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LOW COMPLEXIT Y DAMPED G AUSS- N EW T O N ALGORlTHMS
FOR CANDECOM PjPA RAFA C'

ANII· II UY P HA Nt , P ET R T IC IiAVSKyl, AND ANDRZEJ CICHO CKI§

Abstract . T he damped Gauss-Newton (dG N) algorithm for CANDECOMP/PARA FAC '(CP )
d eco mposition cn.n hand le the challenges of collinea ri ty of fac tors and d ifferent magnitudes of factor s;
nevertheless, for facto riza t ion of an order-N tensor of size 1J x . . . X I N with ran k R , the algori thm
is com pu tat ional ly demanding d ue to construc t ion of a. large a pproximate Hessian of size (RT x HT)
and its inversio n where T = L,. ln . In thi s paper, we propose a fast implementati on of tho dGN
algorithm which is bused on novel exp ress ions of t he Inverse approximate Hessian in block form. The
new implementat ion has lower com putat ional complexity, besid es computation of the gradient (this
part is com mon to both me thods) , requiring the inve rs ion of a matrix of size N R2 x NR2 , which
is much sm aller thun the whole ap proximate Hess ian, if T » N R. In add it ion, the implementat ion
has lower memory req uirements , because nei th er the Hess ian nor its inverse never needs to be stored
in it s cn ti rety. A vurln nt of th e a lgor ithm working with com plex-valued data is p ro posed as well.
Complexi ty an d per for mance of th c pr op osed algorithm is compa red with those of d GN and ALS
with line search on ex amples of d ifficul t benchmark tensor s.

Key words . CANDEC OM P / PARAFAC, te nsor factorization, canonical decompositio n , complex­
valued tensor fact or iza t ion, low-rank approximat ion, altern ating leas t squa res, line search, Ga uss ­
Newton, Levenberg- Marquard t , inve rse problems

AMS su b j ect cl ass ifica tions . 15A69, 15A23, 15A09 , 15A29

D OL 10.1137/100808034

1. Intro duction. Algorithms for canonical polyadic decomposit ion , also coined
CANDECOMP j PARAFAC (Cp l , can work well for general data [3, 14, 16)_However,
they often fail for da ta with facto rs of different magnitude.s [20] or collinear factor s
such as bottlenecks and swamps . Bot tlenecks arise when two or more components ar e
collin ear [6,9]! and swamps arise when collinearity exists in all mo des [6, 17]. Alterna t­
ing leas t squares (ALS) algor it hms with line scan''hes, regularization, and rotation can
improve performance, hut th ey do not completely solve the problems. The damped
Gauss-Newton (dGN l or Levenberg- Marquardt (LM) algorit hm has been confirmed
to successfully decompose such difficul t data [11, 19,20,21 ,29,31]. However, because
these methods require the inverse of a la rge-seale approximate Hessian matrix, the
d GN algorit hm is not applicable to real-world large-scale and high-dimensional data .
In this pap er , we establish a fas t inverse of th e approximate Hessian for low-rank
tensor factorization by proving th at the approximate Hessian for low-rank tensor fac­
torizat ion is a low-ra nk ad justment to a block diagonal matrix, and propose fast dGN
algorithms that do not need to store th e approximate Hessian an d its inverse entirely
at one t ime.

T he paper is organi zed as follows. Notation and basic mult ilinear algebra are
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briefly reviewed in section 2. The CP model and common-algorithms are briefly re­
viewe d in section 3. Secti on 4 derives t he fast dGN algorit hm. Low-rank adjustment
of approximate Hessian is derived , and its fast inver se is deduced in t his section. T he
fast dGN algorithm with two variants is pr oposed in section 4.2. The fast dGN is
extended to complex-valued tensor factori zation in section 5. In section 6 we pro­
vide examples illustrating the val idity and performance of t he proposed algorithms.
Finally, sect ion 7 concludes t he paper.

2 . Tensor notation and the CP m odel. We shall denote t ensors by bold
calligraphic let ters , e.g ., A E lRltXI2X " .XIN, matt-ices by bold capit al let t ers , e.g.,
A = [al,a2 ,' .. , a n ] E IR1XR , and vectors by bold it alic let t er s, e.g., aj or I =
[h ,12 , .•• , IN]. Mode-n tensor unfolding of ~ is denoted by Y (n ) ' Generally, we
adopt notat ion used in [5, 14]. The Kronecker , Khatrl- Rao (colurnnwise Kronecker) ,
and Hadamard pro ducts are denoted , resp ectively, by ® , 0 , ® [5, 14].

N OTAT ION 2.1. Given N matrices A (n ) E n~.InXR , we consider the following
products:

D EFI NITION 2. 1 (partit ioned matrix and block mat rix) . A partitioned matrix U
of N matrices u (n ) along the m ode-2 (hori zontal) is denoted by

and a partitioned matrix V of NM matrices v (n ,-m) along two modes is denoted by

V = [v (n ,-m) ] :~~==l . A block diagonal matrix B of N matrices u (n ) is den oted by

D EF INIT IO N 2 .2 (CP) . A canonical polyadic decomposition (CPD) consists of
representing a given Nth order data tensor 'Y E lRltxhx ... xIN by a set of N matrices

(factors): A(n) = [a l
n), a~n) , . . . , a \;')J E IR.I· x R (n = 1, 2, .. . ,N) [4, 10, 121 such that

B ='[u (l) ]

U (N)

N
= b1kdiag (U(l) , . . . , U(N») = blkdiag (u(n) ) n~l .

In = I \tn,

In = I 'tin ,

u (n) . .. U (N)] = [u (n)( , 'u = [U(1)

® A(k) = A(N) ® . .. ® A (n+1 ) ® A (n- l) ® .. . ® A (l) ,
k=;t.n

o A (k) ~ A(N) o ... (') A (n+l ) 0 A (n-l) ... o A (l).
k-=l-n .

N

® A (n) = A (N) ® . .. ® A (n) ® . .. ® A (l ),
n= l

(2.2)

(2.1)
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where symbol "o" denotes outer product. Tensor 9 is an approxim ation of the data
tensor 'Y .

We often assume unit-length compo nents Il a~n) 1 1 2 = 1 for n = 1,2, . . . , N - 1,
r =1 ,.2, ... , R .

~

M
o
'0
~

'0s
1
o
Cl

(2.3)
R

u ......., " a (l ) 0 a (2) 0 ... 0 a (N ) = iI
0"""" ~ r r r 0 ,

r=l
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12 8 ANH-HUY P HAN, PETR TICHAVSKY, AND ANDRZEJ CICHOCKI

3. CP algorithms. The ALS algor ithm [2, 3, 4, 10, 331 sequentially updates
A (n ) using the updat e rule given by

All-at-once algorithms such as the gradient- based optimization (OPT) algorithm [11,
t he PMF3, and dGN algori tbms [11, 20 ,29, 31J simultaneously update c . T he dGN
algor ithm is given by

where r (n ) = @k,en C(k) , c (n) = A (n ) T A (n) (n = 1, 2 , . .. ,N) is defined as in
Notation 2.1, and "t" denote" t he pseudoinverse.

