Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. MATRIX ANAL. APPL, © 2013 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 126-147

LOW COMPLEXITY DAMPED GAUSS-NEWTON ALGORITHMS
FOR CANDECOMP/PARAFAC*

ANH-HUY PHAN', PETR TICHAVSKY?, AND ANDRZEJ CICHOCKIS

Abstract. The damped Gauss-Newton (dGN) algorithm for CANDECOMP /PARAFAC (CP)
decomposition can handle the challenges of collinearity of factors and different magnitudes of factors;
nevertheless, for factorization of an order-N tensor of size I1 X --- X Iy with rank R, the algorithm
is computationally demanding due to construction of a large approximate Hessian of size (RT x RT)
and its inversion where T = 3" I,,. In this paper, we propose a fast implementation of the dGN
algorithm which is based on novel expressions of the inverse approximate Hessian in block form. The
new implementation has lower computational complexity, besides computation of the gradient (this
part is common to both methods), requiring the inversion of a matrix of size NR2 x NR2, which
is much smaller than the whole approximate Hessian, if T >»> NR. In addition, the implementation
has lower memory requirements, because neither the Hessian nor its inverse never needs to be stored
in its entirety. A variant of the algorithm working with complex-valued data is proposed as well.
Complexity and performance of the proposed algorithm is compared with those of dGN and ALS
with line search on examples of difficult benchmark tensors.

Key words. CANDECOMP/PARAFAC, tensor factorization, canonical decomposition, complex-
valued tensor factorization, low-rank approximation, alternating least squares, line search, Gauss—
Newton, Levenberg-Marquardt, inverse problems

AMS subject classifications. 15A69, 15A23, 15A09, 15A29

DOI. 10.1137/100808034

1. Introduction. Algorithms for canonical polyadic decomposition, also coined
CANDECOMP /PARAFAC (CP), can work well for general data [3, 14, 16]. However,
they often fail for data with factors of different magnitudes [20] or collinear factors
such as bottlenecks and swamps. Bottlenecks arise when two or more components are
collinear [6, 9], and swamps arise when collinearity exists in all modes [6, 17]. Alternat-
ing least squares (ALS) algorithms with line searches, regularization, and rotation can
improve performance, but they do not completely solve the problems. The damped
Gauss-Newton (dGN) or Levenberg-Marquardt (LM) algorithm has been confirmed
to successfully decompose such difficult data [11, 19, 20, 21, 29, 31]. However, because
these methods require the inverse of a large-scale approximate Hessian matrix, the
dGN algorithm is not applicable to real-world large-scale and high-dimensional data.
In this paper, we establish a fast inverse of the approximate Hessian for low-rank
tensor factorization by proving that the approximate Hessian for low-rank tensor fac-
torization is a low-rank adjustment to a block diagonal matrix, and propose fast dGN
algorithms that do not need to store the approximate Hessian and its inverse entirely
at one time.

The paper is organized as follows. Notation and basic multilinear algebra are

*Received by the editors September 9, 2010; accepted for publication (in revised form) by B. Hen-
drickson November 2, 2012; published electronically February 21, 2013.

http://www.siam.org/journals/simax/34-1/80803.html

TBrain Science Institute, RIKEN, Wakoshi, Japan (phan@brain.riken.jp).

Hustitute of Information Theory and Automation, Prague, Czech Republic (tichavsk@utia.cas.cz).
The work of this author was supported by the Ministry of Education, Youth and Sports of the Czech
Republic through project 1M0572 and by the Czech Science Foundation through project 102/09/1278.

iBrain Science Institute, RIKEN, Wakoshi, Japan (a.cichocki@riken.jp), and Systems Research
Institute, Polish Academy of Scieince, Warsaw, Poland and Warsaw University of Technology, War-
saw, Poland.

126

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR CP 127

briefly reviewed in section 2. The CP model and common algorithms are briefly re-
viewed in section 3. Section 4 derives the fast dGN algorithm. Low-rank adjustment
of approximate Hessian is derived, and its fast inverse is deduced in this section. The
fast dGN algorithm with two variants is proposed in section 4.2. The fast dGN is
extended to complex-valued tensor factorization in section 5. In section 6 we pro-
vide examples illustrating the validity and performance of the proposed algorithms.
Finally, section 7 concludes the paper.

2. Tensor notation and the CP model. We shall denote tensors by bold
calligraphic letters, e.g., A € RO*EXXIn matrices by bold capital letters, e.g.,
A =[ai,as,...,ag] € R™E and vectors by bold italic letters, e.g., a; or I =
[, L,...,In]. Moden tensor unfolding of Y is denoted by Y(,). Generally, we
adopt notation used in [5, 14]. The Kronecker, Khatri-Rao (columnwise Kronecker),
and Hadamard products are denoted, respectively, by ®, @, ® [5, 14].

NOTATION 2.1. Given N matrices A™ € RI*E we consider the following
products:

N
@A("‘):A(N)@...(@A(n)@...@A(l), L, =1TYn,
n=1

@ A(k) = A_(N) @@ A("-‘i‘l) @ A(“‘l) @ -@ A_(]-)7 In =T Vﬂ,
k#n

OAD =AM G... g AP g A=Y 5 A@)
k#n

DEFINITION 2.1 (partitioned matrix and block matrix). A partitioned matric U
of N matrices U along the mode-2 (horizontal) is denoted by

N
(2.1) U= [Um S e U(N)] i [U('”)}
n=1
and a partitioned matric V. of NM matrices Vinm) along two modes is denoted by
V= [vem] MY A block diagonal matric B of N matrices U™ is denoted by

um
(2.2) B=
uw
N
= blkdiag (U®,..., UM = blkdiag (U™
tag)= bistag(UP)

DEeFINITION 2.2 (CP). A canonical polyadic decomposition (CPD) consists of

representing a given Nth order data tensor Y € RN *T2XXIn by g set of N matrices

(factors): A = [a{,a{™, ... ,a.g}] e RI"XE (n=1,2,...,N) [4, 10, 12] such that

B
(2.3) Y Zﬂg) oa o e g

r=1

where symbol “c” denotes outer product. Tensor Y is an approzimation of the data
tensor Y.

We often assume unit-length components ||a£")|{2 =lforn=12,...,.N -1,
R L S T

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

128 ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

3. CP algorithms. The ALS algorithm [2, 3, 4, 10, 33] sequentially updates
A™ using the update rule given by

&
(3.1) A =Y, (@ A(k)) (r(ﬂJ) (n=1,2,...,N),
k#n

where T = &), C®, ¢ = AGTAM (n = 1,2,...,N) is defined as in
Notation 2.1, and “}” denotes the pseudoinverse.

Denote by a € RET, T = > In, concatenation of vectorizations of AM p =
e

(32) a= [vec(A(l))T vec(Am)T vec(A(N))Tr

All-at-once algorithms such as the gradient-based optimization (OPT) algorithm [1],
the PMF3, and dGN algorithms [11, 20, 29, 31] simultaneously update a. The dGN
algorithm is given by

(3.3) a+—a+(H+plpr) " g,
(3.4) H=171"7], g=J% vec(E),

where £ =YY, J e RI*ET (J = 1L, I») is the Jacobian of vec(Y) with respect to a,
H denotes the approximate Hessian, and the damping parameter p > 0. Paatero [20]
emphasized the advantage of dGN compared with ALS when dealing with problems
regarding swamps and different magnitudes of factors.

