ | + M∂Δ0 , (4.18)

while t (Γ ′) = t (Γ ), which by (4.1) implies that

νΛ,β(Γ
′) ≥ 2−MΔ0 p

M∂Δ0
β νΛ,β(Γ ). (4.19)

Moreover, since there are 2|Δ0| ways of coloring the vertices inΔ0 using only two colors,
we see that there are at most 2|Δ0| different contour configurations Γ inΨ−1(Γ ′). Recall
that JΔ0 = {Γ : no contour in Γ intersects Δ0} corresponds to the event that Δ0 is
uniformly colored in one color. Let SΔ0

be the event that all contours intersecting Δ0
are simple. Then

νΛ,β(JΔ0) =
∑

Γ ′∈JΔ0

νΛ,β(Γ
′) ≥ 2−|Δ0| ∑

Γ ∈SΔ0

νΛ,β(Ψ (Γ )) (4.20)

≥ 2−|Δ0|−MΔ0 p
M∂Δ0
β

∑

Γ ∈SΔ0

νΛ,β(Γ ) ≥ 2−1−|Δ0|−MΔ0 p
M∂Δ0
β , (4.21)

where we have used (4.16) in the last step. ��
Proof of Lemma 2.4. Consider any v ∈ V1∩Λ and letw1, w2, w3 ∈ V0 be its neighbors
in G. Then the DLR equations for the volume {v} imply that

μ1
Λ,β(∃i with σv = σwi |σw1 , σw2 , σw3)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−3β

2 + e−3β if σw1 = σw2 = σw3

e−β + e−2β

1 + e−β + e−2β if |{σw1, σw2 , σw3}| = 2

1 if |{σw1, σw2 , σw3}| = 3

(4.22)

Let B := {σ : |{σw1 , σw2 , σw3}| = 3} be the (“bad”) event that w1, w2, w3 are colored
in three different colors. It follows from Corollary 4.4 that

μ1
Λ,β(B) ≤ Ce−2β (4.23)

uniformly forβ ∈ [β0,∞] and for finite and simply connectedΛ � v such that ∂Λ ⊂ V0;
and by increasing C we can make this hold uniformly for β ∈ [0,∞]. It then follows
from (4.22) and (4.23) that

μ1
Λ,β(∃i with σv = σwi ) ≤ C ′e−β (4.24)

uniformly for β ∈ [0,∞] and for finite and simply connected Λ � v such that
∂Λ ⊂ V0. ��
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5. Positive Magnetization

In this section we prove Lemma 2.3: by using this lemma we can improve the statement
that sufficiently large blocks are more likely to be uniformly colored in the color 1 than in
any other color, to the “positive magnetization” statements in Theorem 1.1(a,b), which
say that single vertices in the sublattices V0 and V1 are colored with the color 1 with a
probability that is strictly larger (resp. strictly smaller) than 1/3.

We fix an arbitrary β0 > 0 throughout this section; our estimates will be uniform in
β ∈ [β0,∞]. We will later also fix a finite G0-connected set Δ0 ⊂ V0. As in all our
proofs, we work with the finite-volume Gibbs measures μ1

Λ,β , where Λ ⊂ V is finite
and simply connected in G and satisfies ∂Λ ⊂ V0. We aim to derive bounds that are
uniform in such Λ with Λ ⊇ Δ0.

Unlike what was done in the preceding subsections, we will not make use of the
contour description ofμ1

Λ,β , nor will we integrate out one sublattice. Rather, we will work
directly with the Potts antiferromagnet on our original quadrangulation G = (V, E).

Note first that the measuresμ1
Λ,β are invariant under global interchange of the colors 2

and 3. In particular, we have μ1
Λ,β(σv = 2) = μ1

Λ,β(σv = 3) for all v ∈ Λ. Thus,

to show that μ1
Λ,β(σv = 1) > 1/3 (resp. < 1/3), we may equivalently show that

μ1
Λ,β(σv = 1)−μ1

Λ,β(σv = 2) > 0 (resp.< 0). Because of the antiferromagnetic nature
of our model, it is in fact already nontrivial to show that these quantities are nonnegative
(resp. nonpositive) for v ∈ V0 (resp. v ∈ V1). This problem has been solved, however, in
[24, Appendix A], where a first Griffiths inequality for antiferromagnetic Potts models
on bipartite graphs is proven using ideas based on the cluster algorithm from [70,71].

We will elaborate on these ideas. The main step will be to give a random-cluster
representation for the law of the 1’s and 2’s conditional on the 3’s. In this representation,
we will see that for v0 ∈ V0, the difference between the probabilities that v0 is colored 1
or colored 2 equals the probability that v0 percolates, i.e., that v0 is in the same random
cluster of 1’s and 2’s as the boundary ∂Λ. Moreover, a similar statement holds for the
probability that Δ0 is uniformly colored in the color 1 minus the probability that it is
uniformly colored in the color 2. Thus, by showing that both of these quantities are related
to percolation of the 1’s and 2’s, we can prove that if one of them is strictly positive,
then so must be the other. Note that conditioning on the positions of the 3’s would not
in general be a very useful thing to do when trying to prove statements about our model,
since we have no a priori knowledge of the distribution of the 3’s. Nevertheless, as we
see here, it can be used to show that a certain statement that has already been proved is
equivalent to another statement for which we have no direct control.

So let G = (V, E) be our original quadrangulation, and let EΛ be the set of edges in E
that have at least one endvertex inΛ. We define the measureρ1

Λ,β on {1, 2, 3}Λ×{0, 1}EΛ
so that the marginal distribution of ρ1

Λ,β(σ, η) on σ is the Gibbs measure μ1
Λ,β and so

that, conditional on σ , independently for each e ∈ EΛ, one has ηe = 1 with probability
p := 1− e−β if σu, σv ∈ {1, 2} and σu 	= σv , and ηe = 0 in all other cases. That is,

ρ1
Λ,β(σ, η) :=

1

Z1
Λ,β

exp
[− βHΛ(σ | τ)

]

×
∏

{u,v}∈EΛ

(
1Au,v

[
p1{η{u,v}=1} + (1− p)1{ηu,v=0}

]
+ 1Ac

u,v
1{ηu,v=0}

)

(5.1)
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where Au,v is the event

Au,v :=
{
σu, σv ∈ {1, 2} and σu 	= σv

}
, (5.2)

Ac
u,v is its complement, τ is any spin configuration that assumes the value 1 on ∂Λ,

HΛ(σ |τ) is defined in (1.4), and Z1
Λ,β is the same normalizing constant as in (1.6).

Now let

Λ12 := {
v ∈ Λ ∪ ∂Λ : σv ∈ {1, 2}} (5.3a)

Λ3 := {
v ∈ Λ : σv = 3

}
(5.3b)

be the sets of vertices in Λ ∪ ∂Λ where σ assumes the values 1 or 2 (resp. 3), and set

E12 := {e ∈ EΛ : ηe = 1}. (5.4)

Conditionally on Λ3, the spins (σv)v∈Λ12 are distributed as an antiferromagnetic Ising
model, with 1 boundary conditions, on the diluted latticeΛ12. SinceΛ12 is bipartite and
the boundary conditions lie entirely on the sublattice V0, we may flip the spins on the
other sublattice (i.e., on Λ12 ∩ V1) to obtain a ferromagnetic Ising model (σ ′v)v∈Λ12 on
Λ12. After this flipping, the conditional joint law of (σ ′v)v∈Λ12 and η given Λ3 is just
the standard coupling of this ferromagnetic Ising model and its corresponding random-
cluster model on Λ12 (see [23] and [33, Section 1.4]). (Notice that for all edges {u, v}
such that {u, v} ∩ Λ3 	= ∅, we have η{u,v} = 0.) Returning to the original (unflipped)
spins (σv)v∈Λ12 , we see from [33, Theorem 1.13] that, conditional on Λ3 and η, the
connected components of the graph G12 = (Λ12, E12) are independently given proper
2-colorings (with colors 1 and 2) as follows: for any component not connected to the
boundary ∂Λ, each of the two proper 2-colorings arises with probability 1/2; and any
component connected to the boundary is given the unique proper 2-coloring that is
compatible with the boundary conditions (namely, color 1 on V0 and color 2 on V1). In
particular, for points v0 ∈ V0 ∩Λ one has

ρ1
Λ,β

(
σv0 = 1

∣
∣Λ3, η

) =

⎧
⎪⎨

⎪⎩

1 if v0 ↔η ∂Λ

1
2 if v0 ∈ Λ12 and v0 	↔η ∂Λ

0 if v0 ∈ Λ3

(5.5)

ρ1
Λ,β

(
σv0 = 2

∣
∣Λ3, η

) =

⎧
⎪⎨

⎪⎩

0 if v0 ↔η ∂Λ

1
2 if v0 ∈ Λ12 and v0 	↔η ∂Λ

0 if v0 ∈ Λ3

(5.6)

where v ↔η ∂Λ denotes the event that v is connected to ∂Λ through a path of edges
with ηe = 1 [note that v0 ∈ Λ3 implies v0 	↔η ∂Λ]. For the unconditional law, it follows
that

ρ1
Λ,β(σv0 = 1)− ρ1

Λ,β(σv0 = 2) = ρ1
Λ,β

(
v0 ↔η ∂Λ

)
. (5.7)

For v1 ∈ V1∩Λ, one has similar equations with the roles of colors 1 and 2 interchanged,
so that

ρ1
Λ,β(σv1 = 2)− ρ1

Λ,β(σv1 = 1) = ρ1
Λ,β

(
v1 ↔η ∂Λ

)
. (5.8)
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Now consider a finite set Δ0 ⊂ V0, and recall that Jk,Δ0 denotes the event that Δ0

is uniformly colored in the color k, and that JΔ0 =
⋃3

k=1 Jk,Δ0 denotes the event that
all sites in Δ0 are uniformly colored in some color. Let Δ0 ↔η ∂Λ denote the event
that there is at least one site in Δ0 that is connected to ∂Λ through a path of edges with
ηe = 1. Since