Denote by a. E lRRT 1 T = EnI n , concatenation of vectorizations of A (n ) , n =
1, 2, . . . ,N,

4 . Fast damp ed GN a lgorith m . In this section, we will derive a fast dGN
algorit hm for low-rank approximation of tensors with arbitrary dimensions. The most
important challenge of the update rule (3.3) is to reduc e t he computat ional cost for
construction of t he approxim ate Hessian H and it s inverse.

THEOREM 4 .1 (fast dGN algorithm). Define m atrices r (n.=l of size (R x R ),
n = 1, 2, . . " N , m = 1, 2, . .. ,N, and a partitioned matrix K of size (NR 2 x N R 2 )

0, <-0, + (H + JlIRT) -l g ,

H = JTJ , g = J T vec(E) ,

A (n) = Y (n) ( 2 A (k)) (r(n))t (n = 1,2, . . . ,N) ,

[
T T T]Ta. = vec(A(1») ... vee ( A(n») .. . vee ( A(N»)

(3.3)

(3.4)

where E = 11 -1l, J E lRJ x RT (.I = fInIn) is the J acobiau of vec{ll) with respect to u ,
H denotes t he approximate Hessian, and the damping parameter J1, > O. Paatero [20)
em phasized the advantage of dGN compared wit h ALS when dealing wit h problems
regarding swamps and different magnitudes of factors.

The Gauss- Newton (GN) algorithm ca n be deri ved from Newton's method . Hence,
t he rat e of convergence of t he update rule (3.3) is , at mos t , quadratic. However , these
methods face problems involvin g t he large-scale J acobian and large-scale inverse of
t he approx imate Hessian H = JT J E R RT xRT . In order to eliminate the J acobian ,
P aatero [20] est ablished explicit expressions for submatrices of H . We note that t he
inverse of H is t he largest workload of the GN algorithm with a complexity of or der
O( R3T3) besides t he computation of t he gradient g . P aatero [20] solved the inverse
problem H - 1 by Cholesky decomposition of the approxi mate Hessian and back sub­
stitut ion . However , the algorithm is still computationally demanding. Tomasi [29]
extended Paatero's result s [20), and derived a convenient method to cons truct H and
t he gradient for an N-way t ensor without using the J acobian. In order to cope with
t he inverse of H , Tomasi [30] used QR decomposition. However , the efficiency of
existing dGN algor ithms is st ill not sufficient for the large-scale problems due to t he
inverse H - 1 ,

Recently, T ichavsky and Kcldovsky [24] have proposed a novel met hod to invert
t he approxim ate H essian bas ed on 3R 2 X 3R2 dimensional matrices, For low-rank
approximation R « In Vn, t his method dram atical ly improves t he run ning time ,
However , the algor ithm still demands sign ificant t emporary extra-storage, and it is
restric t ed for third-order t ensors ,

(3.2)

(3.1)
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LOW COMPLEX ITY DG N ALGORI T HMS FO R CP 129

comprising matrices K (n,rn ),

(4.3) !A(n) f--Al:,l +A(nl (IR - (Fn+rCnl) r~~l ), n =1,2, ... ,N,

where A1n
) is a variant of the ALB update rule (3.1) with a damping parameter J-t > 0,

Fn of size (R x R ) are front al slices of ~ whose vec (91 = B p. w p. , and

In order to prove Theorem 4.1, we derive a low-r ank adjustment for H and employ
t he binomial inverse t heorem [13] to invert a smaller mat rix of size N R2 x N R2 instead
of H - 1

4 .1. Fast inverse of the approximate Hessian H .
THEOREM 4 .2 (low-rank adj ust ment for the approximate Hessian H) . Wi/.h K

defined in Theorem 4.1, the approxim ate Hessian H can be decomposed into

H =G +ZKZT
,

G = blkdiag (rCn10 II,)~~1 Elll.RTX RT ,

Z= b lkdiag (IR 0 ACnl)~~1 Elll.RT xNR' .

c (n) = A (n)TA (n) E If{RX R,

r Cn,=l = [r (n,=)f = [r c=,nlf = ® C (k) , .
kin ,m

K (n,= ) = (1 - 6n,=) P R diag (vec(rCn,=)))
R2xR2

E lf{ , n = l, . .. ,N , m =l , ... , N ,

A~n) = Y(n) (0 ACk)) r~nl ,
k#n

r~nl = (r(n)+ plR) - 1

B _ { (K- 1 + ",~ ) -1 for invertible K, B ~NR'XNR'
/1 - - 1 . Jt E Ifto ,

K (INR ' + "' ~K) ottienoise,

"'~ = blkdiag (r~n) 0 c(n )) ~~1 E lll.N R' XNR' ,

w = vec( [AcnlTACnl_ CCnl r r (n)] N ) E lll.N R'
Jt Jt 11 •

n= l

(4.11 )

(4.9)

(4.10)

(4.8)

T he proof of Theorem 4.2 is given in Appendix B , whereas an example of H for
a tensor of size 3 x 4 x 5 x 6 x 7 composed by five factors each of which has three
components is illustrat ed in Figure 1. In the left-hand side of Figure 1, H consists of

(4.7)

(4.6)

(4.5)

(4.4)

(4.2)

(4.1)

where 6n ,rn is the Kronecker delta, PI,J is a permutation ma trix for any I x J matrix
X such that PI , J ~ec (XT) = vec(X), P R == P R,R, and r (n) == r (n ,n ) .

For N R« T , /.he fast dGN algorithm is written for each foetor A(nl as follows:
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130 ANH-HUY PH AN, P ETR TICHAVSKY, AND ANDRZEJ CICHOC KI

un ere

where B I-' is an N R 2 X N R 2 matrix defined in (4.6) and

E IRRTXNR2

E IRRTxRT ,

:~:.~ZT
:l2S£J:. . . . ... .... .

z

.,
+.1

H~ l = G/-l -L/-lB/-lL~ 1

G

.
o _m

K = (IN 0Pn ) [D (n,mlL,m '

H't-',
. ~i:o

v',-, -,

~'H~~

""""".".<.,..'-'t'~,
~

" ~!JI.

H
H'~~ H"._._./'".-._--

':.H' ".

- . .
0-"

H O,,,

11' ''' '

~",",'"

H (l ,l ) li(l ,m ) ... H (l ,N)
n n n

(4.16) - 1 - H (n,l) ii (n ,m ) ii (n ,N )Hn = H, = n n ... n

H (N,l ) . .. H (N ,m ) H (N ,N )
n n n

(4. 15)

(4. 13)
_ (_(n))N
G /-l = blkdiag I'/l 2> lIn n=l

t , = blkdiag (r~n ) 0 A(n) )~~l

The ma trix K can a lso be expressed as a partitioned matrix of matrices n (n ,m ) =
(1 - I n,m) diag(vec(r(n,m))) E ll!.n'x n' ,

(4. 17) H~n ,m l = In ,m (r~nl 0 II,,) - (In 0 A (n) ) s~n,m l (In @ A (m )T )

- en m ) -(n) (n m) - (m) . . 2 2
and Sn ' = {I'n 0 In)B n ' (I'n 0 In ) are matrices of size R x R .

(4.14)

(N(N - 1))R 2 rank-one matrices and N R2 dia gonal matrices which are located along
it s main diagonal.