The Gauss-Newton (GN) algorithm can be derived from Newton’s method. Hence,
the rate of convergence of the update rule (3.3) is, at most, quadratic. However, these
methods face problems involving the large-scale Jacobian and large-scale inverse of
the approximate Hessian H = JTJ € RET*ET . Tn order to eliminate the Jacobian,
Paatero [20] established explicit expressions for submatrices of H. We note that the
inverse of H is the largest workload of the GN algorithm with a complexity of order
O(R3T?) besides the computation of the gradient g. Paatero [20] solved the inverse
problem H~! by Cholesky decomposition of the approximate Hessian and back sub-
stitution. However, the algorithm is still computationally demanding. Tomasi [29)
extended Paatero’s results [20], and derived a convenient method to construct H and
the gradient for an N-way tensor without using the Jacobian. In order to cope with
the inverse of H, Tomasi [30] used QR decomposition. However, the efficiency of
existing dGN algorithms is still not sufficient for the large-scale problems due to the
inverse H~ 1.

Recently, Tichavsky and Koldovsky [24] have proposed a novel method to invert
the approximate Hessian based on 3R? x 3R? dimensional matrices. For low-rank
approximation R < I, Vn, this method dramatically improves the running time.
However, the algorithm still demands significant temporary extra-storage, and it is
restricted for third-order tensors.

4. Fast damped GIN algorithm. In this section, we will derive a fast dGN
algorithm for low-rank approximation of tensors with arbitrary dimensions. The most
important challenge of the update rule (3.3) is to reduce the computational cost for
construction of the approximate Hessian H and its inverse.

THEOREM 4.1 (fast dGN algorithm). Define matrices T™™ of size (R x R),
n=12,...,N, m=1,2,...,N, and a portitioned matriz K of size (NR?* x NR?)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR. CP 129
comprising matrices K(m),

(4.1) rm — [r(n,m)]T - [r(m,n)]"“ L k@ c®)

C(n) LY A[n)TA(‘n) = RRXR,
(4.2) K™m) = (1= 6,.,) Py, diag (vec (r(“=m)))
ERFXE L N,m=1,...,N,

where dn, m is the Kronecker delta, Py is a permutation matric for any I x J matriz
X such that Py ;vec(XT) = vec(X), Pr = Pg g, and TR = b
For NR < T, the fast dGN algorithm is written for each factor A™ as follows:

(43) |A™ — AM) 4 AM (IR = (Fn+I‘("]) f‘fj‘)) = oE i

where A,(f') is a variant of the ALS update rule (3.1) with a damping parameter p > 0,
F,, of size (R x R) are frontal slices of F whose vec(F) = B, w,,, and

(4_4) AELn) — Y(n) (g A(@) ff;n‘):

(45) T = (00 4u1p) ",

@A) B,= {

(K_l + \Ilﬂ)_l for invertible K,
K (Inpe + ©,K) ' otherwise,

NR*xNR*
B,eR

N
(4.7) ¥, = blkdiag (I“(Ln) ® C(n)) € RVE*xNE*
n=1L

N
(4.8) w, = vec ([A(n) TALn} —_cm rfin)]) e RVE®

n=1

In order to prove Theorem 4.1, we derive a low-rank adjustment for H and employ
the binomial inverse theorem [13] to invert a smaller matrix of size N R?x N R? instead
of H™L.

4.1. Fast inverse of the approximate Hessian H.
THEOREM 4.2 (low-rank adjustment for the approximate Hessian H). With K
defined in Theorem 4.1, the approzimate Hessian H can be decomposed into

(4.9) H=G+ZKZ%,
N

(4.10) G = blkdiag (r(n) ® II,,) ¢ RET*ET
N NER?

(4.11) Z = blkdiag (IR ® A(n)) c RETx y
n=1

The proof of Theorem 4.2 is given in Appendix B, whereas an example of H for
a tensor of size 3 x 4 x 5 x 6 x 7 composed by five factors each of which has three
components is illustrated in Figure 1. In the left-hand side of Figure 1, H consists of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

130 ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

S - i R s e i Sl SSEE g i i
b H“‘? H W HiLY T T, T
10 1= _._]. I {10 10 1ef
YR i R |
ol o I s.-‘..,__‘.] 20| P | 20|
e i |
o HRER. |] W % | 2}
| SRl — |
w0fF =1] £ “al +~n | 0}
i 8 WA | (44 L e — | - - A e
!e‘ ' i 3 ¢ sa} 4 0} (] = 40))) o
s e et L nr=180 =225
P 1 SN e} { e
- HEN il [WAL
70 SN 4) 1 o,
[— = | i L = ;) 1) —_— .
° 20 «* 60 [} 20 « L ° e b
nr=4038 reezs nwzzs

FiG. 1. Hlustration of the approzimate Hessian for an order-5 tensor which can be expressed
as a low-rank adjustment H = G + ZK ZT as in Theorem 4.2. Green dots (in electronic version)
indicate nonzero elements.

(N(N — 1)) R? rank-one matrices and N R? diagonal matrices which are located along
its main diagonal.

THEOREM 4.3 (fast inverse of the damped approximate Hessian). The inverse of
the damped approzimate Hession H,, = H + pIgr can be computed through

H'=G,-L,B,LT,

where B, is an NR? x NR? matriz defined in (4.6) and

(4.12)

N
(4.13) é‘u = blkdiag (f‘:ﬁm ® II,.) c RRTXRT1
n=1
~(n) A 5
(4.14) L, = blkdiag (1“# ® A(n)) c RETXNR?
n=1

The matrix K can also be expgesssed as a partitioned matrix of matrices D{™™) =
(1 = 8n,m) diag(vec(T(™™)) € RE %R

(4.15) K = (Iy ® Pr) [D(n,mJ]

,m

If all the entries 7§T';‘m) of T(™™) are nonzeros, the matrix D is invertible, and its
inverse is also a partitioned matrix comprising diagonal matrices. The inverse of K
is briefly described in Appendix E.

An alternative expression H>! can be written in block form.

THEOREM 4.4 (fast inversion of H, in the block form). The inverse of H, can
be written as

(4.16)

where

(@A) CH

and S(n A7)

H71

jus]
B

I

(I‘ ®I)

nm)(r

H

(1,m)

= 6n,m. (f‘Lﬂ) @ II,.) = (IR ® A(n)) gLn

I:’ILl.N) 1

H('n ,IN)

I’_"ILN.N)

m) (IR R AM

® Igr) are matrices of size R* x R®.

T)’

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR CP 131

Proof. From (4.12), denoting by B,&n’m) the (m,n)th block of B, we have
gem —s (FM g1 Flel (ne A™
b S0hm (I, @15, | =1, &1, R®

: i ~(m)
B(mm) (IR®A()T) (I‘# @Ir,,)

—())
=y (Fp ® II,,) = (IR® Al)) (r‘u ® IR)
T, =(m) m
B(™)(1"“ ® IR> (IR®A()T).

Note that the inversion of H,, in the block form saves memory. It requires saving only

the matrices f‘in) and S,. While the full matrix H or its inverse has R27T2 elements,

the memory saving format only requires storing N R? elements of matrices f‘Ln) and
N2R* elements of S,,. O

4.2. Proof of Theorem 4.1. We replace H! in (3.3) by those in (4.12) in
Theorem 4.3 or Theorem 4.4 and formulate the fast dGN algorithm

(4.18) a+a+Gu-L,B,Llg.

The Jacobian, which may demand high computational cost, still exists in the gradient
g in the update rule (4.18). We also note that L, is a block diagonal matrix of N

Kronecker products (an] ® AM™) € RA=XR" given in (4.14). Construction of L,
has a computational complexity of order O (T Ra) and requires an extra storage of
O(TR?). In order to completely bypass the Jacobian J in (4.18) and avoid building
up the matrix L, we seek convenient methods for computing éﬂg, wy = LE g, and
product L, B, w,,.