ρ1
Λ,β

(J1,Δ0

∣
∣Λ3, η

) = ρ1
Λ,β

(J2,Δ0

∣
∣Λ3, η

)
a.s. on Δ0 	↔η ∂Λ (5.9)

and

ρ1
Λ,β

(J2,Δ0

∣
∣Λ3, η

) = 0 a.s. on Δ0 ↔η ∂Λ, (5.10)

we see that

ρ1
Λ,β(J1,Δ0)− ρ1

Λ,β(J2,Δ0) = ρ1
Λ,β

(JΔ0 ∩ {Δ0 ↔η ∂Λ}
)
. (5.11)

Now, recall that a finite set Δ ⊂ V is termed thick if there exists a nonempty finite
subset Δ1 ⊂ V1 that is connected in G1 and such that Δ = {v ∈ V : dG(v,Δ1) ≤ 1}.
We therefore fix some thick setΔ ⊂ V and defineΔ0 := Δ∩V0 (since G is bipartite we
haveΔ1 = Δ∩ V1). Comparing (5.7)/(5.8)/(5.11) and noting that ρ1

Λ,β can be replaced

byμ1
Λ,β on the left-hand sides, we see that Lemma 2.3 is implied by the following claim:

Lemma 5.1 (Comparison lemma). Fix β0 > 0 and letΔ ⊂ V be thick. Then there exists
an ε > 0 such that

ρ1
Λ,β

(
v ↔η ∂Λ for all v ∈ Δ) ≥ ε ρ1

Λ,β

(JΔ0 ∩ {Δ0 ↔η ∂Λ}
)

(5.12)

uniformly for all β ∈ [β0,∞] and all simply connected finite sets Λ ⊇ Δ such that
∂Λ ⊂ V0. In fact, we can choose ε = 3−|Δ1| (1 − e−β0)|EΔ| where EΔ =

{{u, v} ∈
E : u, v ∈ Δ}

.

Proof. The proof is by a finite-energy argument: that is, to each (σ, η) ∈ JΔ0 ∩{Δ0 ↔η

∂Λ} we associate a (σ ′′, η′′) ∈ {v ↔η ∂Λ for all v ∈ Δ}; we then compute a lower
bound on the ratio of ρ1

Λ,β(σ
′′, η′′) to the total ρ1

Λ,β -weight of the configurations (σ, η)
that map onto it. The construction is in two steps (σ, η) �→ (σ ′, η′) �→ (σ ′′, η′′). In the
first step we recolor all spins (σv)v∈Δ1 to σ ′v = 2 (leaving all other variables as is). In
the second step we set all bond variables (ηe)e∈EΔ to η′′e = 1 (again leaving all other
variables as is). Let us now compute a lower bound on the ratio of weights, as follows:

Since (σ, η) ∈ JΔ0 ∩{Δ0 ↔η ∂Λ} and ∂Λ is colored 1, it follows that σv = 1 for all
v ∈ Δ0. Since Δ is thick, every vertex in Δ1 has all its neighbors in Δ0. Therefore we
can recolor all sites inΔ1 with the color 2 without increase in energy, i.e. ρ1

Λ,β(σ
′, η′) ≥

ρ1
Λ,β(σ, η).

21 We lose a factor 3|Δ1| because 3|Δ1| configurations (σ, η) map onto the
same configuration (σ ′, η′).

We now have σ ′u 	= σ ′v for all {u, v} ∈ EΔ. Therefore ρ1
Λ,β(σ

′′, η′′) is precisely

pEΔ times the total ρ1
Λ,β -weight of the configurations (σ ′, η′) that map onto it, where

p = 1− e−β ≥ 1− e−β0 . ��
21 In fact, (5.12) would still hold (with a worse ε) even if there were an energy cost associated to this

operation, provided that this energy cost is uniformly bounded.
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Remark. The ideas in this section—in particular, formulas (5.7), (5.8) and (5.11)—have
an obvious generalization to the q-state Potts antiferromagnet for any q ≥ 2 on any
bipartite graph (not necessarily a plane quadrangulation), where we condition on q − 2
colors and use the random-cluster representation for the remaining two colors. Indeed,
as in [24, Appendix A], we may consider an even more general situation: Suppose that
the vertex set V is partitioned as V = V0 ∪ V1; then we can consider a Potts model
with antiferromagnetic interactions on edges connecting V0 to V1 and ferromagnetic
interactions on edges V0–V0 and V1–V1.
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A. Some Facts About Infinite Planar Graphs

The purpose of this appendix is to collect some facts about infinite graphs, and in
particular about infinite graphs embedded in the plane, that will be needed in the main
part of the paper. An excellent general introduction to the theory of infinite graphs can be
found in [16, Chapter 8]; but we shall require here some further facts that are scattered
throughout the recent research literature, plus a few that appear to be new.

A.1. Basic facts and definitions. Recall that a graph is a pair G = (V, E) consisting
of a (not necessarily finite) vertex set V and edge set E . Unless mentioned otherwise,
when we say “graph” we will always mean a simple graph, i.e., an undirected graph that
has no loops or multiple edges. Thus, the elements of E (the edges) are unordered sets
{v,w} containing two distinct elements of V . Two vertices v,w ∈ V are called adjacent
if {v,w} ∈ E . An edge e containing a vertex v is said to be incident to v. The degree
of a vertex v ∈ V is the number of edges incident to it. We say that G is finite (resp.
countable) if both V and E are finite (resp. countable). We say that G is locally finite
(resp. locally countable) if every vertex has finite (resp. countable) degree.

A graph G ′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E is called a subgraph of
G = (V, E); we also say that G contains G ′. If E ′ contains all edges {v,w} ∈ E
with v,w ∈ V ′, then G ′ is called the subgraph of G induced by V ′. Likewise, if
V ′ = {v ∈ V : ∃w ∈ V s.t. {v,w} ∈ E ′}, then we call G ′ the subgraph induced by E ′.

We will say that a graph G is connected if for every proper subset W ⊂ V (the word
“proper” means that W 	= ∅, V ) there is an edge {v,w} ∈ E with v ∈ V \W, w ∈ W .
Let us note that every locally countable, connected graph is countable.22 A connected
graph in which each vertex has degree ≤ 2 will be called a generalized path. The
length of a generalized path is the number of its edges. Vertices of degree 2 are called
internal vertices of the generalized path, while vertices of degree one or zero are called
endvertices.23 An infinite generalized path with one endvertex is called a one-way-

22 Indeed, if G = (V, E) is connected and W is the set of all vertices at finite graph distance from a given
vertex, then connectedness implies W = V .

23 Note that a vertex of degree zero can occur in a connected graph (and more particularly in a path) only if
the graph has precisely one vertex.
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infinite path or ray; an infinite generalized path without endvertices is called a two-way-
infinite path or double ray; a finite generalized path without endvertices is called a cycle;
and a finite generalized path with one or two endvertices is called a path. In particular,
a graph consisting of a single vertex and no edges is a path of length zero.

Two vertices v,w in a graph G are linked by a path if G contains a path that has v
and w as its endpoints. Then it is easy to see that a graph is connected (according to
our definition above) if and only if every pair of vertices in G is linked by a path. The
graph distance d(v,w) between two vertices v,w ∈ V is the length of a shortest path
linking v and w if such a path exists, and∞ otherwise. An edge {v,w} in a path P is
said to be a final edge of P if either v or w (or both) has degree one. The graph distance
d(e, f ) between two edges e, f ∈ E is defined as the minimal length minus one of a
path that has e and f as final edges. Note, in particular, that d(e, f ) = 0 iff e = f , and
that d(e, f ) = 1 iff e 	= f but e and f share a vertex. It is easy to check that, whenever
G is connected, the graph distance between vertices (resp. edges) defines a metric on V
(resp. E).

Let G = (V, E) be a connected graph. A set B ⊆ E is called separating if G\B is
not connected. A set C ⊆ E is called a cutset if there exists a partition {V1, V2} of V
into two nonempty sets such that C = E(V1, V2) := {{v1, v2} ∈ E : v1 ∈ V1, v2 ∈ V2}.
(Since G is assumed connected, ∅ is not a cutset.) A separating set (resp. cutset) is called
minimal if it contains no proper subset that is a separating set (resp. a cutset). In fact, the
two concepts are the same: each minimal separating set is also a minimal cutset and vice
versa. Moreover, a set C ⊆ E is a minimal cutset if and only if (V, E\C) has exactly
two connected components.24

Two rays in an infinite graph G are said to be end-equivalent (or equivalent for short)
if one (hence all) of the following equivalent conditions holds:

1. there exists a third ray whose intersection with both of them is infinite;
2. there are infinitely many disjoint paths in G joining the two rays;
3. for every finite set S ⊂ V , the two rays are eventually contained in the same

connected component of G\S.

It is easy to see that end-equivalence is an equivalence relation. The corresponding
equivalence classes are termed the ends of the graph G.25 It is not hard to see that a
connected, locally finite graph G = (V, E) has one end if and only if for every finite
E ′⊆E , the subgraph (V, E\E ′) has exactly one infinite component; or equivalently, if
every finite minimal cutset divides V into two connected components, of which exactly
one is of infinite size.

For k ≥ 1, a graph G = (V, E) is called k-connected if |V | ≥ k + 1 and the subgraph
induced by V \W is connected for all W ⊂ V satisfying |W | < k. (Otherwise put, to
disconnect G one must remove at least k vertices.) Two vertices v,w in G are said to
be k-edge-connected if one needs to remove at least k edges to unlink them; a graph is
called k-edge-connected if every pair of vertices in it is k-edge-connected. It is easy to
see that k-edge-connectedness of vertices is an equivalence relation; the corresponding

24 In the graph-theory literature, minimal cutsets are sometimes called bonds. Alas, in the statistical-
mechanics literature, “bond” is often used as a synonym for “edge”. To forestall confusion, we prefer to
avoid the term “bond” altogether.