THEOREM 4.3 (fast inverse of the damped approximate Hessian ) . The inverse of
the damped approximate Hessian H /-l = H + J.L IRT can be computed thmugh

F IG. 1. Illustration of the approximate Hessian for an order-S tensor whic h can be expressed
as a low-rank adjustment H = G + Z K ZT as in Theorem 4.2. Green dots (in electronic version)
indicate nonzem d ements.

(4.12)

If all the entries l~~,m) of r (n ,m ) are non zeros, the matrix D is invertible, and it s
inver se is also a pa rtitioned matrix compris ing diagonal matrices. The inverse of K
is br iefly descr ibed in Appendix E.

An alte rnative expression H ;: l can be written in block form.
T HEOREf\.l 4 .4 (fast inversion of H jl in the block form ). Th e inverse of H , can

be written as

>o1IIH') "
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Proof From (4.12), denoting by B~n,=) the (m , n)th block of B" , we have

The proof of Lemma 4.5 is given in Appendix D. By rep lac ing Gj!g , L~g , and
L"B"w

"
in (4.18) by those in (4.19), (4.20), and (4.21), we obtain a compact update

rul e for each factor A(n),n = 1,2, .. . , N , as given in Theorem 4. 1.

Note that the inversion of H J! in the block form saves memory. It requires saving only

the matr ices r~n) and Sw While the full matrix H or its inverse has R 2T2 elements,

t he memory saving format only requires storing N R2 elements of matrices r~n) and

N 2 R 4 elements of Sp. ' 0

4. 2. P roof o f Theorem 4.1. We replace H ;;' in (3.3) by those in (4.12) in
T heorem 4.3 or Theorem 4.4 and formulate the fast dGN algorithm

The J acobian, which may demand high computational cost, still exists in the gradient
g in the update rule (4.18). We also note that Lp. is a block diagonal matrix of N

. - (n ) ( ) ,
Kronecker products (r

j
! ® A n) E ]RR In xR given in (4.14). Construction of L1!

has a comput ational complexity of order 0 (T R3 ) and requires an extra storage of
O (TR3

) . In order to completely bypass the .Jacobian .J in (4.18) and avoid bnilding

up the matrix LJ.!' we seek convenient methods for computing G J!g, w p. = L~ g , and
product LJ~ B J! W w

LEMMA 4.5 (optimize the update rul e (4.18)) . With A~n) , I' , and the tensor:7
defined in Theorem 4.1,

- T
a. <-- a.+ G "g - L"B"L" g .

L J!BJ!wJl =

( ( . -(N))
~A N)FN~

(G gf = [vec (A(n) _ A (n) r (n) f (n)) T] Np. I! I~ '

. n = l

w" = LT g = vee ([A(n)T A (n) _ c (n) r(n) r- (n)] N )
J~ J~ I!

n =l

vee (A(1) F1'(1))
1 I '

vec(A(n)'Fnf:
n
))

Fi:(n,= ) = <5 (f(n) 0 I I ) - (f(n) 0 I I ) (In 0 A (n))I! n ,tn J-' n J-' ..

B~n,=) (In 0 A (= ) T) (1':=) 0 lIn)

(
- (n) ) ( (n)) ( -(n) )= On,tn r ; ® lIn ~ IR ® A r J! e I R

B~n,=) (1':=) 0 In) (In 0A (=)T).

(4.21)

(4.20)

(4.19)

(4.18)
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132 ANH- HUY PHAN , PETR T ICH AVSKY, AND ANDRZEJ CICHOCKI

4 .3. Two variants of the fast dGN algorithm. From (4.6) , we present tw o
variants of t he fast dGN alg orithm which solve t he corresponding inverse proble m
4-- 1w w

(a) fl.M, ; ~ ~ 4-1 = IN R 2 + wl1K ~omprL"es N diagonal matrices I R 2, and

N (N - 1) block matrices (r (nj -
1

® c (nj) P R n (n,mj for n # m. Note that

We note t hat linear systems B 1, wJL in (4.6) have a com putati onal complex ity of

order O(N 3 R6) whi ch is much lower than O(R3T 3) for (H + 1-'1) - 1 for N R « T .
Pseudocode of t he proposed algori thm based on t he updat e rule (4.3) is given in
Algorithm 1. If component s of A (n ) are mutually nonor thogonal , K is invertib le, and
its inverse can be explicitly computed as in Appen dix E. In t his case, step 3 is replaced .
by (E .1). A prac ti cal normalization in step lO is that the energy of t he components is
equally d istribut ed in all modes. The method often enhances t he convergence spee d
of the LM iter ation [32, 331.
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Algorithm 1. Fas t algor ithm for low-rank approximation

Input: ~ : input data of size It x l z x .. . X I N ,'
R : number of basis com po nents
Output: N factors A (n) E lR.In x R .

begin
Random or SVD ini t iali zati on for A (n ) '>In
r epeat

wJ~ = 0
for n = 1 to N do

form =n + l to Ndo Yo K in (4 .2)

lK (n ,m ) = K (m ,n ) = P Rdiag (vec(r(n,mj) )

% r (n ,m ) = ® C (k ) , C (n ) = A (n)TA (n )

k""l ,m

r~nj = ( r(n) + I-'I nr'

(n ) (D (k)) -en) •A I' t- Y (n) V A I'p. I. damped ALS factor
k#n

w"= [w~ vec ( A (n ) T A1nj
- c (n ) r (n) r~n)fr Yo (D.2 )

w1n ) = r~n) 0 c (n) I. \If IJ = blkdiag ( lJt~I») i n ( 4 . 7)

f = (K - 1 + '!'")-1 w" Yo or f = K (I + 'l<. K )- l w . in ( 4 . 6)

for n = 1 to N do I. Update A (n ) us i ng (4 .3)l A (n ) <- A1
n)

+ A(n) (In - (Fn +r(n)) r~n) ) Yo vec(T) ~f

Normalize A (n), n = l ,2, .. . ,N
Update I-'

until a stopping criterion is met

Copyright © by SIAM . Unauthor ized reproduction of this ar ticle is prohibited.



LOW COt\..I PLEXITY DGN ALGORIT HMS FOR CP 133

CPl is no t sym met ric, and it s density is given by

F IG. 2. Illus tration of structure of N R 2 X N R 2 sparse m atrices 4>1 and 4> 2 for a 3 x 4 x 5 x 6 x 7
dimensional tensor com posed by R = 3 rank-one tensors. The m atri x 4> 1 is less spars e than the
matrix 4>2. Blue dots (in electronic vers ion ) denot e nonzero en tri es.

-,

R' + N - 1
N R'

<P 2 = K - 1 + '11,..

R2+ N -l
(b) d<l>2=~'

:::::::::­
::::::::: "

,:iH~~!m::;::::::" ".

o R ~ ~ ~

• • ses"

N' R'+ N R' - N R'
do>, = N' R'

" ~
"'~ ' 665

eJlo l = I+ w ji K

to

(a) d<l> = (N-l)R
2
+l

1 N R2

(4.23)

(4.22)
d _ N (N ~ 1) R' + N R' _ (N ~ l) R' + 1

<1> 1 - N2 R4 - N R2 .

For order-S tensor factorizations , t he fast dGN algorit hm in which step 8
solves CP l lW /l simplifies into the L~i1- 1 algorit hm in [24].