LEMMA 4.5 (optimize the update rule (4.18)). With ALn), T, and the tensor F
defined in Theorem 4.1,

N
. =1l

N

(4.20) wy = Tg = vec ([A{n) TALn] o C(-n) r(n) f\f?)il) !
n=1

vec (A[l) F,; f‘il)>
(4.21) 0B o — VBC(A(R) 5 f;n))
vec (A(N) Fy f‘fjv))

The proof of Lemma 4.5 is given in Appendix D. By replacing éug, L:‘:g, and
L,B,w, in (4.18) by those in (4.19), (4.20), and (4.21), we obtain a compact update
rule for each factor A®™ n=1,2,..., N, as given in Theorem 4.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

132

ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

Algorithm 1. Fast algorithm for low-rank approximation

10
11

Input: Y:

input data of size I; x Is x --- x Iy,

R: number of basis components
Output: N factors A g RI=*E,

begin
Random or SVD initialization for A™ Vn
repeat
w, =]

L

= (K_l it ‘Pn) T wy
for n=1 to N do % Update A™ using (4.3)

for n=1 to N do

for m=n+1 to N do % K in (4.2)
Kmm) — Kimn) — Py diag (vec (I‘("'m)))

% T — @ W, = AT A

k#n,m
~(n) 5 1
r, = (I‘() +,U,IR)
A,(;n) +— Yy (@ A(k)) fin) % damped ALS factor
k#n
7 T
wy, = [w'f: vec (A(“)TALnj — ctmr®™ fin))] % (D.2)
o) = 'f‘in) ®Ccm ; % U, = blkdiag ('Iv,(}')) in (4.7)

%or F=K(I+¥,K) w, in (4.6)

A0 A 4 A (IR i (Fn 4 I‘(")) f‘ff‘)) Y vec(F) = f

Normalize A™ n=1,2. ... N
Update p
| until a stopping crilerion is met

We note that linear systems B, w,, in (4.6) have a computational complexity of
order O(N® R8) which is much lower than O(R3T3) for (H+ pI)™" for NR <« T.
Pseudocode of the proposed algorithm based on the update rule (4.3) is given in
Algorithm 1. If components of A™ are mutually nonorthogonal, K is invertible, and
its inverse can be explicitly computed as in Appendix E. In this case, step 3 is replaced
by (E.1). A practical normalization in step 10 is that the energy of the components is
equally distributed in all modes. The method often enhances the convergence speed
of the LM iteration (32, 33].

4.3. Two variants of the fast dGN algorithm. From (4.6), we present two
variants of the fast dGN algorithm which solve the corresponding inverse problem
@_lfwu.
(a) fLM,. ® £ &; = Iyp: + ¥, K comprises N diagonal matrices Iz, and

N (N — 1) block matrices (0™ @ C™) P D™ for n # m. Note that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.o‘rg/joumalslojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR CP 133

& =1+T,K =K '+¥,

o O O O]
" . . . -
. . . .
. .

20
nz = 1685 nz = 585

N—1)R%+1 RZ{N-—1
(a) day = Rt (b) do, = SFHr

FIG. 2. Illustration of structure of NR? x NR? sparse matrices ®1 and ®2 for a 3x4x5x6x7

dimensional tensor composed by R = 3 rank-one tensors. The matriz @1 is less sparse than the
matriz ®2. Blue dots (in electronic version) denote nonzero entries.

@, is not symmetric, and its density is given by

VAN)R*+NR? (N-1)R*+1

7 N2 Rt 5 N R2 :

For order-3 tensor factorizations, the fast dGN algorithm in which step 8
solves ®7'w,, simplifies into the LM-1 algorithm in [24].

(b) fLMy. ® £ &, = K '+, is a symmetric matrix of size N R? x N R? derived
from (4.2) and (4.7). Theorem E.1 presents an explicit form of K~! which
is a partitioned matrix of (R? x R?) diagonal matrices. Hence, it has only
N? R? nonzero entries. The block diagonal matrix ¥, (4.7) is constructed
from N (R? x R?) submatrices. As a consequence, the density of the sparse
matrix ®, € RNR*XNE? o

(4.22) dg,

NAREENIRE = NRE RV FN=
7 N2 R* DN R

Because @, is not symmetric and less sparse than @5, solving the linear system
®, ' w, could be more time consuming than solving ®,' w,,. The inverse of K is
not expensive and has the explicit expression given in Theorem E.1. However, when
the factor matrices have mutually orthogonal columns, K is singular because it has
collinear columns and rows. In Figure 2, we illustrate the structures and properties

of the two matrices ®; and @, for a 3 x 4 x 5 X 6 x 7 dimensional tensor composed
by R = 3 rank-one tensors.

(4.23) dg,

4.4. Comparison of complexity between dGN and fast dGIN. In general,
the dGN algorithm [20, 29] constructs the whole approximate Hessian of size RT x
RT from its submatrices H™™) (see Appendix B) which are deduced from C™
and T'™ . Computation of C™ and I''™ are of complexity O (R2T) and O (NR?),
respectively. According to Theorem B.2, each off-diagonal submatrix has a complexity
of O (RzInIm), and it follows that computation of the whole H has the complexity
of O(R*T?). Note that H has R*T? elements. Inverse H™! can be computed with
a complexity of O (R*T®). The gradient g is computed at a cost of O (NR.J). Thus
dGN has a complexity per iteration of O (NRJ + R3T?).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

134 ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

Complexity of the fast dGN algorithm, also referred to as the fast Levenberg-
Marquardt (fL.M) in what follows, is analyzed for each step in Algorithm 1 as follows:
Step 3 computes N matrices C™ and '™ with complexity O (RQT) and O (NR?)

as in dGN. Hence, building up K is of complexity O (N(N — 1)(N — 2)R?) =
O(N3R?).

Step 4 inverts I‘J(L”J ,n=1,2,..., N, at a cost of O (NR3).

Step 5 computes the damped factors A™ at a cost of O(NR.J), and is one of the
most expensive steps in the fast dGN algorithm. We note that the large
workload Y @ Eain A) ig used for evaluation of gradient, and exists in all
CP algorithms such as ALS, OPT.

Step 7 builds up the block diagonal matrix ¥,, with a complexity O (NR*).

Step 8 solves the inverse problem &' w), with a cost of O (N®R®). This step is much
faster than the inverse of the approximate Hessian O (R3T3) due to R < I,
or NR<T.

Instead of construction of the approximate Hessian, the fLLM algorithm builds up
the much smaller matrix ® of size NR? x NR2. Hence, besides the cost of computation
of the gradient or the damped ALS factors, fLM computes & and &1 at a cost of
(0] (RzT + N SRB) which is much smaller than the cost for construction of H and for
H! in dGN.

The total expense of fLM per one iteration is approximately O (N RJ + N®RS).
For N > 7, the proposed algorithm has the same order of complexity as that of ALS.
However, fLM is much faster than ALS because it requires fewer iterations than ALS.

