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M
atrix decompositions such as the eigenvalue 
decomposition (EVD) or the singular value 
decomposition (SVD) have a long history in 
signal processing. They have been 
used in spectral analysis, 

signal/noise subspace estimation, prin-
cipal component analysis (PCA), 
dimensionality reduction, and 
whitening in independent 
component analysis (ICA). 
Very often, the matrix under 
consideration is the covari-
ance matrix of some obser-
vation signals. However, 
many other kinds of matrices 
can be encountered in signal 
processing problems, such as 
time-lagged covariance matrices, 
quadratic spatial time-frequency matrices 
[21], and matrices of higher-order statistics. 

In concert with this diversity, the joint diagonalization 
(JD) or approximate JD (AJD) of a set of matrices has been recently 
recognized to be instrumental in signal processing, mainly 
because of its importance in practical signal processing problems 
such as source separation, blind beamforming, image denoising, 
blind channel identification for multiple-input, multiple-output 
(MIMO) telecommunication system, Doppler-shifted echo 

extraction in radar, and ICA. Perhaps one of the first such algo-
rithms is the joint approximate diagonalization of eigenmatrices 
(JADE) algorithm proposed in [8]. In this algorithm, the matri-

ces under consideration are Hermitian and the 
considered joint diagonalizer is a unitary 

matrix. More recently, generalizations 
and/or new decompositions were 

found to be of considerable 
interest. They concern new 

sets of matrices, a nonuni-
tary joint diagonalizer, and 
new decompositions. 

Introduction
In the context of noncircular 

complex-valued signals, com-
plex symmetric (non-Hermitian) 

matrices provide information that 
can be useful and even sufficient for blind 

beamforming or source separation. One exam-
ple is the complementary covariance matrix, also called the 

pseudocovariance matrix. With such complex symmetric matrices, 
one ends up with jointly diagonalizing a set of matrices via either 
the transpose congruence transform or Hermitian congruence 
transform. For the special two-matrix case with one Hermitian and 
one complex symmetric matrix, there are particularly fast JD algo-
rithms based on EVD and SVD. 

This article provides a comprehensive survey of matrix joint 
decomposition techniques in the context of source separation. 
More precisely, we first intend to elaborate upon the signal 
models leading to different useful sets of matrices and their 
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joint decompositions. Second, we present recent identifiability 
results and algorithms in distinguishing important classes. 

Signal model, matrices, and decompositions
To motivate the JD problem from the perspective of blind source 
separation (BSS), let us consider the classical linear memoryless 
source mixing model with additive noise described by 

	 ( ) ( ) ( ),t t tx As n= + 	 (1)

where ( )tx CM!  is the observation vector, ( )ts CN!  the source 
(component) vector, ( )tn CM!  the 
noise vector, and A CM N! #  the 
mixing matrix assumed full column 
rank (we shall not address the under-
determined case of fewer rows than 
columns until the section on direct 
fit methods). Since we suppose that 
we have more than one source, this 
leads to .M N 2$ $  The index t  
characterizes the variability of the 
signals. It is very often the time index 
but it can be the frequency index or the position index for an 
image, or any physical variables describing the considered signals. 
For convenience, it is considered in the sequel as the time index. 

In BSS, the mixing matrix is assumed unknown and the 
sources not observable. The problem is then the estimation of the 
sources given only the observations. 

When statistical (or other) information is available regarding 
the noise, such information can be accounted for in the estima-
tion of the unknown mixing matrix, as well as in the estimation of 
the sources (even when the mixing matrix is known). However, to 
capture the essence of the problem and of its links to JD, we shall 
ignore the noise in here and assume ( ) .t 0n =  

Since the mixing model is not unique, it is well known that 
estimation of the sources is possible only up to some indetermin-
acies about the sources’ scaling and ordering (see the section 
“Identifiability Issues for the Symmetric Case”). Among other 
things, this can be done by estimating a (left) pseudo-inverse (or 
simply the inverse in the square case) of A  denoted (generically) 
by .B  Basically there are two ways for that: the first one consists of 
estimating ,A  followed by the calculation of its pseudo-inverse 
whereas the second one consists of estimating B  directly. Notice 
that the estimation of A  corresponds to the so-called blind identi-
fication problem in signal processing while the direct estimation 
of B  corresponds to the classical BSS. 