(b) fLM b . ~ ,@, ~2 = K - 1+w/l is a symmet ric ma t rix of size N R 2 xNR 2 derived
from (4.2) and (4.7). T heorem E. ! present s an explicit form of K - 1 which
is a par t it ioned matr ix of (R2 x R2 ) diagon al mat r ices. Hence , it has on ly
N 2 R2 nonzero ent ries. The block diagonal mat rix 'It /l (4. 7) is construct ed
from N (R2 x R2 ) submat r ices. As a consequence, t he densi ty of t he sparse
matrix q,2 E IR.N R2XNR2 is

Because q, 1 is not symmet r ic and less sparse than q,2 , solving the linear system
q,1

1
W fi could be more ti me consuming than solving q,2

1 w ll' The inverse of K is
not expens ive and has the explicit express ion given in T heorem E. !. However , when
the facto r mat rices have mutually orthogonal columns , K is singular because it has
collinea r columns and rows. In Figure 2, we illust rate the str uctures and propert ies
of t he two mat rices q, 1 and tP2 for a 3 x 4 x 5 x 6 x 7 dimension al tensor com posed
by R = 3 ra nk-one tensors.

4.4. Comparison of complex ity b etween dGN and fast dGN. In genera l,
t he dGN algorit hm [20 l 29] construct s the whole approximate Hessian of size R T x
RT from it s . submat r ices H (n ,rn ) (see Appendix B) which are deduced from c {n )

and r (n ) . Computation of c (n ) and r (n ) are of complexi ty a (R2T) and a (NR2 ) ,

resp ecti vely. According to T heorem B.2, each off-diago na l su bmat rix has a complexity
of a (R 2 Inlm) , and it follows that comput at ion of th e whole H has the complexit y
of a (R2T2 ) . Note that H has R2T2 elements . Inverse H - 1 can be computed with
a complexity of o (R3T3 ) . The gradient 9 is computed at a cost of O (NRJ). Thus
dG N has a com plexity per iteration of a (N RJ + R3T3 ) .
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Complexity of the fast dGN algo rithm, als o referred to as the fast Levenberg­
Marquardt (fLM ) in what follows, is analyzed for each step in Algori thm 1 as follows:
Step 3 comput es N matrices c(n ) and r (n ) with complexity o (R2T) and a (NR2 )

as in dGN. Hen ce, bui lding up K is of complexity 0 (N (N -I)(N - 2)R' ) =

o (N3 R' ).
Step 4 inverts r~n) , n = 1, 2, .. . , N , at a cost of 0 (NR 3 ) .

Step 5 computes the damped factors A (nl at a cost of O (NRJ) , and is one of the
mo st expensive st eps in the fast dGN algor it hm . We note that the large
workload Y en) 8 k# n A (k) is us ed for evaluation of gradient, and exists in all
CP algorithms such as ALS , OPT .

Step 7 builds up the block diagonal matrix lJI /t with a complexity 0 (NR4 ) .

Step 8 solves the inverse problem cp- 1w Jl with a cost of 0 (N 3R6). This step is much

faster than t he inverse of the approx imate Hessian 0 (R3T 3 ) due to R « In
or N R< T.

Instead of const ruct ion of t he approximate Hessian , the IT...M algorithm builds up
the mu ch smaller matrix 4fJo of size N R 2 x N R2 . Hence, besid es the cost of comp utation
of the gradie nt or the damped ALS factors, IT...M computes q, and q, - 1 at a cost of
o (R2T + N3 R6) which is much smaller than t h e cost for const ruction of H and for
H - 1 in dGN.

T he tot al expense of fLM per one ite ration is approximately 0 (NRJ + N3 R 6).
For N > 7, t he pr oposed algor ithm has the same order of complexity as that of ALS.
However , IT...M is mu ch fast er than ALS because it requires fewer it erations than ALS.

4.5. Damping parameter in the LM algorithm. T he choice of damping
parameter J1, in t he fas t dGN algorithms (4.3) affects t he direction and t he ste p size
LlCl = H ;;- ' 9 in the updat e rul e (3 .3): Cl +- Cl + LlCl [18J. In t h is paper, the damping
parameter Jl is updated us ing the efficient strategy proposed by Nielsen [18]:
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(4.24) J1. +- {2maxn,1- (2p _1)3}
2J1.

(4.25) P = lI e'_ lll ~ -lI e,lI ~
LlClT (g + J1. LlCl)'

vec(Y {1)

(4.26) 9 = J T (y - iJ) =

vee ( Y eN)

for p > 0,

otherwise,

(8 A (kl)
k:;fl .

( 8 A(k» )
k ;'N

_ A (l) r (l»)

_ A (N ) r (Nl)

E ni.R T ,

~

'"o
--0
ti

--0
~

o

~
8

where e t = vec(}j - 1ft), and the gradient 9 can be straightforwardly derived as in
(D.I) or in [29, 31]. The factors A (n ) will be updated unless t he new approximate
is lower than the previous one: lI e,lI , < lIe,-tll,. The algorit hm should st op when
Jl increases to a sufficiently large value [e.g., 1030) . In pr act ice, the facto rs A (n ) are
often ini ti alized using the mode-n singular vec tors of the data t ensor [5, 7, 14] and
t hen run over ALS (3.1) after few iterations. Accord ing t o the CP model (2.3), all the

components a~n) (n =f N) except ones of the last factor are unit-length vectors. The
initial value of the damping parameter 11 is chosen as the maximu m diagonal entry of
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(5.3) H (n,=) = 8n,;,.(r(n) o lIn)+ (IR 0 A(n)) K (n,=) (IR 0A(=)H) .

THEOREM 5 .3 (low-rank adjustment ). For N R« T , the approxima te Hessian
H = J H J can be expressed as a low-rank adjus tment given by

where 1'~~} are the {r, s) entries of the Herm itian matrices r (n ,m) = ®k ,en,m A (k ) H

s».
THEOREM 5. 2 (submatr ices H (n,=)). With K defined as in (4.2), H (n,= ) are

expressed in an explicit form as

where symbol "H" denotes the Hermitian transpose, and the .Jacobian J is given
in (B.1). The approximate Hessian H = JH J changes slightly from that for the
real-valued te nsors. A fast and efficien t computa tion method for the complex-val ued
approximate Hessian H will b e presented so that th e final updat e rule does not employ
both the J acobian and the a pproximate Hessian. We consider H as a partitioned
matrix of (N x N) submatr ices H (n,m) E C R1"X RI"" n, m = 1,2, . . . , N . Each sub­

matrix H (n ,m) is a par ti tioned matrix of (R x R) subsubmat rices H~~/n) E C1n X 1""

n , m = l ,2, . . . , N, r, s = 1,2, . . . , R. The explicit expression of the approximate
Hessian H is deduced from the following theorems which can be derived in a mann er
similar to that for real value d tensors .

THEOREM 5 .1 (subsubrnatrices H~~/n) ) _ H~~,7n) are diagonal or rank-one ma­
trices given by

Ia. H l.+ (J H J+ !LI)-' JH (9-3) ,1

H~~;m) = c5n ,7n 1'tJ. lln + (1 - c5n,7n) 1'~~,m) a~n) a~m) H,(5.2)

(5.1) .