4.5. Damping parameter in the LM algorithm. The choice of damping
parameter p in the fast dGN algorithms (4.3) affects the direction and the step size
Aa = H;l g in the update rule (3.3): a + a+ Aa [18]. In this paper, the damping
parameter p is updated using the efficient strategy proposed by Nielsen [L8]:

1
o e 2ma.x{§,1—(2p——1)3} forp > 0,
24 otherwise,

e 2ie e 2
(4.25) p= leilz—led
Aa” (g + pAa)

vec (Y(l) (@ A[k}> - AWM I‘(l))

REL
(4.26) g=J" (y—9)= : e RE7,

vec(Y(N) (@ A(k)) —A(N)I‘(N))

kEN

where e; = vec(Y — Y,), and the gradient g can be straightforwardly derived as in
(D.1) or in [29, 31]. The factors A will be updated unless the new approximate
is lower than the previous one: |e;l|z < ||ei—1||2- The algorithm should stop when
L increases to a sufficiently large value (e.g., 103%). In practice, the factors A are
often initialized using the mode-n singular vectors of the data tensor [5, 7, 14] and
then run over ALS (3.1) after few iterations. According to the CP model (2.3), all the
components a&"‘)(n # N) except ones of the last factor are unit-length vectors. The
initial value of the damping parameter y is chosen as the maximum diagonal entry of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR CP 135
H as
1o = 7max {diag (H)} = 7 max {diag (I‘(l)) ... diag (F(")) ... diag (F(N))}
(4.27) = :rmax{l,dia,g (C(N))} :

where 7 is typically in the range of [1078,1].

5. Complex-valued tensor factorization. This section aims to extend the
dGN algorithms to complex-valued tensors. Although a real-valued tensor is consid-
ered as a complex-valued tensor with zero imaginary part, for simplicity algorithms
for real- and complex-valued tensors are introduced in two separate sections. For the
complex case, the CP model is to find complex-valued factors A(™ € CIn*E.

The damped Gauss-Newton-like update rule (3.3) is rewritten to update complex-
valued factors [8, 23],

(5.1)° ¢—a+@FT+un)7 I (y-4),

where symbol “H” denotes the Hermitian transpose, and the Jacobian J is given
in (B.1). The approximate Hessian H = J¥ J changes slightly from that for the
real-valued tensors. A fast and efficient computation method for the complex-valued
approximate Hessian H will be presented so that the final update rule does not employ
both the Jacobian and the approximate Hessian. We consider H as a partitioned
matrix of (N x N) submatrices H»™) ¢ CRI=*EIm 5 m = 1,2 ..., N. Each sub-
matrix H(™™) is a partitioned matrix of (R x R) subsubmatrices H,—?‘;m) € Clnxlm
n,m = 1,2,....N, rn,s = 1,2,...,R. The explicit expression of the approximate
Hessian H is deduced from the following theorems which can be derived in a manner
similar to that for real valued tensors.

THEOREM 5.1 (subsubmatrices Hi’;""’) H,(-:;’m) are diagonal or rank-one ma-
trices given by

(5.2) HE™ = 5 Y0, + (1= ,m) 7™ P 0™ H |
where Y% are the (r,s) entries of the Hermitian matrices T™ = () rotn i ARV H
A®),

THEOREM 5.2 (submatrices H™™). With K defined as in (4.2), H™™ gre
expressed in an explicit form as

(5:3) HOM =5, (T™ o1,) + (Ir@ A®) K™ (150 A).

THEOREM 5.3 (low-rank adjustment). For NR < T, the approzimate Hessian
H=1J2J can be expressed as a low-rank adjustment given by

(5.4) H=G+ZKZ",

where sparse matrices G, Z, and K are defined as in (4.10), (4.11), and (4.2).
The dGN algorithms for complex-valued tensor factorization are stated in the
following theorems.

THEOREM 5.4 (dGN algorithm for complex-valued tensor factorizations). The
factors A" are updated using the rule given by

(5.5) a—a+ H+ul) g,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/joumals/ojsa.php

136 ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

where the approzimate Hessian H is defined in Theorem 5.1 or 5.2, an LM regular-
ization parameter p > 0, and the gradient g € CET is computed as

. T N Tz
(5.6) = [vec (Y(n) (@ A(")) —A® I‘(ﬂ)T)] ,

k
it n=1

where symbol “*” denotes the complez conjugate.

THEOREM 5.5 (fast dGN for low-rank approximation). For NR < T, the factors
A™ are updated using the fast update rule given by

n n n n) T =(n)
(5.7) AU<—A§)+AU(IR-(F“+1"“)rp)

where ¥, are frontal slices of an order-3 tensor F whose vec(F) = B,w,, B, =
(K= + W)~ if K is invertible, or B, = K (I+%,,K)™", and w,, is computed
from the damped ALS factors AEL")

~(n 4]
(5.8) P (r(n) + #In) ,
N
(5.9) ¥, = blkdiag (rf:‘) @ AMH A(u))
n=1
N
(5.10) w, = vec ([A("] H AEL“) _ ¢ k) f-f:‘)]) ;
n=1
9\ =)
(5.11) A}:‘) =¥ (k#@"A(”) i

6. Experiments—Computer simulations. The CP algorithms were verified
for difficult data with collinear factors in all modes (swamp). Collinearity degree of
factors was controlled by mutual angles between their components. Collinear factors
A" were generated from random orthonormal factors U™,

(6.1) a®™ =u{™ fpu®™, ye (0,1 Vn,Vr#£1.

Mutual angles ,, between a.(,") and a\, ¢ # r, were in a range of (0,60°] for

v e (0,1],

v, g=1,
6.2 £ 0)= 7
() a'rl(qy) {J} p‘y2+2, q#l,‘r.

For example, v = 0.1,0.2,...,1yield 8, , = 6°,11°,17°, 22°,27°, 31°,35°, 39°, 42°, 45°,
and §,, = 8°,16°,23°,30°, 37°,43°,48°, 52°,56°, 60°, g # 1,q # r, respectively. For
high v such as v = 2, 6, = 63°, and 6, =~ 78°, tensor can be quickly factorized by
CP algorithms. The higher the parameter v, the lower the collinearity of factors. It
is more difficult to factorize tensors with lower v (e.g., v = 0.1, 0.2). However, when
v > 3, another issue arises from a large difference in magnitude between components.
The tensors are still difficult to factorize even though collinearity of factors is low
(61, > 71°). CP tensors, as in (2.3), can equivalently be constrained to be of the
form

R
(6.3) Y =ZAT a® oa® o...0aM,
r=1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR CP 137
where [\ain)|!2 = 1 Vr, and each), encodes the magnitude. For this experiment
M =1, and A, = (1 + 22 V¥r > 1. Therefore, for v = 3,4,5 and N = 3,
Ar = 31.6,70.1,132.6 Vr ## 1, respectively. That means the components a,(_n), T
2,..., R, are relatively larger than the first component. We analyze synthetic tensors
for two cases: error-free and noisy data with additive white Gaussian noise at signal-

to-noise ratio (SNR) (= —10 log;, %%I_n) = 30 dB or 40 dB added to the data tensor
Y =Y 4+ oN, where N denotes a normally distributed random tensor of zero mean
and unit variance whose n;,4, iy ~ N(0,1).

In order to evaluate the factorizations for collinear data, we measured the me-
dian squared angular error (MedSAE) over multiple runs between the original and

estimated components a,t-"), &.,(,n] after matching their orders defined as
(6.4) MedSAE(al, a") = 101ogg (median (af?)) (dB),
where cuin) = arccos a0 & . A Cramér-Rao induced bound (CRIB) on oz,(nﬂ')2

llat™|lzll@s™ |12
was computed from the Cramér-Rao lower bound (CRLB) for estimating the compo-
nent al™ [15, 25, 26, 27],

tr (1, - a™%af/]1af|?) CRLB (af”))

la™||2

For our simulations, due to the same collinearity degree v for all the components, we
have

(6.5) CRIB(a™?) = 10log,,

(dB).

CRIB(«(™?) = CRIB({"?) Vr,Vn,
CRIB(a{™?2) = CRIB(a{™?) V¥n,r=2,...,R.