The estimation of A  or B  can be formulated as a joint decom-
position of a set of well-chosen matrices, to which we shall refer as 
target-matrices. Hence the first step is to choose target-matrices 
admitting a specific decomposition with respect to (w.r.t.) the mat-
rix for which we are looking. The choice of useful matrices 
depends on a source model. 

Quite commonly, the target-matrices are constructed from sta-
tistics of the observation. It is common practice to assume that the 
sources have zero mean, hence first-order statistics are of no 

interest. Thus second-order statistics (SOS) is considered. For a 
complex-valued random observation vector, one can define two 
kinds of SOS matrices, 

	 ( , ) { ( ) ( )} , ( , ) { ( ) ( )}t t t t t tR E x x R E x xx
H

x
Tx x x x= - = -M ,

where ( ) T$  and ( ) H$  are the transpose operator and the transpose 
conjugate operator, respectively, and { }E $  denotes the expectation 
operator. The first matrix ( , )tRx x  is the classical correlation mat-
rix, whereas the second one ( , )tRx xL  is the so-called complemen-
tary correlation matrix. The usefulness of the complementary 

correlation matrix is directly related 
to a noncircularity property of the 
sources since for circular sources 
this matrix would be null. 

One can also consider higher-
order statistics (HOS) described by 
cumulants. Since third-order statis-
tics are not so useful in practice 
mainly because the probability den-
sity function (PDF) of the sources is 
often close to symmetric, fourth-

order statistics are often considered. In a very general way, they 
are defined as 

	 ( , { }) { ( ), ( ), ( ), ( )},C t x t x t x t x tCum,
(*) (*)

x i j k l1 2 3ijkl
1 2

x x x x= - - -

where (*) 1  and (*) 2  denote optional complex conjugates and 
{ } { , , } .1 2 3/x x x x  One way to construct matrices from cumulants 
consists of considering a linear combination of the above cumu-
lants while keeping free the first two indices that will be used as row 
and column indices for the constructed matrix. This is written as 

	 ( ( , { })) ( , { }),t G C tC
,

,x
k l

M

x
1

ij kl ijklx x=
=

/

where ( )GG kl=  is a fixed coefficients matrix. All of the above sta-
tistics generally depend on the time index .t  In such a case the 
sources are called nonstationary. In the special case where the 
dependence w.r.t. t  is periodic, the sources are called cyclosta-
tionary. When the statistics do not depend on ,t  the sources are 
called stationary. 

In the noiseless case, using (1), the matrices ( , )tRx x  and 
( , { })tCx x  with (*) * ,1 /  denoted generically as ,Mx  all admit the 

factorization ,M AM Ax s
H=  whereas the matrices ( , )tRx xL  and 

( , { })tCx x  with (*) ,11 /  denoted generically as ,MxN  all admit the 
factorization .M AM Ax s

T=N N  With no further assumptions regard-
ing the sources, the matrices M s  and M sN  do not possess any special 
algebraical structures compared to Mx  and ,MxN  so these decompo-
sitions are noninformative. However, quite often some plausible 
assumptions regarding certain properties of the sources imply a spe-
cial and “simplified” structure (diagonal or other) of M s  and .M sN  
This is directly linked to an identifiability property that has to be 
considered to be able to separate the sources. Basically, for stochas-
tic sources, the classical identifiability assumption is their statistical 
independence, leading to the ICA problem. For independent 
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sources, the matrices M s  and M sN  are always diagonal [5], [8], [15], 
[20], [29], giving rise to the concept of “JD” of the selected target-
matrices, as the result of representing each of these matrices as the 
corresponding transformation of a respective diagonal matrix. 

In practice, however, the set of “true” target-matrices (specific-
ally, the respective true SOS or HOS of the observations) is not 
available. Only sample-estimates of these matrices may be availa-
ble, and these estimated matrices may no longer admit an exact 
JD transformation. In such cases one must resort to AJD, in an 
attempt to find a transformation being “as close as possible” to JD, 
with various measures for the quality of the approximation. 