H as

Jl<J = 7 max {diag (H )} = 7 max {diag (r(1») .. . diag ( r (n) ) . . . diag (r(N)) }

(4.27) = 7 max {1 ,diag (C(N))} ,
whe re T is ty pically in the range of [10- 8 , 11 .

5. Complex-valued t ensor factorization. This sect ion aims to extend the
dGN algori thms t o compl ex-valued t ensors . Although a real-valued t ensor is consid­
ered as a complex-valued tensor wit h zero im aginary part , for simplicity algorit hms
for real- and complex-valued t ensor s are int roduced in two separate sect ions . For the
complex case, t he CP model is to find complex-valu ed factors A (n ) E CI"xR .

The damped Gauss-Newton-like updat e rule (3.3) is rewr itten to update complex­
valued factors [8, 231,
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where sparse m atrices G, Z , and K are defined as in (4.10), (4.11 ), and (4.2).
The dG N algorit hms for complex-valued tensor factorizat ion are stated in the

following theorems.
. THEOREM 5 .4 (dGN algorith m for complex-valued tensor factorizations) . The

factors A (n ) are updated using the rule given by

~

M
o
'0

'"'0
~

o

~
o

Q

(5.4) H =G +ZKZH
,

(5.5) a.+-a. + (H +!LI )- ' g ,
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where the approximate Hessian H is defined in Theorem 5.1 or 5.2, an LM regular­
izati on parameter J1. > 0, and the gradient 9 E CRT is computed (L';

q = 1,

q 'f I , r .

n
u = '" A a l l ) 0 a (2) 0' " 0 a (N )0 L r r r r'

r=l

{

V ,

tan(9. ,r ) = vJv2 + 2,

A (n ) <- Al:')+ A (n ) (In _(Fn + r (n )T ) r~,n»)

g =

(6.3)

(6.2)

For example, /.I = 0.1, 0.2, . . . , 1 yie ld B1,r = 6° , 11°, 1'JO, 22°, 27°, 31°, 35° , 39°, 42°, 45~,

and Bq,r = 8°, 16°,23°,30°,37°, 43°,48°,52°,56°, 600, q =f l , q #- r , respectively. For
high /.I such as /.I = 2, G1 ,r ~ 63° , and Oq,r ~ 78° , t ensor can be quickly factorized by
CP algo rit hms. T he higher th e parameter /.I, t he lower the collinearity of factors . It
is more difficult to factor ize ten sors with lower /.I (e.g., v = 0.1, 0.2). However, when
/.I > 3, a nothe r issue arises from a large differen ce in magn it ude between com ponents .
The tensors are st ill difficult to factori ze even though collinearity of factors is low
(Ol,r > 71°). Cl" tensors , ns in (2.3) , can equivalent ly be constrain ed to be of the
form

6. Exp er imen ts-Com p uter s im u lat io ns. T he CP algorithms were verified
for di fficult da ta with collinear factors in all modes (swamp) . Co llineari ty degree of
factors was controlled by mu tu al angles between their components . Collinear factors
A(n ) were generated from ra ndom orthonormal factors u (n ) ,

(6 .1) ain) = u(" ) + v uin), v E (0, 1) Vn,Vr 'f I.

Mutual an gles Oq ,r between a~n) and a~n) , q =f r , were in a range of (0,6 00
] for

VE (O, I),

(5.11)

(5.10)

(5.8)

(5.9)

(5.7)

(5.6)
[

T N T

vee ( Y In ) (2 A (k»)' - A (n ) r (n )T ) L~l

where symbol "*,, denotes the complex conjugate.
T lfEOREM 5 .5 (fast dGN for low-ran k approximation). FOT N R « T , the factors

A (n) are updated using the fast update rule given by

where F n ere frontal slices of an order-a tensor 9=' whose vec(:f) = B ,J.w p., B /! =

(K - l + '1t/,)-1 if K is inver tible, or DJ£ = K (I + '1'" K)- l , and W Jl. is computed

from Ute damped A LB factors A~~) ,

- In ) ( ( ) ) -'r /L = r " + JL1n

W = blkdi ag (r(n)0 A (n )1I A (n ») N
p I ' 1

"=1

W = vee ([A (n ) 11 A (n ) _ c (n ) r (n) r (n)] N )
11. It J1.

n =1

A (n ) = Y ( ) (0 A (k») · r(n)
I' n I' .

k"n
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(6.4) MedSAE(a~n), ii~n» ) = 10 10glO (median (a~n)2)) (dB),

For our simu lations , due to t he same collinearity degr ee v for all the components, we
have

CRlB(a~n)2) = CRlB(apJ2) 'IT, 'In,

CRlB(a~n)2) = CRlB(a~n)2) '1n ,r = 2, ... , R .

(n ) a (n ) H Ci(n ) (n )2
where a r = arccos (nl _in) . A Cra mer- Rae induced b ound (CRlB) on a rli a r 11 211 a r 11 2
was computed from the Cramer-Rae lower bound (CRLB) for estimating the com po-
nent a~n) [15, 25, 26, 27],

(dB) .
CRlB(a~n)2) = 1010glO t r ( (l In - a~n)Ta~n) / lI a~n) 1 12) CRLB (a~n») )

lI ~n) 11 2
(6.5)

The average MedSAEs for the est imate d comp onents were compared against t he
average CRIB. It is imp ortant to note that an MedSAE lower than - 30 dB , - 26 dB ,
or - 20 dB means two com ponents are different by a mu tual angle less than 2°, 3°,
and 6° , respectively. P racti cal simulations show that it is difficult for a MedSAE to
reach a CRlB ~ - 30 dB , since collinearity of factors has been dest royed by noise.
Discuss ion on effect s of noise on collinear data in Appendix F gives us insight into
when CP algorithms are not stable, and when they succeed in ret rieving collinear
factors from noisy tensors.

6 .1. Comparison b etween dGN and fLM for order-3 t ensor factoriza­
tions. .This section compares performance of fLM and the standard dGN algorithm in
the MAT LAB rout ines PARAFAC3W developed by Tomasi (see [28, 32]). The dG N
algorithm [28] computes the approximate Hessian and gradient, and employs Cholesky
decomposit ion and back substit ution t o solve the inverse problems H - 1g . Unfortu­
nately, th is toolkit supp orts only 3-way data . T he fLMa algorit hm was verified, and
denot ed shortly by fLM.

In the first set of experiments, random synthet ic tensors were generated from
three collinear fact or m atrices of size I x R wh ere I = 100 and R = 5, 10, 20, 30, 40, 60
and v = 0.5. From each noise-free CP tensor ji composed from A (n) E lR.[ X R, twenty
noisy tensors "9 of 30 dB SNR were generated. There are in to tal 200 rank-R t ensors
:g . The MedSAE for each comp onent was deduced from 200 runs for each test case.

where H a~n) 1I 2 = 1 vr, and each Ar encodes the magnitude. For this exper iment
Al = 1, and AT = (1 + v2)N/2 VT > 1. T herefore, for v = 3, 4, 5 and N = 3,

Ar = 31.6, 70.1, 132.6 VT =f 1, respect ively. T hat means the components a~n) , r =
2, ... ,R, are relat ively larger than the first compone nt. We analyze synt hetic tensors
for two cases : error-free an d noisy data with addit ive white Gaussian noise at sign al­

to-noise ratio (SNR ) (= - 10 10glO "~~jt) = 30 dB or 40 dB added to the data tensor

}j = }J + a'N, where N denotes a normally distributed random tensor of zero mean
and unit var iance whose nhh...i N '" N(O, 1).