The average MedSAEs for the estimated components were compared against the
average CRIB. It is important to note that an MedSAE lower than —30 dB, —26 dB,
or —20 dB means two components are different by a mutual angle less than 2°, 3°,
and 6°, respectively. Practical simulations show that it is difficult for a MedSAE to
reach a CRIB > —30 dB, since collinearity of factors has been destroyed by noise.
Discussion on effects of noise on collinear data in Appendix F gives us insight into
when CP algorithms are not stable, and when they succeed in retrieving collinear
factors from noisy tensors.

6.1. Comparison between dGIN and fLLM for order-3 tensor factoriza-
tions. This section compares performance of fL.M and the standard dGN algorithm in
the MATLAB routines PARAFAC3W developed by Tomasi (see [28, 32]). The dGN
algorithm [28] computes the approximate Hessian and gradient, and employs Cholesky
decomposition and back substitution to solve the inverse problems H~1g. Unfortu-
nately, this toolkit supports only 3-way data. The fLLM, algorithm was verified, and
denoted shortly by fLM.

In the first set of experiments, random synthetic tensors were generated from
three collinear factor matrices of size I x R where I = 100 and R = 5, 10, 20, 30, 40, 60
and v = 0.5. From each noise-free CP tensor Y composed from A™ € R’*2 twenty
noisy tensors Y of 30 dB SNR were generated. There are in total 200 rank-R tensors

Y. The MedSAE for each component was deduced from 200 runs for each test case.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

138 ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

3

3

Execution time (secs)
Square Angular Exror (dB)

|=B-MedSAE(aly|___

o : i i ‘ ¥ -p- MedSAE(a2)
SRR 20 <) «y ey % 10 20 30 0 50 60
R R
(a) Overall execution time and average execution (b) MedSAE and CRIB

time per iteration.

Fic. 3. Comparison between the dGN (green lines in electronic version) and fLM (magenta
lines in electronic version) elgorithms for focterization of 100 x 100 x 100 dimensional tensors
composed by collinear factors for various R at SNR = 30 dB: (a) the overall ezecution times in
seconds (dashed lines) and the average ereculion times per iteration (solid lines); (b) the average

MedSAE values (dB) of the first components u.gn) (square marker) and of other components aq(,ﬂ)
(triangular marker), r=2,..., R, n=1,2,3.

Both algorithms were initialized by the same factors which were the mode-n
singular vectors of the data tensor [7]. Algorithms stopped when ten differences of

successive relative errors £ = "}]’g—yj‘“ were lower than 10~%, or until the maximum

number of iterations (1000) was achieved. Execution time for each algorithm was
measured using the stopwatch command “tic” “toc” of MATLAB release 2009a on a
computer which had two quadcore 3.33 GHz processors and 64 GB memory. Tucker
compression was not used in the simulations. The dGN in [28] was adapted to follow
the same stopping criteria and the same computational time measurements, while its
other parameters were set to default values.

Figure 3(a) visualizes the overall execution times in seconds and the average
execution times per iteration for both algorithms. The speed-up ratios for the overall
decomposition between dGN and fLM were approximately 6.4, 14.6, 35.1, 16.7, 7.8,
and 2.8 times for R = 5, 10, 20, 30, 40, 60, respectively, while the speed-up ratios
per iteration were, respectively, 5.6, 14.7, 20,7, 11.3, 6.5, and 2.7. We note that the
numbers of iterations of dGN and fLM were slightly different because of differences
between them in controlling the damping parameters.

In Figure 3(b), we illustrate the average MedSAE values of dGN [28] and fLM.

The mean MedSAEs for the first components a(ln) n = 1,...,N, were calculated

b

over N ME.dSAE(a(I"')z); whereas the mean MedSAEs for the other components a,(»”j,
r=23...,R n=1,..,N, were calculated over (N x (R — 1)) MedSAE(a\"2

r>2/"
Figure 3(b) shows that the average values of MedSAE(agnn)z), r > 2 ¥n, asymptotically
attained the CRIB. It means that both dGN and fLM well reconstructed components
al® p = 2,...,R ¥n, even for R = 60. To be accurate, CRIB is a theoretical
lower bound on the mean of the square angular error, not on the median. In these
simulations, the median and mean SAEs appeared to be nearly identical so that only
the former is shown.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR CP 139

Allocated Memory
Execution time (secs)

o W, —iLM
—dGN
P ——PC1: 64GB RAM, 3.33 GHz 2CPUs[

- --PC2: 4GB RAM, 2.67GHz

200 30 40 50 60 70 80 90 100 510 20 30 40 50 60 70 80 90 100
R R

(a) Allocated memory. (b) Execution time per iteration.

Fi1G. 4. Memory requirements and execution time per iteration of dGN and fLM in approrima-
tion of 100 x 100 x 100 dimensional tensors by rank-R tensors where R = 5,10, 20, ...,100.

For the first components aﬁ“", performances of dGN and fLM were equivalent
in the sense of collinearity reconstruction for small R = 5,10. For R = 20,30, {LM
still reconstructed the first components. Note that although MedSAEs were different,
the relative approximation errors e of two algorithms were almost the same but they
were not presented here. The difference in component reconstruction was caused by
implementation of the control strategy for the damping parameter. For R > 40, the
average MedSAEs of the two algorithms were much worse than the CRIB, and they
were not able to reconstruct the first components. Indeed, we cannot recover the first
components due to noise for high R.

In order to analyze complexity of the two algorithms for higher ranks R — I, we
decomposed tensors of the same dimensions whose entries were randomly generated.
The rank R varied from 5 to I = 100. The amount of allocated memory and average
execution time per iteration were measured on the computer (PC1) in the previous
simulations and on a computer (PC2) which had 2.67 GHz i7 CPU and 4 GB of
memory. The results were summarized in Figure 4. For high-rank R > 50, dGN
required more than 4 GB of memory and could consume 20 GB of memory for R = 100
whereas fLM needed less than 4 GB of memory. On PC1 which had 64 GB of memory,
fLM was slightly more time consuming for R > 90 than dGN because the advantage
of the fast inversion in (4.6) was lost. However, dGN became dramatically time
consuming on PC2 when R > 40.

6.2. Factorization of higher-order real-valued tensors. The proposed al-
gorithms have been extensively verified and compared with the ALS algorithm plus
line search in the N-way toolbox [2], for order-4 tensors of size I, = 50, for various
ranks R = 5,10,15, and with different collinearity degree » = 0.1,0.3,0.5,0.7,0.9.
The order-4 tensors were corrupted by additive Gaussian noise at SNR = 40 dB. For
each pair (v, R) the MedSAE was computed from 400 runs. Execution times (sec-
onds) were measured on a computer that had a 6-core i7 3.33 GHz processor and 24
GB memory.

Algorithms were analyzed under the same experimental conditions as in the previ-
ous simulations. They iterated until successive relative errors e were lower than 10~12,
or the maximum number of iterations (5000) was achieved. The ALS algorithm plus

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www siam.org/journals/ojsa.php

140 ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

10° ‘ - . ‘ 10° :

B ALSEs i i ! i Bl ALSE ||
.M i { [[1ASS
. s‘t el t S Rl cied Sl B2]
im + : Em i i :
: 0 T
BT I e S e E LEA.............“..............;:....... ceehd o
g - Bt ol i
g S e Bl R S
3 4 T : == = Sl iz an =1
LRTNS e g o'k e e Ft B
= == E5 + é s} : = = =
° i i i i i o i i i i i
100 0.3 05 0.7 0.9 1% 03 05 0.7 0.9
v v
(a) Order-4 tensors, A(™) € R50X5 SNR = 40 (b) Order-4 tensors, A(") ¢ R50%10 SNR = 40
dB. dB.
10'
— BE= i
m
8 qotl i |
Z L] =
@ 3 : H (=]
£ i i] i =
4j 10% i e £k SR S g
£ i : g
® o
< 10'k L
m -+
19: 01) 0.5 07 039 o1 03 CE “7 : [
v v
(c) Order-4 tensors, A(™) € R50%15 SNR = 40 (d) Order-4 tensors, R = 5,10, 15, SNR = 40
dB. dB.