25 This definition of the ends of a graph is due to Halin [34] in 1964 (see also Freudenthal [26] for the locally
finite case). The notion of “end” of a topological space was introduced much earlier by Freudenthal [25], in
1931. If one identifies G with the “topological realization” defined below (at the beginning of Sect. A.3), then
the two notions coincide for locally finite graphs but are different in general [18]. See [48] for an elementary
introduction to the theory of ends of locally finite graphs; and see [50] for a survey treating both graphs and
topological spaces.
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equivalence classes of vertices (and their induced subgraphs) are called the k-edge-
connected components of the graph. Two paths are called vertex-disjoint (resp. edge-
disjoint) if their sets of internal vertices (resp. edges) are disjoint. By Menger’s theorem,
two vertices are k-edge-connected if and only if they are linked by k edge-disjoint paths,
and a graph is k-connected if and only if every two vertices are linked by k vertex-disjoint
paths.

An automorphism of a graph G = (V, E) is a bijection g : V → V such that
{g(v), g(v′)} ∈ E if and only if {v, v′} ∈ E . We say that two vertices v,w ∈ V
are of the same type, denoted v ∼ w, if there exists an automorphism g of G such
that g(v) = w. Then ∼ is an equivalence relation that divides the vertex set V into
equivalence classes called types. A graph is called vertex-transitive if there is only one
type of vertex, and vertex-quasi-transitive if there are only finitely many types of vertices.
Similarly, we say that two edges {v, v′}, {w,w′} ∈ E are of the same type if there exists
an automorphism g of G such that {g(v), g(v′)} = {w,w′}; and we say that two directed
edges (v, v′), (w,w′) ∈ V × V with {v, v′}, {w,w′} ∈ E are of the same type if there
exists an automorphism g of G such that g(v) = w and g(v′) = w′. Edge- and directed-
edge- transitivity or quasi-transitivity are then defined in the obvious way. We shall need
the following fairly easy result:

Lemma A.1. For a locally finite graph G, the following are equivalent:

(a) G is vertex-quasi-transitive.
(b) G is edge-quasi-transitive.
(c) G is directed-edge-quasi-transitive.

Proof. (b)⇔ (c): Obviously, if two directed edges (v, v′) and (w,w′) are of the same
type, then the corresponding undirected edges {v, v′} and {w,w′} are also of the same
type. This shows that there are as most as many types of edges as there are types
of directed edges. Conversely, since there are only two ways to order a set with two
elements, there are at most twice as many types of directed edges as there are types of
edges.

(c)⇒ (a): If two directed edges (v, v′) and (w,w′) are of the same type, then obviously
v andw are of the same type. Since all isolated vertices (i.e., vertices of degree zero) are
of the same type, this shows that the number of types of vertices is at most the number
of types of directed edges plus one.

(a) ⇒ (c): Assume that there are m types of vertices and that these have degrees
d1, . . . , dm . Pick representatives v1, . . . , vm of these equivalence classes. For any di-
rected edge (v, v′), there exists a k ∈ {1, . . . ,m} and a graph automorphism that maps
v to vk . Since a graph automorphism preserves the graph structure, w′ must be mapped
into one of the dk vertices adjacent to vk . Thus, we have found d1 +· · ·+dm directed edges
such that each directed edge can be mapped into one of these by a graph automorphism.
In particular, the number of types of directed edges is at most d1 + · · · + dm . ��

In view of Lemma A.1, we usually talk about quasi-transitive graphs without speci-
fying whether we mean in the vertex, edge or directed-edge sense.26

A geodesic in a graph G is a generalized path P such that for each pair of vertices
v,w in P , the graph distance from v to w in P coincides with the graph distance from
v to w in G. It is not hard to see that any path of minimal length linking two vertices
v′, w′ is a geodesic. For completeness, we prove the following simple fact. Part (a) of

26 The term “almost transitive” is also used as a synonym for “quasi-transitive”.
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this lemma can be found, for example, in [59, Prop. 1]; it is a simple corollary of König’s
Infinity Lemma [16, Lemma 8.1.2]. We did not find a reference for part (b), but it is
presumably well known.

Lemma A.2 (Infinite geodesics). Let G = (V, E) be a locally finite connected graph
with infinite vertex set V . Then:

(a) For each v ∈ V , there exists a geodesic ray whose endpoint is v.
(b) If G is moreover quasi-transitive, then G contains a geodesic double ray.

Proof. Since each vertex is of finite degree, the set of vertices at distance k from v

is finite for each k ≥ 0. Therefore, since V is infinite and G is connected, for each
n ≥ 1 we can find a vertex vn ∈ V at distance d(v, vn) = n. Consider a path (v(n)0 =
v, v

(n)
1 , . . . , v

(n)
n−1, v

(n)
n = vn) and define the function fn : N→ V by taking fn(k) = v(n)k

for k ≤ n and fn(k) = vn for all k ≥ n. Since the set of points at distance k from v is
finite for each k ≥ 0, we may select a subsequence fnm that converges pointwise in the
discrete topology. It is easy to see that the limit of such a subsequence is a geodesic ray
starting at v, proving part (a) of the lemma.

To prove also part (b), we use that by quasi-transitivity, the geodesic ray constructed
in part (a) must pass through at least one type of vertex infinitely often. It follows that
for a vertex v of this type, for each n ≥ 0 we can find a function fn : Z → V such
that fn(0) = v, fn(k) = fn(−n) for all k ≤ −n, the vertices { fn(k) : k ≥ −n} are all
different, and the graph induced by this set is a geodesic ray. (It suffices to employ the
corresponding automorphism to shift the original geodesic ray by identifying a vertex
of given type sufficiently far on it with the vertex v.) Now the statement follows from
the same sort of compactness argument as used in the proof of part (a). ��

A.2. Duality. In the main part of this paper, we make extensive use of the fact that the
two sublattices G0 and G1 are each other’s dual in the sense of planar graph duality. Such
duals may be defined abstractly, using only basic concepts of graph theory, without any
reference to embeddings of graphs in the plane. In fact, this abstract notion of duality is
sufficient for all our proofs, as we shall show in the present subsection. Nevertheless, in
the next subsection we will complement this abstract theory by showing that sufficiently
“nice” embeddings of a graph in the plane give rise to abstract duals, and conversely that
every locally finite abstract dual arises in this way.

The basic theory of duals of infinite graphs was developed by Thomassen [68,69],
which we largely follow here; see also Bruhn and Diestel [9,10,17] for a partially
alternative approach.27 Abstract duals can be defined for 2-connected graphs, but in this
case the dual may have multiple edges; we therefore restrict ourselves for simplicity to
the 3-connected case.

If G = (V, E) is a 3-connected graph, then an abstract dual of G is a connected
graph G† = (V †, E†) together with a bijection E � e �→ e† ∈ E† such that a finite set
C ⊆ E is a cycle in G if and only if C† := {e† : e ∈ E} is a minimal cutset in G†. We
stress that in this generality the term “dual” is something of a misnomer, since G need

27 The approach of Thomassen [68,69] is based on the study of finite cycles and minimal cutsets, as explained
below. The alternative approach of Bruhn and Diestel [9,10,17] introduces (by topological means) a notion
of infinite “cycles”, and shows that this notion allows a somewhat cleaner duality theory. When G† is locally
finite, the two concepts of duality coincide [9, Lemma 4.7]. We are therefore entitled to use here the theorems
from [9,10,17] under the added hypothesis that G† is locally finite.
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not be an abstract dual of G†; indeed, G† need not have any abstract dual at all, even
when G is planar and locally finite [68, p. 266]. However, if both G and G† are locally
finite, then the situation becomes particularly nice:

Theorem A.3 (Locally finite abstract duals). Let G = (V, E) be a locally finite 3-
connected graph that has a locally finite abstract dual G† = (V †, E†). Then:

(i) G, with the inverse map E† � e† �→ e ∈ E, is an abstract dual of G†.
(ii) G† is 3-connected.

(iii) G† is, up to isomorphism, the only abstract dual of G.
(iv) If G has one end, then so does G†.
(v) If G is quasi-transitive, then so is G†.

Proof. Part (ii) follows from [69, Theorem 4.5]. Then parts (i) and (iii) follow from
[68, Theorem 9.5]. Part (iv) follows from [10, Theorem 1.1], which states that there is
a homeomorphism between the spaces of ends of G and G† (considered as subspaces
of the Freudenthal compactification, to be defined in the next subsection); so in par-
ticular G has one end if and only if G† does. (Alternatively, this can be deduced from
Proposition A.12(iii) below, using Lemma A.7 and Theorem A.10.)

We did not find a reference for part (v), but this is not hard to prove using some more
results from [68]. We will prove the following, stronger statement. Let g : V → V be
a graph automorphism of G and let g({v,w}) := {g(v), g(w)} also denote the induced
map g : E → E on edges. Then there exists an automorphism g† of G† such that
the induced map on edges satisfies g†(e†) = g(e)†. This shows that two edges in G†

are of the same type if the corresponding edges in G are of the same type. Since by
part (i), duality is a symmetric relation, this “if” is an “if and only if”. In particular, G†

is edge-quasi-transitive if and only if G is (with the same number of types of edges).
To prove the existence of g†, we need some definitions. Let C = (V (C), E(C)) be a

cycle in the graph G = (V, E). We say that C is an induced cycle if C is the subgraph
of G induced by V (C); equivalently, this says that C has no diagonals, i.e., there are
no edges in E\E(C) that have both endvertices in V (C). We say that C is a separating
cycle if there are vertices v1, v2 in V \V (C) that are linked in G but not in the subgraph
of G induced by V \V (C).

Now let G = (V, E) be a locally finite 3-connected graph and let G† = (V †, E†) be
a locally finite abstract dual of G. Then [68, Theorem 9.5] says that there is a one-to-one
correspondence between vertices of G† and induced non-separating cycles of G. Indeed,
for each v† ∈ V †, the set C† of edges in G† that are incident to v† has the property
that C := {e : e† ∈ C†} is an induced non-separating cycle of G, and conversely, every
induced non-separating cycle of G arises in this way.