In order to evaluate the factorizations for collinear data, we measured the me­
dian squared angular error (MedSAE) over mul t ipl e runs between the original and

estimated components a~n) , a~n) after matchin g their ord ers defined as
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FI G. 3. Compariso n between the dGN (green lines in elect roni c vers ion) an d fLM (m agen ta
lines in elect ron ic ve rsi on) algori thms for factorization of 100 x 100 x 100 dim ension al tensors
composed by collinear fa cto rs for vari ous R at SNR = 30 dB: (a) the ouerall execution time s in
secon ds (dashed lines) and the average execu tion tim es per i tem tio n (solid lin es) ; (b) the average.

MedSAE values (dB) of the first compon ents a in) (square m arker) and of other components a~n)
( tri angular mar"ker ) , r =2, . . . , R, n = 1,2,3.

··········t..
..i ..·~ .-..,_·+.._· ~: _ - '- -l

acro
I ,. I ..-- •.n_~m·\~ ,~ ~ 1 r·····...",..I:

- 55
0

R
(b ) Med SAE and CR.IB

-,

-5<>

-l' ----·····-t

~-' 5

~.-e
Q 4
~ ~

! ~
"~ ~
&
m ~

so~00sore

t}W~:~
\0"" ...

lO· ~ "dGl' i i ... .. r>.'Q'. ' i I

R
(a) O verall execution t ime and average exe cution

t ime per it eration .

Both algor ithms were initialized by the same factors which were the mo de-n
singular vectors of the dat a tensor [7]. Algorithms stopped when ten differences of

successive relative errors e = " ~ ; Wl-~j? were lower than 10- 8 , or until t he maximum
number of iterations (1000) was achieved. Executi on ti me for each algori thm was
measured using the stopwatch command "t ic" "toe" of rvIAT LAB release 2009a on a
compute r which had two quad core 3.33 GHz processors and 64 GB memory. Tucker
compression was not used in the simula t ions . The dGN in [28] was adapted to follow
the same stopping crite ria and the same computational t ime measurements, while it s
other pa ramet ers were set to default values .

Figure 3(a) visualizes the overall execution t imes in seconds and the average
execution times per iterat ion for both algor ithms. The speed-u p ratios for the overall
decomposition between dG N and fl.M were approx imately 6.4, 14.6, 35.1, 16.7, 7.8,
and 2.8 t imes for R = 5, 10, 20, 30, 40, 60, respect ively, while the speed-up ratios
per iteration were , respectively, 5.6, 14.7, 20,7, 11.3, 6.5, and 2.7. We note tha t the
numbers of iterations of dG N and fLM were slightly different because of differences
between them in controlling the damping par am eters.

In Figure 3(b), we illustrate the average MedSAE values of dGN [28] and fLM.
T he mean 1vIedSAEs for the first components ain), n= 1, . . . , N , were calculated
over N MedSAE (ain)2); whereas the mean rvIedSA Es for the other component s a~n ) ,

T = 2,3 , ... , R, n = I , ... , N, were calculated over (N x (R - I» MedSAE(a;;!;).

Figure 3(b) shows that the average values of MedSAE(a~n )2 ) , r 2: 2 Vn , asympto tica lly
attained the CRlB . It mean s t hat both dG N and fl.M well reconstructed component s
a~n) , T = 2, . . . , R 'In , even for R = 60. To be accurate , CRIB is a theoreti cal
lower bound on the mean of the square angu lar err or , not on the medi an . In th ese
simulat ions, the median and mean SAEs appeared to be nearly ident ica l so that only
the former is shown.
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FIG. 4. Memo ry requirements and execu tion time per it erati on of dGN and f LM in approxima­
tion of 100 x 100 x 100 dim ensiona l tensor's by rante-R tensors where R = 5,1 0, 20, . . . , 100.

6 .2 . Factorization of hi gher- or d e r real-valued t ens ors. The proposed al­
gorithms have been extensively verified and compared with the ALS algorithm plus
line search in the N -way to olbox [2], for order-a tensors of size In = 50, for var ious
ranks R = 5, 10,15, and wit h different collinea rity degree 1/ = 0.1, 0.3, 0.5, 0.7, 0.9.
The order-4 tensors were corrupted by add itive Gauss ian noise at SNR = 40 dB . For
each pair (1/, R) t he MedSAE was computed from 400 run s. Execution times (sec­
onds) were measured on a computer t hat had a 6-core i7 3.33 OHz pro cessor and 24
C B memory.

Algor ithms were analyzed und er the same experimental conditions as in the pr evi­
ous simulat ions . T hey it erated unt il successive relative erro rs ~ were lower than 10- 12 ,

or the maximum num ber of it erat ions (5000) was ach ieved . The ALS algorithm plus

For the first component s a ~n) , performan ces of dON and ff.M were equivalent
in the sense of collinearity reconstruction for small R = 5, 10. For R = 20, 30, fl. M
still reco nst ructed the first components. Note that alt hough MedSAEs were different ,
t he relative ap proximation errors E of two a lgorithms were almost the same bu t they
were not presented here. The difference in component reconst ruct ion was cause d by
implementation of the control st rategy for the damping paramet er. For R 2: 40, the
average MedSAEs of the two algorithms were much worse than the CRIB , and they
were not ab le to reconstruct the first components. Indeed, we cannot recover the first
com ponents due to noise for high R.

In order to anal yze complexity of the two a lgorithms for higher ranks R --+ I , we
decomposed tensors of the same dimensions whose entries were randomly generated .
The rank R va ried from 5 to [ = 100. The amount of a llocated memory and average
executio n t ime per ite ration were measured on the computer (P Cl) in the previ ous
simulat ions and on a computer (PC2) which had 2.67 GHz i7 CPU and 4 GB of
memory. The results were summarized in Figure 4. For high-rank R 2: 50, dON
requi red more than 4 OB of memory and could consume 20 OB of mem ory for R = 100
whereas fl.M needed less tha n 4 OB of memory. On PCl which had 64 OB of memory,
fl.M was slightly more time consuming for R ;::: 90 than dON because the advantage
of t he fast inversion in (4.6) was lost . However , dON becam e dramatically time
consuming on P C2 when R 2:40.
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line search (ALSls) was adapted to have the same stopping crite ria.
At SNR = 40 dB and ranks R = 5, 10, 15, CRIB s are re lativel y high (> 40

dB ) for most v (see Figure 5(d)). Hence, CP D algorithms easily estimate d collinear
factors and obtained high MedSAEs comparable to the CRIB. Figure 5(d) shows that
1..fedSAEs of ALSls and fl.M were almo st similar and approached CRIB except those
for R = 15 and v = 0.1. It shou ld be not ed t hat factor izatio n became more difficult
in the case of higher rank R and lower v. Executio n t imes of algorithms for different
R and v are illustrated in Figures 5(a)- (c). The results indicate that the higher
the collineari ty degree (l.e., smaller v) the more t ime-consuming the algorithms. For
example, ALSls on average ran 2083 iterat ions in 957 seconds to facto rize order-4
noisy tensors when R = 10 and v = 0.1. However , when keeping the tensor size and
rank R and changing v = 0.9 , this algorithm ran 34 iterat ions in 14 seconds. For
the same tensors with v = 0.1, fl.M took only 48.6 seconds on average to execute
384 iterations, and took 6 seconds for 21 iterations with v = 0.9. That means fl.M
was 21 t imes faster than ALS with v = 0.1. For order- 4 te nsors of R = 15 and
with v = 0.1, ALSls ran 4225 iterations in 2255 seconds on average , while fLM took
only 103 seconds to execute 494 iterations. Hence, fl.M was 24.7 t imes faster than

0.5
V

(a ) O rder -a tens ors , A (n) E R50x s, SNR = 40
dB.