Fic. 5. Comparison between ALSls and fLM for factorizations of order-4 tensors of size 50 x
50 x 50 x 50 at SNR = 40 dB. (a)-(c) Ezecution tirmes (seconds) were rneasured when algorithms
factorized tensors of various ranks R = 5,10,15. (d) The average MedSAE (dB) for all components
compared with CRIB.

line search (ALSls) was adapted to have the same stopping criteria.

At SNR = 40 dB and ranks R = 5,10,15, CRIBs are relatively high (> 40
dB) for most v (see Figure 5(d)). Hence, CPD algorithms easily estimated collinear
factors and obtained high MedSAEs comparable to the CRIB. Figure 5(d) shows that
MedSAEs of ALSls and fLLM were almost similar and approached CRIB except those
for R = 15 and v = 0.1. It should be noted that factorization became more difficult
in the case of higher rank R and lower v. Execution times of algorithms for different
R and v are illustrated in Figures 5(a)-(c). The results indicate that the higher
the collinearity degree (i.e., smaller v) the more time-consuming the algorithms. For
example, ALSls on average ran 2083 iterations in 957 seconds to factorize order-4
noisy tensors when R = 10 and v = 0.1. However, when keeping the tensor size and
rank R and changing v = 0.9, this algorithm ran 34 iterations in 14 seconds. For
the same tensors with » = 0.1, fLM took only 48.6 seconds on average to execute
384 iterations, and took 6 seconds for 21 iterations with » = 0.9. That means fLM
was 21 times faster than ALS with v = 0.1. For order-4 tensors of R = 15 and
with v = 0.1, ALSls ran 4225 iterations in 2255 seconds on average, while fLM took
only 103 seconds to execute 494 iterations. Hence, fLM was 24.7 times faster than

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR CP 141

TABLE 6.1
Comparison of average execution times (seconds) between fLM and ALSIs for factorizations of
order-4 and order-5 tensors of size In = 50 at SNR = 40 dB composed by collinear factors with
various v = 0.1,0.3,0.5,0.9 and for various R. For each pair (N,Im, R,v), speed-up ratio and
execution times are given as indicated in the subtable at the bottom.

Tensor’s size Collinear degree v

(N, Im % R) 0.1 03 05 0.7 0.9
4,50 % 5 172 B 113 & o = a0 Bl 28 B
4, 50 x 10 21.2 gzz; 9.6 93 4.9 3$ 6 42 2.5 1::!
4, 50 x 15 24.8 2’2{;; 15.4 2?2 4.2 : i? 3 : gg 2.9 - 23
5, 50%5 22 17%%5 8.1 z’gz; 4.6 1’232 42 gg; 3.4 zg?

HExecution timeay,s)s (seconds)
Execution timer v (seconds)

ratio

ALSIs for the difficult test case. More execution times and speed ratios are given
in Table 6.1. The speed ratio between ALSIls and fLM was high for highly collinear
data (e.g., v = 0,1). For example, fLM was at least 17.1 times and up to 24.8 times
faster than ALSIs for collinear data with 1 = 0.1. For lower collinearity degree, ALSls
quickly factorized the tensor after few iterations. Although the speed ratio decreased,
fLM was still approximately three times faster than ALSIs.

6.3. Factorization of complex-valued tensors. In the next set of simula-
tions, we considered factorization of complex-valued tensors. Factors A(®) e C70xE
were generated in the same manner as for experiments in the previous section. How-
ever, they had random real and imaginary parts. In addition to collinearity degrees
v =0.1,0.2,...,0.5, we considered v = 3,4,5. We note that although collinearity
of factors is low for high v = 3,4,5 (0;, > 71°), the tensors are still difficult to
factorize.

We compared fLM with ALS plus line search (ALSls). Algorithms stopped when
differences between successive relative errors were lower than 1078, or the maximum
number of iterations (2000) was achieved. In Figures 6(a)—(b), we illustrate the aver-
age MedSAE of all factors for 70 x 70 x 70 x 70 dimensional tensors with ranks R =5
and 15 over 200 runs. ALSIs achieved good performance with v = 0.2, and excellent
MedSAE with v = 0.3, 0.4, and 0.5. However, for high collinearity degree v = 4 and
5, ALSIs did not obtain perfect reconstruction. The fLM algorithm outperformed
ALSIs for all test cases. Figures 6(c)—(d) indicate that the number of iterations of
ALSIs tended to decrease gradually as 1 increased from 0.1 to 5. For v = 3,4,5,
ALSIs stopped after tens of iterations because there was not any significant change in
the relative error. Figures 6(c)—(d) also reveal that fLM required fewer iterations for
higher v. Difference in magnitude between components did not affect fLM.

7. Conclusions. Simulations for real- and complex-valued tensors confirmed the
fLM algorithm was faster than dGN and ALS, and outperformed ALS in the sense
of approximation accuracy (MedSAE) for difficult test cases. Moreover, MedSAE
of fLM was comparable to CRIB for most test cases even for noisy tensors. For the
collinearity modification used in the simulations, we also show that for the same tensor
size and collinearity degree, the higher rank R the data tensor has, the more difficult
the factorization is to retrieve the factor. For the same size I,,, rank R, and collinearity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

142 ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

MedSAE (dB)

el
01 0.2 03 0405

Iy S -'. '
0.1 02 0.3 0405

v v
(a) Order-4 tensors, A(™) € C79%5 SNR = +o0o (b) Order-4 tensors, A(™) g C70%15 SNR =
dB. +oc dB.

No. Iterations
™Y
d

No. Iterations

E TR i s g e |
[b P e - ALSIs
1G‘ 1 1 1 H H H H i

0.1 02 03 0405 3 0.1 02 03 0405

v v
(c) Order-4 tensors, A(") g C70%5, (d) Order-4 tensors, A" e C70%15,

FiG. 6. Illlustration for MSAE for factorization of order-4 complez-valued tensors with size
I, = 70 and ranks R = 5,15. Algorithms stopped as they reached a derivative of successive relative
errors of 1078 o7 2000 éterations.

degree, the higher the dimensions of the data tensor, the higher the performance of
factorization can be achieved.

Most CF algorithms incorporated with line-search techniques work well for gen-
eral data, but often fail for highly collinear data with bottlenecks or swamps. The
dGN/LM algorithms [20, 29] can deal with such data, but demand extreme com-
putational cost associated with large-scale inverse of approximate Hessians. In this
paper, by employing the special structure of the approximate Hessian, a fast in-
verse for the approximate Hessian has been derived, and low complexity dGN al-
gorithms have been proposed for factorization of low-rank real- and complex-valued
tensors. The proposed algorithm avoids building up the whole approximate Hessian
and its inverse by working with much smaller matrices of size NR? x NR? instead
of (RT x RT). Extensive experiments for tensor factorizations showed that our algo-
rithms outperformed “state-of-the-art” algorithms for difficult benchmarks for both
real- and complex-valued tensors. The proposed dGN/LM algorithms can be ex-
tended to the nonnegative CPD in which factors are nonnegative matrices. Moreover,
our algorithms can be simplified to estimate only one factor for supersymmetric ten-
sor factorization which can be found in multiway clustering, or to the INDSCAL
decomposition [5, 15].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR CP 143

Appendix A. Commutation matrices. A commutation matrix Q,, expresses
connection between vectorizations of tensor unfoldings, and often exists in construc-
tion of the Jacobian J and the approximate Hessian H in dGN algorithms for CP and
Tucker decompositions [22].