Now let g be a graph automorphism of G. Since g maps induced non-separating
cycles into induced non-separating cycles, there is a bijection g† : V † → V † that maps
a vertex v† into a vertex w† of G† if and only if g maps the associated induced non-
separating cycles of G into each other. Since two vertices of G† are adjacent if and only
of the associated induced non-separating cycles of G share an edge, we see that g† is a
graph automorphism of G† such that the induced map g : E† → E† on edges satisfies
g†(e†) = g(e)†. ��

Let G and G† be as in Theorem A.3, let v† ∈ V † be a vertex in G†, and let E†
v† :=

{e† ∈ E† : e† is incident to v†}. Then E†
v† is a minimal cutset in G†, which is finite by

virtue of the local finiteness of G†; hence Ev† := {e ∈ E : e† ∈ E†
v†} is a cycle in G.
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We loosely call v† a face of G and we call Ev† the boundary of this face. Indeed, we
will see in the next subsection that for a suitable embedding of G in the plane R

2, v†

corresponds to a connected component of R
2\G and Ev† corresponds to its boundary. In

view of this, we abstractly define a triangulation (resp. quadrangulation) to be a locally
finite 3-connected graph G that has an abstract dual G† in which each vertex has degree 3
(resp. 4).

Now assume that G has one end. Then each finite minimal cutset C of G corresponds
to a partition {V1, V2} of V into two connected components, of which exactly one is
infinite. Let V1, V2 denote the finite and infinite component, respectively. Since by The-
orem A.3(i), G is an abstract dual of G†, the set C† := {e† : e ∈ C} is a cycle in G†,
and each cycle in G† arises in this way. We call Int(C†) := V1 and Ext(C†) := V2 the
interior and exterior of C†, respectively. We say that C† surrounds a vertex v ∈ V if
v ∈ Int(C†).

An essential ingredient in our proofs in this paper is an upper bound (Lemma 3.4)
for certain quasi-transitive triangulations G on the number of cycles in G† of a given
length surrounding a given vertex v in G. To derive this bound, we need some simple
graph-theoretic facts.

Lemma A.4 (Distances in a graph and its dual). Let G = (V, E) be a 3-connected
graph. Assume that each vertex in G has degree at most dmax and that G has a locally
finite abstract dual G† = (V †, E†). Then for all e, f ∈ E we have

d(e†, f †) ≤ ( 1
2 dmax − 1)d(e, f ) + 1, (A.1)

where d(e†, f †) denotes the distance between e† and f † in the dual graph G†.

Note that dmax ≥ 3 since G is 3-connected.

Proof of Lemma A.4. If e = f (hence e† = f †), the statement is trivial, so consider
the case e 	= f . Let P be a path of minimal length that has e and f as final edges.
For each vertex v of G, let E†

v := {e† : e is incident to v} denote the boundary of the
corresponding face of G†. Note that E†

v is a cycle whose length is the degree of v.
If some E†

v and E†
w share an edge e†, then e connects v and w. For internal vertices

v,w of P , by the minimality of P , this is possible only if v and w are adjacent in P .
Let v1, . . . , vn be the internal vertices of P , where n = d(e, f ), and let d1, . . . , dn
denote their degrees in G. Then the symmetric difference D := E†

v1
� · · · � E†

vn

consists of exactly
∑n

k=1 dk − 2(n − 1) edges which form a cycle in G† containing e†

and f †. It follows that G† contains two paths P†
1 , P†

2 which have e† and f † as their
final edges and are otherwise edge-disjoint, and whose respective lengths k1, k2 satisfy
k1+k2−2 =∑n

k=1 dk−2(n−1). We conclude from this that min(k1, k2) ≤ (k1+k2)/2 ≤
1
2 (ndmax − 2n + 4) and hence d(e†, f †) ≤ ( 1

2 dmax − 1)n + 1. ��
Now let G = (V, E) be a locally finite 3-connected quasi-transitive graph that has

a locally finite abstract dual G† = (V †, E†). By Theorem A.3(v), G† is also quasi-
transitive, hence of bounded degree; let d†

max denote the maximal degree of a vertex in
G†. By Lemma A.2(b), G contains at least one geodesic double ray; let V0 be the set of
all vertices v ∈ V that lie on some geodesic double ray. Then, by quasi-transitivity, the
maximal distance of any vertex in G to the set V0,

K := sup
w∈V

inf
v∈V0

d(v,w), (A.2)
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is finite. Note, finally, that by Lemma A.2(a), at each v ∈ V there starts at least one
geodesic ray.

Proposition A.5 (Distance to a surrounding cycle). Let G,G†, d†
max and K be as above.

Assume that G has one end. Let v ∈ V , let R be a geodesic ray in G starting at v, and
let C† be a cycle in G† of length L surrounding v. Then C† must cross one of the first
N edges of R, where

N := 1 + K + 1
2 (

1
2 d†

max − 1) L . (A.3)

Proof. As discussed above, the cycle C† corresponds to a minimal cutset C of G, which
divides G into two connected components, one of which is finite and the other of which
is infinite; moreover, v is contained by hypothesis in the finite component. Since R is
an infinite ray starting at v, it must use somewhere an edge of C ; let f be the first such
edge, and let f † ∈ C† be the corresponding dual edge.

Letw be the point in V0 that is closest to v, let P be a path of minimal length K ≤ K
linking v and w, and let D be a geodesic double ray containing w. Write D = R1 ∪ R2
where R1, R2 are geodesic rays starting at w, and observe that R′1 := P ∪ R1 and
R′2 := P ∪ R2 are rays starting at v. The cycle C† must cross some edge in R′1 and some
edge in R′2. Let e1, e2 be the first edges (counting from v) in R′1, R′2 crossed by C†. We
distinguish two cases: I. e1 	= e2 and II. e1 = e2.

In case I, e1 and e2 lie on D and are the (K + N1)-th and (K + N2)-th edge of the rays
R′1 and R′2, say. Then C† is the union of two paths P†

1 , P†
2 , each of which has e†

1 and

e†
2 as their final edges, and which are disjoint except for their overlap at e†

1 and e†
2. Let

L1, L2 denote the lengths of these paths in G†, where L1 + L2 − 2 = L . Without loss
of generality we may assume that f † lies on P†

1 and is the M1-th edge of P†
1 starting

from e1 and the M2-th edge starting from e2, where M1 + M2− 1 = L1. By Lemma A.4
(applied with the roles of G and G† reversed), we have

min(L1, L2) ≥ d(e†
1, e†

2) + 1 ≥ 1

c

(
d(e1, e2)− 1

)
+ 1 = 1

c

(
N1 + N2 − 2

)
+ 1, (A.4)

where we have abbreviated c := 1
2 d†

max − 1. Therefore

M1 + M2 = L1 + 1 = L + 3− L2 ≤ L + 2− 1

c

(
N1 + N2 − 2

)
. (A.5)

Using Lemma A.4 again, there exists a path in G of length at most c(M1 − 1) + 1 that
has e1 and f as its final edges, and another path of length at most c(M2− 1)+ 1 that has
e2 and f as its final edges. Combining these paths with the pieces of R′1 and R′2 leading
up to e1 and e2, respectively, we find two paths in G starting at v and with f as their
final edge, with lengths of at most

K + N1 + c(M1 − 1) and K + N2 + c(M2 − 1), (A.6)

respectively. By (A.5), it follows that the average length of these two paths is at most

1
2

(
2K + N1 + N2 + c(M1 + M2 − 2)

)

≤ 1
2

[
2K + N1 + N2 + c

(
L − 1

c
(N1 + N2 − 2)

)] = 1 + K + 1
2 cL . (A.7)
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Taking the shorter of these two paths, we have found a path of length at most 1+ K + 1
2 cL

starting at v and having f as its final edge. But since R is a geodesic ray, the distance
from v to f along R must be at most this.

In case II, e := e1 = e2 must lie on P; it is the first edge of P (counting from v) that is
crossed by some edge in C†. Then C† contains two paths with lengths L1, L2 satisfying
L1 + L2−2 = L that have e† and f † as their final edges. It follows that d(e†, f †) ≤ 1

2 L .
Therefore, by Lemma A.4, d(e, f ) ≤ 1

2 cL + 1, which means that we can find a path in
G of length at most 1

2 cL + 2 that has e and f as its final edges. Combining this path with
the piece of P leading from v to e, we again find a path of length at most 1 + K + 1

2 cL
starting at v and having f as its final edge. ��

A.3. Planar embeddings. In this section we collect some results that show that suffi-
ciently “nice” embeddings of a graph in the plane give rise to a geometric dual that is
also an abstract dual, and conversely that graphs having a locally finite abstract dual have
“nice” embeddings in the plane such that the geometric dual coincides with the abstract
dual.

Embeddings of finite (planar) graphs in the plane are treated in almost any elementary
book on graph theory, but it is more difficult to find a good reference for infinite planar
graphs. Some articles that we have found useful are [6,9,19,20,49,64,68,69].

Each graph G gives rise to a topological space—which, by a slight abuse of notation,
we shall continue to call G—that is defined by first assigning a disjoint copy of [0, 1]
to each edge of G and a point to each vertex of G and then identifying the endpoints
of intervals with the endvertices of the corresponding edges.28 We equip G with the
quotient topology arising from this identification: thus, a neighborhood base of an inner
point on an edge is formed by the open intervals on the edge containing that point, while
a neighborhood base of a vertex x is formed by the unions of half-open intervals [x, z)
containing x , one interval being taken from every edge [x, y] incident to x .29 Such a
topological realization of the graph G is compact if and only if G is finite, and locally
compact if and only if G is locally finite. It is metrizable if and only if G is locally
finite.30

An embedding of a graph G in the plane is a continuous injective map φ : G → R
2.31

A graph G that can be embedded in the plane is called planar. A plane graph is a pair
(G, φ) where G is a graph and φ is an embedding of G in the plane. We (topologically)
identify the sphere S with the one-point compactification R

2 ∪ {∞} of the plane R
2.

Embeddings of graphs in the sphere are defined analogously to embeddings in the plane;
a graph can be embedded in the sphere if and only if it can be embedded in the plane.

28 More precisely, given a graph G = (V, E), we start from the set (E × [0, 1]) ∪ (V × {2}), and then for
each edge e = xy we identify (e, 0) with (x, 2) and (e, 1) with (y, 2).

29 With this topology, G is a 1-dimensional CW-complex [35, pp. 5–6 and pp. 519 ff.].
30 Indeed, if x is a vertex of infinite degree, then x does not have a countable neighborhood basis in the

topology we have given G. (It is possible to equip G with a different topology, which is always metrizable, in
such a way that a neighborhood base of a vertex x is formed by the unions of half-open intervals [x, z) using
the same distance ε = d(x, z) for each incident edge [28]. However, we shall not use this topology.)