FIG. 5. Comparison between A LSls and fLM for f actorizations of order-A tens ors of size 50 x
50 x 50 x 50 at SNR = 40 dB. (a) -( c) Execution times (seconds ) were measured when algori thm s
f actorized tensors of various ranks R = 5, 10, 15. (d) Th e average M edSA E (dB) for all components
com pared with CRIB.
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T ABLE 6. 1
Com parison oj average execution times (seconds) between JLM and A LSls [or fa ctorizatio ns of

order-4 an d order-5 tens ors of size In = 50 at SNR = 40 dB com posed by collinear fact ors with
various f,J = 0.1,0.3, 0.5,0.9 and for various R . For each pair (N, I rn, R, f,J), speed-up ratio and
execution times are given as indi cated in th e subtable at the bottom.

0 .90.70.5
Collinear degree f,J
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2.9

9

5, 50x 5 22 117,245 81 I 2,747 46 t 1,240 4.2
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ALSls for the difficult test case. More execution times and speed ratios are given
in Table 6.1. The speed ratio between ALSls and fLM W B..-") high for highly collinear
dat a [e.g. , 1J = 0, 1). For example, fLM was at least 17.1 t imes an d up to 24.8 t imes
faster than ALSls for collinear data with 1J = 0.1. For lower collinearity degree, ALSls
quickly factori zed the tensor after few iterations. Although the speed ratio decreased,
fLM was still approxima tely three times faster than ALSls.

6.3 . Factorization of complex-valued t ensors. In the next set of simula­
t ions, we cons idered fact orization of complex-valued tensors. Factors A (n ) E C70 x R

were generated in the same manner as for exp eriments in the previous sect ion . How­
ever, they had random real and imaginary parts. In addition to collinearity degrees
1J = 0.1, 0.2, . . . , 0.5, we considered 1J = 3,4,5. We note that although collinearity
of factors is low for high 1J = 3,4,5 (BI,T > 71°), t he tensors are st ill difficult to
factorize.

We compared fLM with ALS plus line search (ALSls) . Algorithms stopped when
differences between successive relative errors were lower than 10- 8 , or the maximum
nwnber of iterations (2000) was ach ieved. In Figures 6(a) -(b) , we illust rate the aver­
age MedSAE of all factors for 70 X 70 x 70 x 70 dimensional tensors with ranks R = 5
and 15 over 200 runs. ALSls achieved good performance with 1J = 0.2, and excellent
MedSAE with 1J = 0.3, 0.4, and 0.5. However , for high collinearity degree v = 4 and
5, ALSls did not obtain perfect reconstruction. The fLM algori thm outperformed
ALSls for all test cases. Figures 6(c)-(d) indicat e that the number of iterati ons of
ALSls t ended to decrease gradually as 1J increas ed from 0.1 to 5. For v = 3,4,5,
ALSls stopped after tens of iterations because there was not any significant change in
the relative erro r. F igures 6(c)~(d) also reveal that fLM required fewer iterations for
higher v . Difference in magnitu de be tween components did not affect fl.M.

7. Conclusions. Simulations for real- and complex-val ued tensors confirmed the
fLM algorithm was faster than dGN and ALS, and outperfor med ALS in the sense
of approximation accuracy (MedSAE) for difficult test cases . Moreove r 1 MedSAE
of fLM was comparable to CRIB for mos t test cas~s even for noisy tensors. For the
collinear ity modificat ion used in the simulations , we also show that for th e sam e tensor
size and collinearity degree , the higher rank R the dat a tensor has , t he more difficult
the factorization is to retrieve the factor. For the same size In, rank R , and collinearit y

Copyright © by SIAM. Unauthori zed reproduction of this article is proh ibited.
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F IG. 6. Illustration fOT MSAE fo r fa ct ori zat ion of order-4 comp lex-valued tens ors wi th size
I n = 70 and runks R = 5, 15 . A lgmithrns stopped as they T-eached a deri vative of suc cessive relative
errors of 10- 8 01' 2000 iterations .

degree , t he higher the dim ensions of the data tensor, t he higher the performance of
facto rization can be achieved .

Most CP algorithms incorporate d with line-sea rch techniques work well for gen­
eral data , but oft en fail for highly collinear data wit h bot tlenecks or swamps. The
dG N/LM algorithms [20, 291 can dea l wit h such data, but demand extreme com­
putationa l cost associated with large-scale inverse of approximate Hessian s. In this
pap er, by employing the special st ructure of th e approxima te Hessian , a fast in­
verse for the app roximate Hessian has been derived , and low complexity dGN al­
gor it hms have been proposed for fact orization of low-rank real- an d complex-va lued
tensors. T he proposed algorithm avoids bu ilding up the whole approximate Hessian
and its inverse by worki ng wit h much smaller matr ices of size N R 2 x N R 2 instead
of (RT x RT). Extensive experiments for tensor facto rizations showed that our algo­
ri thms outperformed "st ate-of-the-art" algor ithms for difficult benchmarks for both
rea l- and complex-valued tensors. The proposed dGN jL:L\l algorithms can be ex­
tended to the nonnegat ive CP D in which facto rs are non negative matrices. Moreover ,
our algori thms can be simplified to est imate only one factor for supersymmet ric ten­
sor factorizat ion which can be found in multiway clustering, or to t he INDSCAL
decomposition [5, 151.

v
(a) Order-4 tensor s , A (n ) E C70x5, SNR = +00

dB.
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Denote by G /i inverse of the block diagon al matrix G J! ' whi ch is also a block diagonal
matrix

From Theorem B.2 , and by using th e product of block matrices, it is st raight for­
ward to decompose H - G into three matrices defined in Theorem 4.2 as

( N )-' (_(n) )N
G " = blkdiag ( (r(n) + J.lIn) 0 r.,L~l = blkdiag r" 0 1[" n~l

By establishing expressions for submatrices H (n,tn), we can prove Theorem 4.2.
Proof of Theorem 4.2. From (B.2) , we ca"nstruct a sparse matrix G consisting of

all block matrices H (n), n = 1,2, . .. , N , that is,

if K is invertible,

otherwise.

oH -G =ZKZT .

J = [Qn( (2A(k}~ IIn )["

G = blkdiag (H(n)) ~~l = . b1kdiag ( r(n) 0 II..)~~l .

{
G - 1 _ G- 1 Z (K - 1 + ZTG-1Z) -1 ZT G - l

C.l H - 1 = I l . Ii I-' ~
( )" G - 1 _ G - 1 Z K (I , + ZTG-1ZK)-1 ZT G - 1

11- Ii . N R Ji Ji

(B.4 )

(B .3)

(B .1)

(B .2) H (n,m) = "n.m (r(n) 0 lIn)
+ (In 0 A(n)) K(n .m ) (In 0 A (m) T) 'In,'1m.