LEMMA A.1 (moden to mode-1 unfolding). Commutation matriz Q,,, which
maps vec(Aq)) = vec(A) = Q, vec(Ay,)), s given by Q, =11, @ P, 1.,
'wz'th Ii:j = Hi:i Ik.

Appendix B. Proof of Theorem 4.2. In order to prove Theorem 4.2, we seek
explicit expressions for the Jacobian and the approximate Hessian in the next section.
LeMmaA B.1 (see [20, 31]). The Jacobian matriz J has a form of

® - [o ((@a%)er)]

We express the approximate Hessian H as an N x N block matrix H = [H®™)],,
H™™) of size RI,, x RI,,.

THEOREM B.2 (see [20, 29]). A submatriz H™™) has an explicit ezpression
given by

(B.2) HEm =5, (TP ;)

o (IR ® A(”)) K (IR ® A(m>T) v, ¥m.

By establishing expressions for submatrices H(™™) we can prove Theorem 4.2.
Proof of Theorem 4.2. From (B.2), we construct a sparse matrix G consisting of
all block matrices H™, n=1,2,..., N, that is,

N N

(B.3) G = blkdiag (H(")) = blkdiag (I‘(“) ® Ifﬂ)

n=1 n=1

From Theorem B.2, and by using the product of block matrices, it is straightfor-
ward to decompose H — G into three matrices defined in Theorem 4.2 as

(B.4) H-G=ZKZT. .0

Appendix C. Proof of Theorem 4.3.

Proof. The damped approximate Hessian H,, = G + plgr + ZKZT is adjusted
from G, = G+ plIgr by a low-rank matrix ZKZ”. Hence, its inverse can be quickly
computed by applying the binomial inverse theorem (see page 18 of [13])

G le 7R e 7Te)T 7T e if K is invertible,

cl1l) H'= i
(CD- 1 {G;l ~ G 'ZK (Iyg: + 27G'ZK) 7 G;! otherwise.

Denote by G o inverse of the block diagonal matrix G, which is also a block diagonal
matrix

% N oyl e 2
G, = (bikdiag ((T™ + pIz) ®1; ~ Blkaiag(T oL
H n 1 P n

B n=1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

144 ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

Similarly, we denote L, = G;'Z and ¥, = yAS G.'Z. From (4.11) and by taking

into account (f‘Ln] ®1In)(Ir® A(ﬂ)) = f‘in) ® A™ we have
=) L N
L,= G;l Z = blkdiag (1"“ i Ijn) blkdiag (IR & A(n})]
n=1 =

—(n) W
— blkdiag (r” ® A(")) :
n=1

N
(C.2) T, =Dblkdiag (I‘S") g C(n))

n=1
Finally, we define B as in (4.6), and easily deduce (4.12) from (C.1). 0

Appendix D. Proof of Lemma 4.5.
Proof. From (B.1), (4.13), and noting that vec(€) = Q,, vec(&(,)), where Q,, is
defined in Lemma A.1, the product ép. g can be expressed in a block form as

(D.1)
(é” JT vec(S))T

e e (((@a)) en)]
i m(E (@Am))]”

n=1

N
= |vec| Y(n @ A”‘)) — A (@ A(k)) (@ A(iﬁ)) o
k#n kn kkn T
r N n=1
n=1
Similarly, a convenient formula to compute LE g is given by

N

wy = L?_:JT ve(-,(ﬁ) — I:Vec (A(n) e (AL‘I’I) A®) F(n) P(“)))]
n=1

(D.2) :vec([A(")T AP — ¢ I‘(“)I‘(n]]) ;
n=1

Finally, for each frontal slice F,, of the tensor F € RF¥*F*N whose vec(F) = B wy,
we have

(D.3) (f‘Ln) ® A(”)) vec(F,) = vec (A(”) F, I‘(n)>

From (4.14), we obtain (4.21). Each product inside (D.3) has a complexity of O(I,, R>+
R?). Hence, L, f in (4.21) has a complexity of O (T'R?+ NR?) = O(T'R*) which
is lower than O (TR3) by a factor R for building up L, and direct computation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW COMPLEXITY DGN ALGORITHMS FOR CP 145

L, f. Furthermore, this fast computation does not use any significant temporary
extra storage. O

Appendix E. Inverse of the kernel matrix K. {7
THEOREM E.1. The inverse of K defined in (4.2) is a partitioned matriz K =
K~ whose blocks K™ forn=1,... . Nym=1,...,N are gwen by

(B.1) Ko™ = (% it 5n,m) diag (vec (C(ﬂl ®Ccm g r)) Py

N
where T'") — ®n=1 cm),

Appendix F. Effects of noise on collinear data. This section discusses briefly
effects of noise on factorization of collinear tensor generated by the modification (6.1).
Consider matrix factorization of the mode-n tensor unfolding

iy
(F.1) Y = Al (@ A(k)) +Emy-

k#n
Analysis of singular values of Y(,) or eigenvalues of Y Y?;) allows predicting
whether factorization succeeds in retrieving collinear factors from noisy tensors. This

also gives insight into when CP algorithms are not stable and yield a nonunique
solution.

The modification (6.1) can be expressed as A™ = U™ Q, where Q =

[oﬁl :i%l] € REXE_ In theory, for noisy tensors Y with I,, = I Vn, we have

(F.2) Y Y%;l) = AR @) AT E(n) E’E’;) — U Ryu®T | G2 N1 I,

where & = Q (Q” Q) sl Q7, [A]*P) denotes elementwise power, and
2o BlE D BE(R =)my 5 Bl
(E3) o= 10SNR/10 [N 10SNR/10 [N 2 s e I ;
It is straightforward to prove that ¥ = [Rz HBE =) Gr=d) v(R+y-—11%_, |

v(B+y—1)1r1 (z—1DAr_11% 4 + (¥ — Izr_1)
has (R — 2) identical eigenvalues . = (z — 1)(y — 1),7 =2,..., R — 1, and its largest
and smallest eigenvalues A; > A, > Ag are solutions of a quadratic equation

(F.4) M+Ag=zy+(BR-2)(R+z+y)+3
(F.5) MAr=@E-ly-1)=»%, 2<r<R-1.
Figure 7(a) illustrates A (r =1,..., R) for order-3 noiseless tensors with I = 100

and R = 15 compared with the noise levels o2 IV 1 at SNR = 20 dB and 30 dB. The
higher the collinearity degree of factor, the smaller the eigenvalues A,. If eigenvalues
A are considerably lower than the noise level ¢ I =1, the factorization becomes
infeasible, e.g., as v < 0.1.

Because U™ are orthonormal, Y Yg;) has R leading eigenvalues)\, = A, -+
o2IW=Y ¢ = 1,...,R, and (I — R) eigenvalues A; = o2I®-D 5 = R4 1,...,1.
In Figure 7(b), we plot eigenvalues); for noisy tensors having the same dimension
as that of tensors illustrated in Figure 7(a). The largest eigenvalue A; significantly
exceeds the noise levels, whereas A R is quite close to the noise level at SNR. = 20 dB
for ¥ < 0.3, or at SNR. = 30 dB for v < 0.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to SIAM license or copyright; see http://www siam.org/journals/ojsa.php

146

ANH-HUY PHAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

R=151=100,N=3

R=15,1=100,N=3

e Tyl N (P R S M | s SNR = 20 dB I

------ snA-3048 | : 3 53 =] SNR = 30 dBleegrmimederfom @ mim @smim @ s mintrmims=]
2 R LS g S R e 105 Ll e A e e et T

g), ; 321 5

AP Aaie AR A2i:ee v AR=1

—r

]

(]:S 1 01 02 03 04 05 06 07 08 09 1

(a) Eigenvalues Ar,r =1,..., R (= 15), (b) Eigenvalues S F (= 100), R =15,
T, =100, N = 3. NE=:3"

Rim

Fic. 7. Analysis of eigenvalues of Yy, Y(T;_L) Jor order-3 tensors of size In, = 100 and rank

15. R leading eigenvalues Ar for noiseless tensors and j\r(r =1,..., R) for noisy tensors are

compared with noise levels (green shading in the electronic version) at SNR = 20 dB and 30 dB.
The more the eigenvalues are in the noise zone, the more difficult the factorization of noisy tensors
to retrieve collinear factors become.