Simplifying the notations, we can always consider a set of K  
complex matrices ,Mk  to be decomposed as 

	 , , ,k K1M AD Ak k k
‡ fP= + = 	 (2)

where ( )$ A  corresponds to either the transpose or the conjugate 
transpose of the matrix argument and matrices Dk  all share 
some prescribed common structure. Depending on the signal 
model, the matrices Dk  can be either all diagonal, all block diag-
onal, or all zero diagonal, as we shall explain in the sequel. The 
residual matrices kP  are perturbation matrices which are linked 
to estimation errors and/or to modeling errors. This is referred to 
as the symmetric case; see Figure 1. Note that another model 
M AD Ak k k

1 P= +-  has been studied as well [24] but is less popu-
lar in applications. A more general formulation, which is some-
times found to be more useful, reads 

	 ,M A D Ak L k R kP= + 	 (3)

where the matrices AL  and AR  are a priori arbitrary; see, e.g., 
[12]. This is referred to as the nonsymmetric case since AR  is not 
directly (or explicitly) linked to .AL  

The main problem consists of estimating A  (or )AL  or its left 
inverse up to acceptable indeterminacies. In practice, these 

indeterminacies correspond to the estimation of all columns of A  
up to a scaling factor and up to ordering. This is the concept of 
essential uniqueness, which will be discussed in the section “Iden-
tifiability Issues for the Symmetric Case.” 

In all of the following sections, we denote ,B A= @  B AR R= @ , 
and B AL L= @  where ( )$ @  stands for the pseudo-inverse of the mat-
rix argument or directly the inverse in the square case. 

Identifiability issues for the symmetric case
One fundamental question in the context of the BSS problem is: 
“Under what conditions on the sources can the mixing process be 
uniquely identified up to ordering and scaling?” This is evidently 
a question of general identifiability conditions, which are inde-
pendent of a particular separation approach, and have been 
derived, e.g., in [15], [30], and [41]. However, in the context of JD-
based BSS, the identifiability issue is closely related to the 
uniqueness (up to the trivial ambiguities) of the JD solution, 
which in turn relies on properties of the target-matrices. An 
underlying assumption is that under asymptotic conditions the 
estimated target-matrices can become arbitrarily close to the true 
target-matrices, and therefore the uniqueness of the joint diago-
nalizer has to be explored w.r.t. the true target-matrices, in the 
context of exact, rather than approximate JD. When the mixing 
matrix is invertible, identifiability of the mixing matrix implies 
the ability to separate the sources and is therefore often associ-
ated with separability. However, even when it is not invertible, the 
mixing matrix may still be identifiable (even by AJD), but such 
identifiability would not imply separability of the sources in such 
cases. Additionally, in some scenarios that are beyond the scope of 
this article, some sources may be separable from the mixture 
based on their special key properties (e.g., sparsity) but still with-
out the need for identifiability of the full mixing matrix. In this 
section, we only focus on the symmetric case with an invertible 
mixing matrix. 

Identifiability conditions for some specific scenarios have been 
provided, e.g., for the unitary case [5] and for the nonorthogonal 
real-valued case [2]. In this section, we summarize the necessary 
and sufficient conditions for the joint diagonalizer to be unique up 
to permutation and scaling for the noiseless, symmetric JD case 
(2). While general identifiability conditions for the nonsymmetric 
case (3) are still an open question, for particular nonsymmetric 
algorithms [12], [13] a necessary and sufficient condition can be 
provided (see the sections “Nonunitary Joint Diagnalization” and 
“Nonunitary Joint Zero Diagonalization,” respectively, for the 
diagonal and zero-diagonal cases). 

In the noiseless case, and under the assumption of full column 
rank of ,A  whenever M N2  one can easily find N  of the M  
observed mixtures that would be linearly independent and ignore 
the other observed mixtures without loss of information. There-
fore, without loss of generality, we consider the square (or “deter-
mined”) BSS problem, i.e., .M N=  Given , ,B B CN N! #l  B  is 
said to be essentially equivalent to ,Bl  and vice versa, if B  is only 
different from Bl by at most a row-wise ordering and scaling. 
Moreover, we say that the solution of a JD problem is essentially 
unique, if all solutions are essentially equivalent. 
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[Fig1]  An illustration of AJD of four 3 3#  symmetric target-
matrices , , , ( , ) .N K3 4M M M M1 2 3 4 = =   
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Homogeneous Models and Their  
Uniqueness Results
The uniqueness of JD under transpose congruence transform has 
been considered for real matrices in [2]. Recently, the extension to 
complex matrices has been studied in [3] and [25]. We first discuss 
the case where all matrices are to be diagonalized with the same 
transformation [i.e., ‡  is exclusively either T  or H  in (2)] and 
refer to this as the homogeneous case. For that, we require a 
measure of collinearity for diagonal matrices, which is obtained by 
means of the complex angle between the vectors formed by stack-
ing the entries at corresponding positions together. The relation in 
(4) illustrates an example with ( )2 2#  diagonal matrices. Let 