Appendix C . Proof of Theorem 4.3.
Proof The damped approximate Hessian H /i = G + itIRT + ZKZT is adj us ted

from G l i = G + J.lIRT by a low-rank matrix ZKZT . Hence, it s inverse can be quickly
comput ed by applying the binomial inverse theorem (see page 18 of [13])

We express the approximate Hessian H a.':; an N x N block matrix H = [H( n,m)]n,m ,
H (n ,m ) of size RIn x RIm.

THEOREM B .2 (see [20, 29]) . A submatrix H (n ,tn) has an explicit expression
given by

Appendix A. Commutation matrices. A commutat ion mat rix Q n expresses
connect ion between vectorizat ions of tensor unfoldings, and often exists in construc­
tion of the J acobian J and the approximate Hessian H in dGN algorithms for CP and
Thcker decompositions [22J. .

LEMMA A .I (mode-n to mode-l unfo lding) . Commutation matrix Q n , which
m aps vec(A (I)) = vec(A) = Q n vec (A(n)) , is given by Q n = II n +1 :N 0 Ph:n- 1,In1

with t., = rrL=ih .

Appendix B . Proof of Theorem 4.2. In order to prove Theor em 4.2, we seek
explicit expressions for t he J acobian and the approximate Hessian in the next section.

LEMMA B .1 (see [20, 31]) . Th e Jacobian m atrix J has a form of
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Similarly, we denote L J! = G ; l Z and WJt = ZTG;l Z. From (4 .11 ) and by taking
-(n) -en) .

into account [I' J.! ® l In) (IR ® A (n) ) = I'J.! ® A (n ) I we have

N

L" = G ; 1 Z = blkdiag (f~n) 09 lIn) =1 blkdi ag (In 09 A (n)):~1
N

= blkdiag (f~n) 09 A (n ) ) n~ 1 '

. N

(C.2) W" = bl kdiag (f~n) 09 c (n )) n~1 .

Finally, we define B as in (4.6), an d eas ily dednce (4.12) from (C .l ) . 0

Appendix D. Proof of Lemma 4 .5 .
Proof From (B.l ) , (4.13) , and not ing that vec(£) = Q n vec(£ (n)) , where Q n is

defined in Lemma A.l , the product G 1!g can be expressed in a block form as

(D.l)

(G" JTvec(£)f

= [vec(£ f Q n (( (~ A(k)) f;:)) 09 l In) [ 1
= [vec ( E (n) (~ A(k)) f~n) )T]~~1

= [vec (Y(n) (~A (k )) f~n) -A (n) (~A (k )f (~A(k ) ) f~:)fL1
= [vec(A~n) - A (n) r (n) f~nY[l

Similarly, a convenient formula to compute L~ g is given by

[

T N T

w" = L~JT vec(£ ) = vec ( A (n) T (A~n) - A (n ) r (n ) f~:)) ) L~l

(D.2) = vee ([A (n) TA~n) - c (n ) r (n) f~n)r~.) .
Finally, for each frontal slice F n of the tensor g: E R R x Rx N whose vec (31 = B J.!wp. ,
we have

(f~n) O9 A (n )) vec( F n) = vec ( A(n)Fn f~n) ) .

From (4.14), we·obtain (4.21). Each product inside (D.3) has a complexity of O(l n R2+
R3 ) . Hence, L" f in (4.21) has a complexity of a (T R 2 + N R 3 ) '" a (TR 2

) which
L", lower than 0 (T R3 ) by a factor R for building up LJ! and direct computation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(E. I) i« n ,m ) = (N ~ I - On ,m) diag (vec(C (n ) ® c (m ) <2> r)) P R ,

(F .2) Y en ) Y (..) = A (n) r (n) A (n ) T + E (n) E (..) = u rn ) :E u (n) T + ,,2 I N - I lIn'

where E = Q (QTQrIN- i l QT , [AI-wI denotes elementwise power , and

It is straig ht forward to pr ove that :E = [R
2 + (R - I )(y - 1) v (R+ ~ - 1) 1~ _ 1 I

1/ (R + y - 1) I R _ l [z - I )(I R _l I R_ l + (y - I )I R - d

has (R - 2) identi cal eigenvalues A; = (x - I )(y- I ), r = 2, .. . , R - I , and it s largest
and smallest eigenvalues Al > AT > AR are solutions of a qu ad ratic equation

where r (n) = ®:=I c (n) .

Appendix F . Effects of noise on collinear d ata . This section discuss es br iefly
effects of noise on factorization of collinear tensor generated by t he modification (6.1) .
Cons ider matrix factorization of t he mode-a t ensor unfolding

x = 1 + v 2 , y = X
N

-
I

.
R2 + (R -I ) x y -1

IOSNR / lO I N

T

Y en ) = A (n) (8 A (k)) + E(n) '
ki"n

),1 +),R = x y + (R - 2) (R + x + y) + 3,

)"),R = (x - I)(y - I) =),,, 2 :<:; r :<:; R - 1.

2 11 1J11}
(J" = 10SNRj IOI N

(FA)
(F .5)

(F.3)

(F.I)

L / f . Fu rther more, t his fast computation do es not use any significant t emporary
ext ra st orage. 0

Appendix E . Inverse of the kernel matrix K.
T HEOREM E. !. The inverse ofK defin ed in (4.2) is a partitioned matrix K =

K - I whose blocks i((n ,m ) for n = 1, . .. , N, m = 1, . .. , N are given by

Figu re 7(a ) illust rates Ar (r = 1, . .. , R ) for order-S noiseless te nsors with I = 100
and R = 15 compared wit h t he noise levels ,,2 I N - l at SNR. = 20 dB and 30 dB . The
higher the collineari ty degree of factor , the smaller the eigenvalues Ar . If eigenvalues
Ar are considerabl y lower than t he noise level a2IN~I , t he fact or ization becomes
infeasible, e.g., as v ~ O.l.

Because u(n) are orthonorm al , Y (n) Y fn) has R leading eigenvalues >'r = x, +
21(N-I) - I R d (I - R\ ' val ),- . - 21(N - I ) ' - R + I Ia ,T - , .. ."an lelgen Ue5 t - (J" ,1. - , . . . , .

In Figure 7(b) , we plot eigenvalues Ai for noisy tensors havin g t he same dimension
as that of t ensors illust rat ed in F igure 7(a) . The lar gest eigenvalue >'1significantly
exceeds t he no ise levels , whereas >'R is quit e close to the noise level at SNR = 20 dB
for v :<:; 0.3, or at SNR. = 30 dB for v :<:; 0.1.

Analysis of singular values of Y en) or eigenvalues ~f Y en) Y '[n) allows predicting
whether factorization succeeds in retrieving collinear fact ors from noisy tensors. This
also gives insight into when CP algorithms are not stable and yield a nonunique
solut ion .

The modificat ion (6.1) can b e expressed as A (n ) = u (n) Q , wh ere Q

[ ' '[~_ l] E lRR xR . In theory, for noisy tensors 11 with In = I 'r;:fn, we have
0 R _ l v R - l
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