31 Traditionally an embedding is defined as a drawing in which the vertices are represented by distinct points
and the edges are represented by closed continuous arcs joining their endvertices, mutually disjoint except
possibly at their endpoints. Given an embedding in this sense, pasting together the continuous mappings from
[0, 1] to R

2 corresponding to the individual edges always yields a continuous map φ : G → R
2 (with the

topology we have given G); and the converse is trivial. Therefore, our definition of embedding is equivalent
to the traditional one.
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If G is a finite graph, then φ(G), being the continuous image of a compact set, is a closed
subset of R

2. Moreover, φ is necessarily a homeomorphism to its image, i.e., the inverse
map φ−1 : φ(G) → G is also continuous. Both statements fail in general when G is
infinite. Mainly for these reasons, not much can be said in general about embeddings of
infinite graphs; one needs extra conditions to proceed.

So let G be a graph with no isolated vertices, and let φ : G → S be an embedding
of G in the sphere. Following an idea of [49], we say that φ is self-accumulation-free
if no point z ∈ φ(G) is an accumulation point of edges that do not contain z.32 We say
that φ is pointed if the image under φ of each ray in G converges to a point in S.33

(Clearly, equivalent rays must converge to the same point. Inequivalent rays may or may
not converge to the same point.)

Recall that a compactification F of a topological space F is a compact topological
space F such that F ⊆ F is dense. We will always require that F be Hausdorff. As
in [64], we say that a compactification G of a connected, locally finite (not necessarily
planar) graph G is pointed if each ray in G converges to some point in G\G.34 (Clearly,
equivalent rays must converge to the same point. Inequivalent rays may or may not
converge to the same point.) If G is a graph and G is any compactification of G, then
an embedding of G in the sphere is a continuous injective map φ : G → S; since G is
compact, it is necessarily a homeomorphism to its image.

Lemma A.6 (Embeddings of compactifications). Let (G, φ) be a locally finite plane
graph with no isolated vertices. Then the following conditions are equivalent:

(i) φ is self-accumulation-free.
(ii) φ is a homeomorphism to its image.

(iii) φ can be extended to an embedding φ : G → S in the sphere of some compacti-
fication G of G. [The extension is of course unique, since G is dense in G.]

Moreover, under these conditions, the embedding φ determines the compactification G
uniquely (up to trivial renamings of points in G\G); and G is a pointed compactification
if and only if φ is a pointed embedding.

Proof. If φ is not a homeomorphism to its image, then we can find xn, x ∈ G such that
φ(xn) → φ(x) but xn 	→ x . Since φ is continuous and injective, the sequence (xn)

cannot have any accumulation points in G other than x ; so by passing to a subsequence
way may assume that it has no accumulation points at all. Since any finite collection
of edges is compact, the sequence (xn) must visit infinitely many edges. Since G is
locally finite, only finitely many of these edges can contain x . It follows that φ is not
self-accumulation-free.

32 More precisely, if x = φ−1(z), we let E(x) ⊆ G be the union of all edges containing x ; we then
require that z is not contained in the closure of φ(G\E(x)). Krön [49] uses the term “accumulation-free”,
but we prefer the term “self-accumulation-free” in order to emphasize that only accumulation points on the
graph itself are forbidden. In this way we clearly distinguish this concept from the standard concepts “VAP-
free” and “EAP-free” to be introduced later, which forbid accumulation points everywhere in the finite plane
R

2 = S\{∞}.
33 Observe that a ray R ⊆ G is homeomorphic to [0,∞)with its usual topology; what we are requiring here

is that limx→+∞ (x∈R) φ(x) exists in S. Since S is compact, φ(x) must necessarily have at least one limit
point as x → +∞; what we are requiring here is that it have exactly one limit point.

34 Note that in any compactification G of G, the limit points of a ray in G cannot lie in G, because the
topology of G extends that of G (and rays have no limit points in G). On the other hand, since G is compact,
each ray in G necessarily has at least one limit point in G. So what we are requiring here is that each ray
should have exactly one limit point in G.
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Conversely, if φ is not self-accumulation-free, then there exists z = φ(x) ∈ φ(G)
and a sequence (xn) belonging to edges not containing x , such that φ(xn) → φ(x).
Clearly xn 	→ x , so φ is not a homeomorphism to its image.

If (iii) holds, thenφ is a homeomorphism to its image, hence so is its restrictionφ to G.
Conversely, if φ is a homeomorphism to its image, then we may topologically identify G
with its imageφ(G). Then the closureφ(G) ofφ(G) in the sphere S is a compactification
of φ(G) such that the identity map from φ(G) to itself can be continuously extended to
φ(G); moreover, φ(G) is (up to renaming) the only compactification of φ(G) with this
property.

Clearly, if φ(G) is a pointed compactification, then φ is a pointed embedding. Con-
versely, if φ is a pointed embedding, then each ray in G converges to some point z ∈ S;
but since φ is self-accumulation-free, we have z /∈ φ(G), hence φ(G) is a pointed
compactification. ��
Remark. If G is not locally finite, then φ can never be a homeomorphism of G (with the
topology we have given it) to its image. For if x is a vertex of infinite degree, then it is
easy to choose points xn lying on infinitely many distinct edges such that φ(xn)→ φ(x);
but xn 	→ x .

Let φ : G → S be any embedding of a graph G in the sphere. Following [68,69], let
us define a vertex accumulation point (resp. edge accumulation point) of an embedding
φ to be a point in S such that each of its open neighborhoods contains infinitely many
vertices (resp. intersects infinitely many edges). We abbreviate “vertex accumulation
point” and “edge accumulation point” by VAP and EAP, respectively. Let us also say
that a point x ∈ S is an endpoint of (G, φ) if there exists a ray in G such that its image
under φ converges to x . The next lemma says that for self-accumulation-free pointed
embeddings of 2-connected graphs, all these concepts coincide:

Lemma A.7 (Endpoints of plane graphs). Let G be a locally finite 2-connected graph,
and let φ : G → S be a self-accumulation-free pointed embedding of G. Then the
following four sets are equal:

(i) The set of vertex accumulation points of (G, φ).
(ii) The set of edge accumulation points of (G, φ).

(iii) The set of endpoints of (G, φ).
(vi) φ(G)\φ(G).
Proof. We will prove the inclusions (iii)⊆(i)⊆(iv)⊆(iii) and the same with (i) replaced
by (ii). Clearly, every endpoint is also a vertex and edge accumulation point. Since
φ is self-accumulation-free and locally finite, each vertex or edge accumulation point
lies in φ(G)\φ(G). For each point x ∈ φ(G)\φ(G), we can find a sequence of points
xn ∈ φ(G), all lying on different edges, such that xn → x . Since G is 2-connected, it can
be shown that there exists a ray R in G whose image under φ passes through infinitely
many of these points. 35 Since φ is pointed, it follows that x is the limit of the φ-image
of R. ��

Let G be a pointed compactification of a connected locally finite (not necessarily
planar) graph G. Then, by definition, each ray in G converges to some limit in G\G;
and conversely, if G is 2-connected, then the argument proving (iv)⊆(iii) in Lemma A.7

35 Given an infinite set B ⊆ E , we can use local finiteness to extract an infinite subset B′ ⊆ B that is
pairwise vertex-disjoint; then by [64, Proposition 8], G has a ray that uses infinitely many of the edges in B′.
Given an infinite subset T ⊆ V , we can obviously choose an infinite set B of edges containing all the vertices
in T , and then proceed as before.
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shows more generally [64, p. 4591] that each point in G\G is the limit point of some
ray in G.

Each connected locally finite graph G has a unique (up to renaming) pointed com-
pactification G such that each point in G\G is the limit point of some ray in G and
moreover two nonequivalent rays always converge to different limit points: this is the
Freudenthal compactification F(G), see [16, Section 8.5] or [64, Section 7].36 Clearly,
F(G)\G is in bijection with the space of ends of G. If G is 2-connected, then, in a
sense, F(G) is the “largest” pointed compactification of G (compare the remarks on
[64, p. 4594]). At the other end of the scale, every connected, locally finite, infinite
graph G has a smallest pointed compactification, namely the one-point compactification
G• = G ∪ {∞} in which every infinite sequence of distinct vertices or edges (hence in
particular every ray) converges to the single point∞.

By Lemma A.6, an embedding φ of a connected locally finite graph G is self-
accumulation-free and pointed if and only if φ extends to an embedding φ of a pointed
compactification G of G. Richter and Thomassen [64, Theorems 1 and 13] have proven
the following key result concerning the existence and uniqueness of such embeddings:

Theorem A.8 (Embeddings of 3-connected planar graphs). Let G be a 3-connected
locally finite planar graph. Then:

(a) There exists an embedding of the Freudenthal compactification F(G) in the sphere
S.

(b) If G is any pointed compactification of G and φ1, φ2 are embeddings of G in the
sphere S, then there exists a homeomorphism h : S→ S such that φ2 = h ◦ φ1.

The unique (up to homeomorphism) embedding of the Freudenthal compactification
F(G) in the sphere S will be called the Freudenthal embedding.

Henceforth we assume that G is a 2-connected locally finite graph and thatφ : G → S

is a self-accumulation-free pointed embedding of G in the sphere. By Lemma A.6,
φ extends uniquely to an embedding φ : G → S of an essentially unique pointed
compactification G of G, and we have φ(G) = φ(G). The connected components of
the remaining open set S\φ(G) are called the faces of the plane graph (G, φ) [and also
of (G, φ)]. For any face f , we let ∂ f := f \ f denote its (topological) boundary. If X
is any topological space, we say that a subset C ⊆ X is a circle if it is homeomorphic
to the unit circle S

1. We need the following fundamental facts about the boundaries of
faces:
Theorem A.9 (Boundaries of faces). Let G be a 2-connected locally finite (planar)
graph, and let φ be a self-accumulation-free pointed embedding of G in the sphere S.
Then each face f of (G, φ) is bounded by a circle, and exactly one of the following three
possibilities holds:

(i) ∂ f is the φ-image of a (finite37) cycle in G [hence ∂ f ∩ [φ(G)\φ(G)] = ∅].
(ii) ∂ f ∩ φ(G) is the disjoint union of a nonempty countable collection of double

rays, and ∂ f ∩ [φ(G)\φ(G)] 	= ∅.
(iii) ∂ f ∩ φ(G) = ∅ [hence ∂ f ∩ [φ(G)\φ(G)] = ∂ f � S

1].