: ( , ..., )d ddiagD Ck k kN
N N

1 != #  for , , .k K1 f=  For a fixed diag-
onal position ,i  we denote by : [ , , ]d dd Ci i Ki

T K
1 f !=  the vector 

consisting of the thi  diagonal element of each matrix, respectively, 

, , ,
[ , , , ] :
[ , , , ] :
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d

d
d

d
d

d
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0
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0
0
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2

11 21 1 1
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D D DK1 2

&f
f

f

=

=
; ; ;E E E
1 2 344 44 1 2 344 44 1 2 344 44
� (4) 

Recall that the cosine of the complex angle between two nonzero 

vectors ,v w CK!  computed as ( , ) : ( ) / ( ),c v w v w v wH=  
where v  denotes the Euclidean norm of a vector .v  (If one of 
the two vectors is zero, the cosine is defined to be one by conven-
tion.) The uniqueness result states that, for a given set of matri-
ces ,Mk  the joint diagonalizer B  is essentially unique, if and 
only if ( , )c 1d di j !  for all pairs ( , )i j  with .i j!  In particular, 
for ,K 2=  this condition allows to uniquely solve the JD prob-
lem simply via a generalized EVD approach, i.e., ,M B M B1 2 K=  
where K  is diagonal [33]. 

A Hybrid Model and Its  
Uniqueness Results
The uniqueness results above state that, when there exists one 
pair of collinear concatenated vectors ( , ),d di j  the solutions 
under homogeneous transforms are not essentially unique. 
However, it is known that signals with distinct second-order 
circularity coefficients are uniquely identifiable via a nonhomo-
geneous JD of only one covariance matrix (using the conjugate 
transpose operator ( ) )H$  and one pseudo-covariance matrix 
(using the transpose operator ( ) ) .T$  The corresponding method 
is known as strong uncorrelating transform (SUT) [20]. 

Recent works in [47] and [39] generalize the SUT approach to 
jointly diagonalize both Hermitian and complex symmetric matri-
ces. The following statement provides a necessary and sufficient 
condition for the JD problem with a mixture of Hermitian congru-
ence and transpose congruence. For given matrices :M AD Ak k

H=  
with , ,k K1 f=  and :M AD Al l

T=N L  with , , ,l L1 f=  the com-
mon joint diagonalizer B  is essentially unique, if and only if there 
exists no pair ( , )i j  with ,i j!  such that the following two condi-
tions hold: 

	 ) ( , ) ( , ) ; ) .c c 11 2d d d d d d d di j i j i j i j= = =K K K K

In other words, when there is at least one pair of collinear con-
catenated vectors ( , ),d di j  then the essential uniqueness implies 
that the respective norms are not proportional. 

In the simplest case, where only one Hermitian and one 
complex symmetric matrix are considered, ,di  ,d j  diK , and d jK  
are all scalars, so all pairs are trivially collinear. Then the previ-
ous result boils down to the following. Given two matrices 

:M ADAH=  and :M ADAT=N L  with ( , , )d ddiagD M1 f=  and 
( , , )d ddiagD M1 f= u uL , the joint diagonalizer B  is essentially 

unique if and only if the condition d d d di j i j! u u  holds for 
all pairs ,i j^ h  with .i j!  This result simply recovers the 
uniqueness condition for SUT, where the matrix M  is Hermitian 
and positive definite. We refer to [25] for a study of a further 
generalization of SUT, known as the pseudo-uncorrelating 
transform (PUT) and to [52] for the separation performance of 
the SUT for specific signal models. 

The identifiability results yield a sufficient theoretical condi-
tion on the properties of the sources, such that the BSS prob-
lem is uniquely solvable, independent of any JD algorithms. 
Meanwhile, depending on the properties of the sources, it allows 
to determine a set of matrices, such that an exact JD solution 
yields the correct demixing matrix. In the presence of noise, 
AJD algorithms are used to find a matrix that minimizes some 
diagonality measures. 