Acknowledgments. The authors wish to thank the referees for the very con-

structive and detailed comments and suggestions which led to major improvements
in the manuscript. They also thank Dr. Benedikt Losch and Mr. Austin Brockmeier
for their suggestions that helped improve the manuscript.

(1]
2]

(6]
(7]

[10]

REFERENCES

E. Acar, D. M. DUNLAVY, AND T. G. KOLDA, A scalable optimization approach for fitting
canonical tensor decompositions, J. Chemometrics, 25 (2011), pp. 67 86.

C. A. ANDERSSON AND R. BRo, The N-way toolboz for MATLAB, Chemom. Intell. Lab. Syst.,
52 (2000), pp. 1-4.

R. BrRO, PARAFAC. Tutorial and applications, Chemom. Intell. Lab. Syst. 38 (1997), pp. 149-
171.

J. D. CARROLL AND J. J. CHANG, Analysis of individuel differences in multidimensional scaling
vie an n-way generalization of Eckart—Young decomposition, Psychometrika, 35 (1970),
pp- 283-319.

A. CicHockl, R. ZDUNEK, A.-H. PHAN, AND S. AMARI, Nonnegalive Matriz and Tensor Fac-
torizations: Applications to Ezploratory Multi-way Data Analysis and Blind Source Sep-
aration, Wiley, Chichester, 2009.

P. Comon, X. LUCIANI, AND A. L. F. DE ALMEIDA, Tensor decompositions, alternating least
squares and other tales, J. Chemometrics, 23 (2009), pp. 393-405.

L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, On the best rank-1 and rank-
(R1,R2,...,RN) approzimation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21
(2000), pp. 1324-1342.

P. GUILLAUME AND R. PINTELON, A Gauss-Newton-like optimization algorithm for weighted
nonlinear nonlinear least squares problems, IEEE Trans. Signal Processing, 44 (1996),
Pp. 22222228,

X. Guo, S. MIRON, D. BRIE, AND A. STEGEMAN, Uni-mode and partial uniqueness conditions
for CANDECOMP/PARAFAC of three-way arrays with linearly dependent loadings, SIAM
J. Matrix Anal. Appl., 33 (2012), pp. 111-129.

R. A. HARSHMAN, Foundations of the PARAFAC procedure: Models and conditions for an
explanatory multimoedal facter analysis, UCLA Working Papers in Phonetics, 16 (1970),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Downloaded 03/11/13 to 130.158.56.175. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

(L]
(12]
[13]
(14]

[15]

[16]
[17]
18]
[19]
(20]

(21]

(22]

23]

(24]

25]

26]

(27]

[28]

[29]

30]

(31]
321

33]

LOW COMPLEXITY DGN ALGORITHMS FOR CP 147

pp. 1-84.

C. HavasaIi AND F. HAYASHI, A new algorithm to solve PARAFAC-model, Behaviormetrika, 11
(1982), pp. 49-60.

F. L. HiITCHCOCK, Multiple invariants and generalized rank of a p-way malriz or tensor, J.
Math. Phys., 7 (1927), pp. 39-79.

R. A. Horn AND C. R. JoHNSON, Matriz Analysis, Cambridge University Press, Cambridge,
UK, 1990.

T. G. KoLbA AND B. W. BADER, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455-500.

Z. KoLpovskyY, P. TICHAVSKY, AND A.-H. PHAN, Stability analysis and fast damped Gauss-
Newton algorithm for INDSCAL tensor decomposition, in Statistical Signal Processing
Workshop (SSP), IEEE, 2011, pp. 581-584.

X. Q. Lw AND N. D. SIDIROPOULOS, Cramer-Rao lower bounds for low-rank decomposition of
multidimensionel arrays, IEEE Trans. Signal Process., 49 (2001), pp. 2074-2086.

B. C. MrtcHELL AND D. S. BURDICK, Slowly converging PARAFAC sequences: Swamps and
two-factor degeneracies, J. Chemometrics, 8 (1994), pp. 155-168.

H. B. NIELSEN, Damping Parameter in Marquardt’s Method, Tech. report, Department of
Mathematical Modelling, DTU, Lyngby, Denmark, 1999.

P. PAATERO, Least-squares formulation of robust nonnegative factor analysis, Chemom. Intell.
Lab. Syst., 37 (1997), pp. 23-35.

P. PAATERO, A weighted non-negative least squares algorithm for three-way PARAFAC factor
analysis, Chemom. Intell. Lab. Syst., 38 (1997), pp. 223-242.

P. PAATERO, The mullilinear engine: A ifable-driven, least squares program for solving mul-
tilinear problems, including the n-way parallel factor analysis model, J. Comput. Graph.
Statist., 8 (1999), pp. 854-888.

A.-H. PHAN, P. TICHAVSKY, AND A. CICHOCKI, Damped Gauss-Newton algorithm for nonneg-
ative Tucker decomposition, in Statistical Signal Processing Workshop (SSP), IEEE, 2011,
pp- 665 —668.

H. W. SORENSON, Parameter Estimation: Principles and Problems, Marcel Dekker, New York,
1980.

P. TicHAVSKY AND Z. KOLDOVSKY, Simultaneous search for all modes in multilinear models,
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP10), 2010, pp. 4114-4117.

P. TICHAVSKY AND Z. KOLDOVSKY, Stability of CANDECOMP-PARAFAC tensor decomposi-
tion, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP11), 2011, pp. 4164—4167.

P. TICHAVSKY AND 7. KoLDOVSKY, Weight adjusted tensor method for blind separation of un-
derdetermined miztures of nonstationary sources, IEEE Trans. Signal Process., 59 (2011),
pp. 1037-1047.

P. TicHAVSKY, A.-H. PHAN, AND Z. KoLDOVSKY, Cramér-Rao Induced Bounds for CAN-
DECOMP/PARAFAC Tensor Decomposition, ArXiv e-prints, 2012, available online at
http://arxiv.org/abs/1209.3215.

G. Tomasl, INDAFAC and PARAFAC3W, http://www.models.kvl/dk/source/indafac/
index.asp, 2003.

G. ToMmAsl, Practical and Computational Aspects in Chemomelric Data Analysis, Ph.D. thesis,
Department of Food Science, The Royal Veterinary and Agricultural University, Frederiks-
berg, Denmark, 2006.

G. Tomasl, Recent developments in fast algorithms for fitling the PARAFAC model, in
TRICAP, Crete, Greece, 2006, available online at http://www.telecom.tuc.gr/~mnikos/
TRICAP2006main/TomasiTRICAP2006.ppt.

G. Tomast AND R. BrRo, PARAFAC and missing values, Chemom. Intell. Lab. Syst., 75 (2005),
pp- 163-180.

G. Tomast aND R. BRO, A comparison of algorithms for fitting the PARAFAC model, Comput.
Statist. Data Anal., 50 (2006), pp. 1700-1734.

A. UscHMAIEW, Local convergence of the alternaiing least squares algorithm for canonical
tensor approzimation, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 639-652.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