36 The Freudenthal compactification is a general construction of point-set topology: it is defined for locally
compact Hausdorff spaces, or more generally for completely regular rim-compact spaces (see e.g. [15,50]). For
locally finite graphs—which are the only ones we are concerned with—this topological definition coincides
with the graph-theoretic definition given here or in [16, Section 8.5].

37 Of course, cycles in the standard graph-theoretic meaning of the word are by definition finite. We will
always use the word in this standard sense; we shall not make explicit use of the “infinite cycles” introduced
(by topological means) by Diestel and collaborators [9,10,17,19,20].
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Moreover, when G is the Freudenthal compactification F(G), the set ∂ f ∩φ(G) is dense
in ∂ f ; in particular, case (iii) cannot occur.

Proof. By Lemma A.6, φ extends uniquely to an embedding φ of an (essentially unique)
pointed compactification G of G. Richter and Thomassen [64, Proposition 3 and The-
orem 7] have proven the fundamental result that every face of (G, φ) is bounded by a
circle. By Lemma A.6, such a circle is the image of a circle C in G under the home-
omorphism φ. We shall therefore prove the more general result that circles in G have
properties analogous to those stated in the theorem (here G need not be planar). We first
claim that

(a) Whenever C contains an inner point of an edge e ∈ G, it contains the entire
edge e.

(b) Whenever C contains a vertex x ∈ G, it contains precisely two edges of G that
are incident to x .

For the Freudenthal compactification, (a) and (b) are proven in [20, Lemma 2.3]. But
since statements (a) and (b) concern only a neighborhood of a point of G, they hold for
any Hausdorff compactification of G (since G is locally compact). For the Freudenthal
compactification, it is moreover proven in [19, Lemma 4.3] that C ∩ G is dense in C .
By (a, b), the union of all edges belonging to C is a 2-regular graph C ∩ G, so each
connected component of C∩G is either a cycle or a double ray. Since C∩G is moreover
homeomorphic to a subset of S

1, we conclude that it is either empty [case (iii)], a cycle
[case (i)], or a nonempty disjoint union of double rays [case (ii)]. In the latter case, there
can be only countably many double rays (since G is countable), and C must also contain
some points of G\G (in fact, at least as many as there are double rays) in order to have
the topology of a circle. ��
Examples. 1. The lattices shown in Fig. 1 have one end, which is mapped to∞, and

the boundary of every face is a cycle in G. As we will see in Proposition A.16 below,
quasi-transitivity and the fact that there is only one end imply that every face is
bounded by a cycle.

2. Consider N×Z with nearest-neighbor edges, with its usual embedding in the plane.
This graph has one end, which is mapped to∞. It has a face that is bounded by a
double ray together with {∞} = φ(G)\φ(G).

3. The graph in the top left of Fig. 6 has uncountably many ends, which are mapped by
the embedding φ onto the unit circle. This embedding has one face that is bounded
by endpoints alone (namely, the exterior face), as well as faces that are bounded by
cycles and faces that are bounded by a double ray together with one endpoint. This
graph is constructed in the following way. Consider a 3-regular tree with origin ∅.
Each vertex of G is labeled by a finite (possibly empty) sequence �0�1�2 . . . �n where
�0 ∈ {0, 1, 2} and �i ∈ {0, 1} for i ≥ 1; and each ray emanating from ∅ is labeled
by an infinite sequence �0�1�2 . . . of the same type. The tree can now be embedded
in the unit disk such that the ray �0�1�2 . . . converges to the point

2π · 1

3

(
�0 +

∞∑

i=1

2−i�i

)
(A.8)

on the unit circle. We then make the tree into a 3-connected graph by adding edges.
For each vertex � 	= ∅, we draw edges between the points �01 and �10 as well as
between �011 and �100. Moreover, around the origin, we draw the edges

{01, 10}, {011, 100}, {11, 20}, {111, 200}, {21, 00}, {211, 000}. (A.9)
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Fig. 6. Four examples of self-accumulation-free pointed embeddings of 3-connected graphs, demonstrating
some of the different possibilities for the set of endpoints and the boundaries of faces

This embedding is not a Freudenthal embedding, since two nonequivalent rays (e.g.
0111 · · · and 1000 · · · ) may converge to the same point. However, we can easily
modify this example to obtain a Freudenthal embedding of the same graph, by re-
placing the binary expansion 2−i�i in (A.8) by ternary expansion 2 · 3−i�i , as drawn
in the top right of Fig. 6. In this latter example, the set of ends is mapped onto a
Cantor subset of the unit circle. There is now a face f of (G, φ) that contains the
exterior of the unit disc but also extends inside the unit disc; its boundary consists of a
countably infinite collection of disjoint double rays together with all of φ(G)\φ(G).
Note that here ∂ f ∩ φ(G) is dense in ∂ f .

4. The graphs in the bottom row of Fig. 6 are examples of Freudenthal embeddings of
graphs with more than one end, in which each face is bounded by a cycle. The left
graph has two ends (and can easily be modified to produce any finite or countable
number of ends), while the right graph has uncountably many ends.

Let us now say that faces f1 and f2 border each other in an edge e if e lies in the
boundary of both faces, with f1 on one side of e and f2 on the other. Since G is 2-
connected, it is not hard to see that no face borders itself; rather, each edge e lies in the
common boundary of precisely two faces, which border each other in e. If G is moreover
3-connected, then two faces border each other in at most one edge.38 So let us assume
henceforth that G is 3-connected. For each edge e of G, we let e∗ := { f1, f2} denote
the pair of faces of G that border each other in e. We then define the geometric dual
G∗ = (V ∗, E∗) of the plane graph (G, φ) to be the graph whose vertex set V ∗ is the
set of all faces of (G, φ) that have at least one edge in their boundary [i.e., fall in case
(i) or (ii) of Theorem A.9] and whose edge set is E∗ := {e∗ : e ∈ E}. Note that the

38 In fact, it is easy to see that 2-edge-connectedness and 3-edge-connectedness are sufficient, respectively,
for these statements.
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edge sets E and E∗ are in bijection under e �→ e∗; for any subset B ⊆ E we denote by
B∗ = {e∗ : e ∈ B} the corresponding subset of E∗.

We can now prove that geometric duals, in this generality, are always abstract duals:

Theorem A.10 (Geometric duals are abstract duals). Let G be a locally finite 3-connected
graph, and let φ : G → S be a self-accumulation-free pointed embedding of G in the
sphere. Let G∗ be the geometric dual associated with this embedding. Then:

(i) G∗ is connected.
(ii) G∗ is an abstract dual of G.

(iii) G∗ is locally finite if and only if every face of G that has at least one edge in its
boundary is bounded by a cycle.

Proof. For each vertex v of G, let Ev denote the set of edges incident to v. Since
Ev is finite (say, of cardinality n) and φ is self-accumulation-free, basic topological
considerations (based on the Jordan curve theorem) imply that φ(v) is surrounded by
exactly n faces that border each other pairwise (in cyclic order) in the edges of Ev , and
that E∗v is a cycle in G∗ = (V ∗, E∗).

(i) Consider any pair v∗, w∗ ∈ V ∗. By definition, v∗ and w∗ are faces of (G, φ) that
contain at least one edge in their boundary; so let v andw, respectively, be any endvertex
of any such edge. Since G is connected, there exists a path v = v1, v2, . . . , vk = w

in G. Since each cycle E∗vi
is connected, and E∗vi

∩ E∗vi+1
= {{vi , vi+1}∗} 	= ∅, the set

⋃k
i=1 E∗vi

is connected; moreover, v∗ belongs to E∗v1
and w∗ belongs to E∗vk

. So there

exists a path in
⋃k

i=1 E∗vi
from v∗ to w∗.

(ii) Consider any cycle C in G. Then φ(C) is a circle in φ(G) that (by the Jordan
curve theorem) partitions V ∗ into two sets (call them V ∗1 and V ∗2 ) corresponding to faces
lying in the two components of S\φ(C). Since C consists exactly of those edges e ∈ E
that lie on the boundary of some pair of faces v∗1 ∈ V ∗1 and v∗2 ∈ V ∗2 , it follows that V ∗1
and V ∗2 are both nonempty, so that the set C∗ is a cutset of G∗.

For each v ∈ C , the set Ev ∩ C consists of precisely two edges (call them e and f )
such that e borders v∗1 ∈ V ∗1 and v∗2 ∈ V ∗2 and f borders w∗1 ∈ V ∗1 and w∗2 ∈ V ∗2 . Then
E∗v\C∗ is the disjoint union of two paths P∗1 , P∗2 in G∗ that link v∗1 andw∗1 in V ∗1 , and v∗2
andw∗2 in V ∗2 , respectively. Doing this for all v ∈ C , it follows that the set of all vertices
in V ∗1 (resp. V ∗2 ) that are incident to an edge of the cutset C∗ is connected in V ∗1 (resp.
V ∗2 ). Therefore C∗ is a minimal cutset of G∗.

Conversely, if B is a finite subset of E such that B∗ is a cutset of G∗, then for each
v ∈ V , the cutset B∗ must intersect E∗v (which is a cycle in G∗) an even number of times
(that is, B∗ ∩ E∗v has even cardinality). It follows that each vertex of G is incident to an
even number of edges of B, and hence B contains a cycle C . But we have just proven
that C∗ is a cutset in G∗. Therefore, if B∗ is a minimal cutset of G∗, we necessarily have
B = C .