Matrix normalization for  
joint diagonalization
For simplicity, let us only consider the symmetric case. A normal-
izing linear transformation Bn  can be applied to the observations 
as ( ) ( )t tx B xnn =  or directly onto the set of target-matrices as 

	 / , , , ,k K1M and orB M B M B M B,,k k
H

k k
T

n n n n nn f= = =N N
(here the subscript ( ) n$  denotes “normalization”) in such a way 
that the overall problem is normalized or simplified. The normaliz-
ing matrix Bn  is usually determined by selecting a particular Her-
mitian matrix denoted ,M0  which would be exactly diagonalized 
by this transformation, and may (or may not) coincide with one of 
the target-matrices , , .M MK1 f  It is well known [23] that any 
such matrix admits diagonalization as ,M U UH

0 K=  where K  is a 
real-valued diagonal matrix of eigenvalues and U  is a unitary mat-
rix of orthonormal eigenvectors in its columns, i.e., 
UU U U IH H= =  where I  is the identity matrix. In the context of 
BSS, and especially when M0  coincides with one of the target-
matrices, the matrix U  can often serve as a reasonable initial guess 
for the approximate joint diagonalizer of the entire set, or can at 
least serve to “simplify” the matrix set by considering .B UH

n =

Now, if the number of sources N  is known (or well estimated), 
then one can do a little more. If N  eigenvalues of M0  are nonzero 
and all the M N-  others are zero, then we denote sK  the diago-
nal matrix corresponding to these N  nonzero eigenvalues and U s  
the matrix of corresponding eigenvectors (spanning the so-called 
signal subspace). Then we directly have .M U Us s s

H
0 K=  Now we 

can consider B U s
H

n = , which corresponds to a projection of the 
observations onto the signal subspace. Hence all new matrices 
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M ,kn  and/or M ,knN  are of size .N N#  
This is essentially a PCA operation, 
which corresponds to a useful 
dimension reduction when .M N2  

Finally, we point out that M0  is 
often positive semidefinite, that is 
all nonzero components of K  (spe-
cifically, the diagonal components 
of )sK  are positive. This is usually 
the case when M0  is selected as the 
(zero lag) sample-covariance matrix of the observations. Then 
we can set B V U/

s s
H1 2

n K= -^ h , where V  is any N N#  unitary 
matrix. This operation is known as whitening, and it can be 
shown (as evident from the above definition using a nondeter-
mined unitary matrix V ) that following such a whitening step, 
any unitary diagonalizer of the normalized (“whitened”) set 

, ,M M ,, K1 nn f  would maintain the whiteness of the transformed 
.M0  Therefore, when a whitening stage is used, the diagonalizer 

of the whitened set is usually constrained to be unitary, which 
simplifies the search. 

Nonunitary joint diagonalization
In this section, we address the nonunitary AJD problem as the 
most important and common case. Following the alternating 
columns, diagonal centers (ACDC) algorithm [50], many AJD 
algorithms have been proposed over the last decade; see, e.g., 
[13], [21], [38], [43], and [49]. These papers only consider the 
symmetric version with .B B BL R

T= =  Since, however, an 
extension to the nonsymmetric version is possible (straightfor-
ward for some of these algorithms), we present the problem in 
the latter form. In the existing literature, we can distinguish 
four groups of nonunitary AJD algorithms. 

1)	Minimizing the so-called indirect least-squares criterion, 
which may be a possibly weighted square norm of off-diago-
nal elements of the transformed matrices .B M BL k R  To use 
this criterion the matrices BL  and BR  must be properly 
constrained so as to avoid the trivial zero solution and/or 
degenerate solutions. 
2)	Minimizing the direct least-square criterion (which can 
also be weighted), measuring the squared difference between 
the matrices and their representations, specifically the 
norms of the residual matrices kP  in (2) or (3). 
3)	A combination of these two criteria. Here, one seeks 
matrices BL  and BR  that transform the given set of matri-
ces into a set of nearly diagonal matrices, which cannot be 
diagonalized any further in the direct-fit sense, specifically 
such that the best direct-fit diagonalizer of the transformed 
set is the identity matrix. 
4)	Minimizers of an approximate log-likelihood criterion. So 
far the log-likelihood criterion was derived only for the case 
where the given matrices reflect second-order statistics of a 
mixture of Gaussian vector processes.
In many applications, performance of the nonunitary AJD algo-

rithms can be significantly enhanced by appropriate weighting, 
introduced in the optimization criterion. When a statistical model 

for the sources is fully known, the 
optimal weighting may be deduced in 
advance (e.g., [51]). Usually, however, 
the proper weights are not known in 
advance but may be estimated from 
the observed data, e.g., when a statis-
tical model for the sources is only 
known up to some parameters, which 
nonetheless can be estimated as a by-
product of the diagonalization pro-

cess (e.g., [42]), or when multiple snapshots of the data are 
available for nonparametric estimation of the weights [53]. 