(iii) By Theorem A.9, for every face f of (G, φ) that has at least one edge in its
boundary (i.e., belongs to V ∗), its boundary ∂ f must either be a cycle or contain a
double ray. Clearly, f has finite degree in G∗ in case ∂ f is a cycle, and has countably
infinite degree in case ∂ f contains a double ray. ��

In particular, whenever G is a locally finite 3-connected graph and φ : G → S is a
self-accumulation-free pointed embedding such that every face of G is bounded by a
cycle, the geometric dual G∗ is a locally finite abstract dual of G, so that all the nice
properties stated in Theorem A.3 ensue.
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Conversely, let us now show that if a locally finite 3-connected graph G has a locally
finite abstract dual, then G has a unique self-accumulation-free pointed embedding, and
the geometric dual associated with this embedding coincides with the abstract dual:

Theorem A.11 (Embeddings of graphs with locally finite abstract duals). Let G =
(V, E) be a locally finite 3-connected graph that has a locally finite abstract dual
G† = (V †, E†). Then:

(i) G is planar.
(ii) In the Freudenthal embedding of G, each face is bounded by a cycle, and the

geometric dual G∗ of this embedding coincides with the (unique) abstract dual G†.
(iii) The Freudenthal embedding is (up to homeomorphism) the only self-accumulation-

free pointed embedding of G in the sphere.

Proof. (i) is proven in [68, Theorem 9.3]. As a consequence of (i), Theorem A.8 guaran-
tees the existence and uniqueness (up to homeomorphism) of the Freudenthal embedding.
As a preliminary to (ii) and (iii), consider any self-accumulation-free pointed embedding
of G in the sphere, and let G∗ be the geometric dual associated with this embedding. By
Theorem A.10, G∗ is an abstract dual of G. But by Theorem A.3(iii), G has a unique
abstract dual G†. Hence G† = G∗.

(ii) For the Freudenthal embedding, Theorem A.9 guarantees that every face has at
least one edge in its boundary. And since G† = G∗ is locally finite, Theorem A.10(iii)
implies that every face is bounded by a cycle.

(iii) Let R1, R2 be inequivalent rays in G. Then there exists a finite set of edges B in G
such that the tails of R1 and R2 lie in different connected components of G\B. Making
B smaller if necessary, we may assume without loss of generality that B is a minimal
set with this property. It is not hard to see that B must then be a minimal cutset. Since G
is an abstract dual of G† [by Theorem A.3(i)], B† is a cycle in G†. Since G† = G∗, B∗
is a cycle in G∗. By (ii), each of the vertices of the cycle B∗ is a face of (G, φ) whose
boundary is a cycle in G. The sum modulo 2 of all these cycles forms a pair of disjoint
cycles in G, each of which separates the tail of φ(R1) from the tail of φ(R2). As a result,
these tails necessarily converge to different endpoints. Since this holds for any pair of
inequivalent rays, we conclude that G must be the Freudenthal compactification, and φ
the Freudenthal embedding. ��

Until now we have defined dual graphs—whether in the abstract or geometric sense—
simply as abstract graphs without a given embedding in the plane. However, given an
embedding of a planar graph, there is a natural way to embed its dual. Let G be a locally
finite 3-connected graph, let φ : G → S be a self-accumulation-free pointed embedding
of G in which each face is bounded by a cycle, and let G∗ be the geometric dual of (G, φ).
If e is an edge of G, we denote by e̊ the interior of the edge e in the topological realization
of G (namely, the edge without its endvertices). We then say that an embedding φ∗ of
G∗ is a dual embedding to (G, φ) if

(i) For each v∗ ∈ V ∗, we have φ∗(v∗) ∈ v∗.
(ii) For each e ∈ E , the arc φ∗(e∗) intersects φ(G) in a single point, which lies

on φ(e̊).

Less formally, (i) says that each vertex of G∗ is represented by a point lying in the
corresponding face of (G, φ), and (ii) says that two such points that lie in faces that
border each other in an edge e are linked by a dual edge e∗ that crosses e in a single
interior point and is otherwise disjoint from φ(G). We then have:
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Proposition A.12 (Dual embeddings). Let G be a locally finite 3-connected graph, and
let φ : G → S be a self-accumulation-free pointed embedding of G such that each
face of (G, φ) is bounded by a cycle. Let G∗ be the geometric dual associated with this
embedding. Then there exists a dual embedding φ∗ of G∗. Moreover, for each such φ∗:

(i) φ∗ is self-accumulation-free and pointed, and each face of (G∗, φ∗) is bounded by
a cycle.

(ii) G is a geometric dual of (G∗, φ∗) and φ is a dual embedding of G.
(iii) The sets of endpoints φ(G)\φ(G) and φ∗(G∗)\φ∗(G∗) coincide.

If (G, φ) and (G∗, φ∗) are as in Proposition A.12, then we say that they form a geometric
dual pair.

Proof of Proposition A.12. To prove the existence of a dual embedding φ∗ of G∗, we
begin by choosing a point φ∗(v∗) ∈ v∗ for each face v∗ of (G, φ), and a point x on φ(e̊)
for each edge e ∈ E(G). Let x1, . . . , xn be the points chosen on the edges of the cycle
that bounds v∗. It follows from basic topological considerations39 that we can connect
φ∗(v∗) to each of the points x1, . . . , xn by continuous arcs that are disjoint except at their
common endpointφ∗(v∗) and that lie entirely in v∗ except for their endpoints x1, . . . , xn .
Now if e ∈ E(G) lies on the boundary of faces v∗1 and v∗2 and x is the chosen point on
φ(e̊), then the concatenation of the arcs from φ∗(v∗1) to x and from x to φ∗(v∗2) is an arc
from φ∗(v∗1) to φ∗(v∗2) that we take as our definition of φ∗(e∗).

To see that φ∗ is self-accumulation-free, it suffices to show that for each point x ∈ G∗
we can remove a finite set of edges E∗0 from G∗ such thatφ∗(x) 	∈ φ∗(G∗\E∗0 ). If x = v∗
is a vertex of G∗, then it suffices to remove the set E∗0 of all edges incident to v∗. Then
φ∗(G∗\E∗0 ) is contained in the complement of the face v∗ and hence its closure cannot
contain φ∗(x). If x lies on an edge e∗ connecting two vertices v∗1 and v∗2 of G∗, then we
remove the set E∗0 of all edges incident to v∗1 or v∗2 . Then φ∗(G∗\E∗0 ) is contained in the
complement of the open set formed by the union of the faces v∗1 and v∗2 and φ(e̊), while
φ∗(x) lies inside this open set.

To see that φ∗ is pointed, let R∗ be a ray in G∗ consisting of consecutive vertices
v∗0 , v∗1 , . . . connected by edges e∗1, e∗2, . . .. Then v∗0 , v∗1 , . . . are faces of (G, φ) which by
assumption are bounded by cycles C0,C1, . . . such that Ck−1 ∩ Ck = ek . Adding these
cycles modulo 2 yields a double ray consisting of two rays R1, R2 in φ(G). Moreover,
we can construct a third ray R3 that lies in the union of the cycles C0,C1, . . . , passes
through each of the edges e1, e2, . . . , and has an infinite intersection with both R1 and
R2. In particular, the rays R1, R2 and R3 are all equivalent and thus, as φ is pointed, they
all converge to the same point x ∈ S. It follows that for each open ball around x , there
exists an n such that the sum modulo 2 of the cycles Cn,Cn+1, . . . lies in this ball. But
this is a double ray which together with the point x forms a circle in S that contains the
tail of the ray R∗ in its interior. Any open ball around x thus eventually contains the tail
of R∗, which proves that R∗ converges to x .

This proves not only that (G∗, φ∗) is pointed, but also that every point in S that is
the limit of some ray in (G∗, φ∗) is also the limit of some ray in (G, φ). It follows that
the set of endpoints of (G∗, φ∗) is contained in the set of endpoints of (G, φ): that is,
φ∗(G∗)\φ∗(G∗) ⊆ φ(G)\φ(G).

39 Indeed, this can be proven by repeated application of the Jordan curve theorem and the following basic
topological fact: Let C ⊂ S be a circle, which by the Jordan curve theorem divides S into two connected open
sets U, V ; let x, z be two distinct points on C , and let y ∈ U . Then there exists a continuous arc from x to z
that lies, except for its endpoints, entirely in U and passes through y.
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To complete the proof, it now suffices to show that each face of (G∗, φ∗) is bounded
by a cycle [completing the proof of (i)] and contains a single vertex of (G, φ) [which
implies (ii)]. Then (ii) together with what we already got implies the reverse inclusion
φ(G)\φ(G) ⊆ φ∗(G∗)\φ∗(G∗), so we conclude that (iii) holds.

Since every face of (G, φ) is bounded by a cycle, the setφ(G)\φ(G) does not separate
S, so the same is true for φ∗(G∗)\φ∗(G∗) which is contained in it. It follows that each
face f of (G∗, φ∗) has at least one edge in its boundary and hence by Theorem A.9 is
either a cycle C∗ or contains a double ray R∗. For each vertex v∗ in C∗ or R∗ we have
that φ∗(v∗) lies inside a cycle C of G that crosses two consecutive edges of C∗ or R∗.
This cycle C can have only one vertex in f since otherwise there would be an edge of
(G, φ) that lies entirely in f , which contradicts our construction of φ∗. It follows that all
edges in (G, φ) that cross an edge in C∗ or R∗ are incident to one and the same vertex
v of G with φ(v) ∈ f . Since G is locally finite, we can rule out the double ray so we
conclude that f is bounded by a cycle C∗ and contains a single vertex of (G, φ). ��

Now recall the definition of vertex and edge accumulation points (just before
Lemma A.7). Following [68,69], let us say that an embedding φ : G → R

2 ∪ {∞} ∼= S

is VAP-free (resp. EAP-free) if φ(G) ⊂ R
2 and φ has no VAPs (resp. EAPs) in the finite

plane R
2. Note that if G has at most finitely many isolated vertices (in particular, if G

is connected), then every VAP is also an EAP. For such graphs, EAP-free embeddings
are automatically self-accumulation-free and pointed.40

An EAP-free embedding φ of an infinite, connected, locally finite graph G can be
extended to an embedding φ of the one-point compactification G• of G by setting
φ(∞) = ∞. Conversely, if the one-point compactification G• of G can be embedded in
the sphere S ∼= R

2 ∪ {∞}, then without loss of generality we may assume φ(∞) = ∞,
yielding an EAP-free embedding of G. We then have:

Proposition A.13 (Graphs with one end). Let G be a locally finite 3-connected planar
graph.

(i) If G has at most one end, then it has an EAP-free embedding, which is unique up to
homeomorphism and coincides with the Freudenthal embedding.

If in addition G has a locally finite abstract dual G†, then:

(ii) G has an EAP-free embedding if and only if it has at most one end; and in this case
G and G† can be represented as a geometric dual pair (G, φ), (G∗, φ∗) such that
both (G, φ) and (G∗, φ∗) are EAP-free.

Proof. (i) If G is finite, then it obviously has an EAP-free embedding. If G is infinite with
one end, then it has an EAP-free embedding since its one-point compactification
coincides with its Freudenthal compactification, which by Theorem A.8(a) can be
embedded in the sphere. And by Theorem A.8(b) this embedding is unique up to
homeomorphism.

(ii) If G has a locally finite abstract dual G†, then Theorem A.11(iii) and Lemma A.6
tell us that the Freudenthal compactification is the only pointed compactification
of G that is embeddable in the sphere; therefore, such a graph has an EAP-free
embedding if and only if it has at most one end. (This statement can also be found

40 Since φ(G) ⊂ R
2 and φ has no EAPs in R

2, it must be self-accumulation-free. Since every ray has at
least one accumulation point in R

2 ∪ {∞} and no accumulation points in R
2, all rays converge to∞. It seems

to us that the concepts “self-accumulation-free” and “pointed” can now largely replace the more restricted
notion of being EAP-free.
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in [69, Theorem 5.9].) By Proposition A.12, G and G† can be represented as a
geometric dual pair (G, φ), (G∗, φ∗); and Proposition A.12(iii) then implies in
particular that if (G, φ) is EAP-free, then so is (G∗, φ∗). ��

A.4. Special embeddings. In this section we discuss embeddings with special “nice”
properties: notably, straight-line embeddings and periodic embeddings.
We begin by citing a result of Thomassen [68] on straight-line embeddings with convex
faces:

Proposition A.14 (Convex embeddings). Let G be a locally finite, 3-connected graph
with one end. Then there exists an EAP-free embedding of G in which every edge is
a straight line segment and every face is convex. If in addition G has a locally finite
abstract dual G†, then there exists an EAP-free embedding of G in which every face is
a convex polygon.

Proof. By Proposition A.13(i), G has an EAP-free embedding in the plane. Then [68,
Theorems 7.4 and 8.6] imply that G has an EAP-free embedding in which every edge
is a straight line segment and every face is convex. If in addition G has a locally finite
abstract dual G†, then Theorem A.11 guarantees that every face is bounded by a cycle.

��
Using Proposition A.14, we can deduce that G and G† can be jointly embedded as a
geometric dual pair such that edges are represented by straight-line segments in both
graphs:

Proposition A.15. (Straight-line embedding of dual pair) Let G be a locally finite, 3-
connected graph with one end. Assume that G has a locally finite abstract dual G†.
Then there exist EAP-free embeddings φ and φ† of G and G† in the (Euclidean) plane
such that (G, φ) and (G†, φ†) form a geometric dual pair and each edge of (G, φ) and
(G†, φ†) is a straight line segment.

Proof. By Theorem A.11 and Proposition A.12, we may embed G and G† as a geometric
dual pair. Now we can also draw a graph H in the plane such that the vertex set of H
is the union of the vertex sets of G and G† and two vertices v ∈ G and w ∈ G† are
joined by an edge in H when v and w are the endpoints of an edge in G and its dual
edge in G†; thus, H is a quadrangulation, with G and G† being its sublattices whose
edges connect opposing vertices of the quadrilaterals of H . Then obviously H is planar,
has an EAP-free embedding in the plane, and has a locally finite geometric (and hence
abstract) dual. Since two faces of H never have the property that two non-adjacent
vertices of H both lie on the boundary of both faces, we see that H is 3-connected. By
Proposition A.13(ii), H has one end, so applying Proposition A.14 to H we see that H
has an EAP-free embedding such that each face is a convex polygon (with four corners).
Connecting opposite corners of these faces by straight line segments, we obtain the
required straight-line embeddings of (G, φ) and (G†, φ†) as a geometric dual pair. ��
Remark. We do not know whether G and G† can be jointly embedded as a geometric
dual pair such that edges are represented by straight line segments in both graphs and
faces are convex in both graphs.

We next turn our attention to embeddings of quasi-transitive graphs. Our main graphs of
interest—namely, the graph G and its sublattices G0 and G1 arising in Theorem 1.1—are
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all locally finite, 3-connected, quasi-transitive, planar graphs with one end that have a
locally finite abstract dual G†. Remarkably, this latter condition turns out to be super-
fluous:

Proposition A.16 (Quasi-transitive graphs with one end). Let G be a locally finite, 3-
connected, quasi-transitive, planar graph with one end. Then:

(i) G has a locally finite abstract dual G†.
(ii) The Freudenthal compactification is the only pointed compactification of G.

(iii) The Freudenthal embedding of G is EAP-free (when the endpoint is taken to map
to∞), and each face is bounded by a cycle.

Proof. (ii) is trivial because G has one end (and is 2-connected). To prove (iii) and (i),
consider the Freudenthal embedding of G. By Proposition A.13(i), it is EAP-free. By
Theorem A.9, no face is bounded by endpoints alone; and since G has one end, a face
boundary containing infinitely many edges must consist of a single double ray together
with the one endpoint. But quasi-transitivity then implies (see [6, Theorem 2.3] or [49,
Theorem 8(1)]) that no such infinite face can exist, i.e., every face is bounded by a cycle.
From Theorem A.10 we then conclude that G has a locally finite abstract dual G†. ��

Quasi-transitivity is essential here, as the example of N × Z (see Example 2 after
Theorem A.9) shows. The assumption that G has one end is also essential: let H be the
graph with vertex set Z and edges {n, n + 1} and {2n, 2n + 2} for all n ∈ Z, let G be the
ladder graph {0, 1}×H , and let φ be the obvious embedding. Then G is quasi-transitive
and 3-connected and has two ends; φ is EAP-free and maps both ends to the point∞
(i.e., this is a non-Freudenthal embedding); and (G, φ) has a pair of faces that are each
bounded by a double ray together with the point∞.

When planar graphs are quasi-transitive, it is natural to ask if they can be embedded
in a periodic way in the plane. This is not true if one restricts oneself to the Euclidean
plane, but remarkably, it turns out to be correct if one also considers the hyperbolic plane.
The following result has been proven in [3, Theorem 4.2] (see also [67, Theorem 1]):

Theorem A.17 (Periodic embeddings). Every locally finite, 3-connected, quasi-transitive
planar graph G with one end can be embedded in the Euclidean plane R

2 or hyperbolic
plane H

2 such that every automorphism of G corresponds to an isometry of R
2 or H

2,
respectively.

We remark that in Theorem A.17, we do not know if the embedding can be chosen
in such a way that, moreover, edges are represented by straight line segments in R

2 or
H

2. Note also that Propositions A.14 and A.15 talk about embeddings such that edges
are straight line segments in the Euclidean geometry. We are not aware of results about
straight-line embeddings in the hyperbolic geometry.

A.5. Some examples. Finally, let us describe a method for creating examples of graphs
satisfying the assumptions of Theorem 1.1—i.e., locally finite, 3-connected, quasi-
transitive triangulations with one end—and their duals. All our examples come naturally
with a periodic straight-line embedding in the Euclidean or hyperbolic plane.

Let p, q ≥ 3 be integers and let ABC be a triangle whose angles (in anticlockwise
order) at the corners A, B,C areπ/p, π/q, andπ/2, respectively. Such a triangle can be
constructed in either the sphere, the Euclidean plane, or the hyperbolic plane, depending
on whether 1/p + 1/q + 1/2 is larger than, equal to, or less than 1, respectively. By
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reflecting the triangle ABC in one of its edges and continuing this process, we can cover
the whole space alternately by copies of ABC and its mirror image [12, Section 2]. This
yields a planar graph with vertices of types A, B and C that are of degree 2p, 2q and
4, respectively. In particular, each vertex of type C is adjacent to two vertices of types A
and B each, in alternating order. We may view the A and B sublattices as planar graphs
in their own right by erasing the vertices of type C and viewing the four edges emanating
from C as two straight edges crossing each other in C , where one connects two A’s and
the other connects two B’s. This yields two regular tesselations that are geometric duals
of each other. In the tesselation formed by the A vertices, each vertex has degree p and
each face is a regular polygon with q edges. This regular tesselation is denoted by the
Schläfli symbol {q, p} [12]. Likewise, the dual B lattice has the Schläfli symbol {p, q}.

In particular, the tesselations with Schläfli symbol {3, p} (with p ≥ 3) are regular
triangulations of the sphere, the Euclidean plane, or the hyperbolic plane, depending
on whether p is less than, equal to, or larger than 6, respectively. It is easy to see that
{3, p}, as a graph, is 3-connected and vertex-transitive. It is finite for p ≤ 5 and infinite
for p ≥ 6. In particular, Theorem 1.1 applies when G0 = {3, p} with p ≥ 6. The
case p = 6, which is the only Euclidean tesselation in this class, yields G0 = triangular
lattice, G1 = hexagonal lattice, and G = diced lattice. The cases p > 6 yield hyperbolic
tesselations. The graphs {3, 6} and {3, 7} and their duals are drawn in Fig. 2b, d.

The (dual) tesselations with Schläfli symbol {p, 3} are planar Cayley graphs in which
every vertex has degree three. A full classification of graphs with these properties can be
found in [29]. In particular, [29, Table 1, items 12–19] lists those that are 3-connected
and have at most one end. Note that all these graphs are vertex-transitive.

More general examples of quasi-transitive triangulations satisfying the assumptions
of Theorem 1.1 can be constructed by starting with any regular tesselation and dividing
the basic polygon into triangles in some suitable way, so that the resulting graph is 3-
connected. It would go to far to attempt here a full classification of the class of tesselations
covered by Theorem 1.1.
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