Minimizing the indirect-fit criterion
Historically, the first, natural choice of an indirect-fit criterion is 

	 , { } ,C ZdiagB B B M BL R L k R
k

K

F1
1

2
J =

=

^ h / 	 (5)

where {·}Zdiag  sets the diagonal entries of the matrix argu-
ment to zero. Since, however, trivial minimization by down-
scaling towards B B 0L R= =  is clearly not interesting, one has 
to consider some constraint or barrier function to evade this. 
The following options have been proposed in the literature, 
together with appropriate minimization procedures, derived for 
the symmetric case where B BL =  and :B BR

T=

1)	B  is unitary. This choice has already been discussed in 
the previous section. 
2)	The rows of B  have unit norm. This constraint is weaker 
than the former one and was used in [19]. 
3)	BM BT

0  must have an all-ones main diagonal [48], where 
M0  may or may not be included among { } .Mk  In the BSS 
context, if M0  is the zero-lag covariance matrix of the obser-
vations, this constraint corresponds to the constraint on the 
separated sources, that they should have equal (unit) power. 
The proposed method of optimization uses iterative general-
ized matrix eigenvector computation. 
4)	B  has a unit determinant. The optimization can be 
attained through Givens and hyperbolic rotations [40]. 
5)	In [28], a penalty term (proportional to )log detB  is 
added to (5). The optimization proceeds by alternating 
between optimization w.r.t. individual rows of matrix .B
6)	Another suitable AJD criterion, which is scale-invariant in 
B , was proposed in [1] and [2], 

	 { }  .C DiagB M B BM B Bk k
T T

F
k

K

2
1

1

2
J = - -

=

-^ h / 	 (6) 

The scale invariance means that the criterion is not affected by 
changing scale of any rows of .B  The optimization was achieved by 
combination of triangular Jacobi matrices and Givens rotations.

Minimizing the direct-fit criterion
The direct-fit criterion is a measure of difference between the 
given matrices Mk  and their assumed model in terms of the 
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estimating the left and right mixing matrix AL  and AR  and 
diagonal matrices ,Dk  , , ,k K1 f=  

	 , , { } .C A A D M A D AL R k k L k R
k

K

F3
1

2
J = -

=

^ h / 	 (7) 

Minimization of this criterion is directly linked to tensor 
decompositions, as we explain shortly. The noiseless part 
A D AL k R  of the target-matrices Mk  together represents a third-
order tensor T  of dimensions ,M M K# #  with elements ,Tijk  
, , ,i j M1 f=  and , ,k K1 f=  such that its thk  slice T:,:,k  

equals ,A D AL k R  i.e., 

	 .( ) ( )  A A DT L
r

M

R k
1

ijk ir rj rr=
=

^ h/ 	 (8) 

In the tensor terminology, T  is a tensor of rank at most ,M  
because it can be written as a sum of M  rank-1 tensors, each of 
them being an outer product of three vectors, specifically the 
rth column of ,AL  rth row of AR , and a vector composed of the 
( , ) thr r  elements of ,Dk  , , .k k1 f=  The decomposition of this 
kind is called canonical polyadic or CANDECOMP-PARAFAC 
(CP) decomposition [9], [22]. The special case when two or 
more factor matrices coincide (in our case, the coinciding factor 
matrices might be AL  and )AR

T  is called individual differences 
in scaling (INDSCAL) [10] (see Figure 2 for an illustration).

The direct-fit criterion, or the CP decomposition, offers 
more flexibility than the indirect fit: it allows for treating situa-
tions where the number of separated sources is not necessarily 
equal to the dimension of the mixture. If the number of sources 
is smaller than ,M  it is still possible to use an indirect-fit criter-
ion and identify the sources among spurious (noisy) ones. A less 
trivial task is to separate underdetermined mixtures, where the 
number of sources exceeds the number of mixtures. CP decom-
position allows such a separation [16], [45]. 

The area of CP tensor decompositions is a rapidly growing 
field, and many techniques have been proposed. A traditional 
and still the most popular technique is the alternating least 
squares. Other methods include enhanced line search, damped 
Gauss–Newton method (also called Levenberg–Marquardt), 
and others; see, e.g., references in [36]. A link between the CP 
decomposition and AJD (even in the underdetermined case, 
rank greater than the dimension) was shown in [17], and more 
recently was exploited in [37]. It was shown that CP decompo-
sition can be attained through approximate JD of certain sets 
of matrices. 

Beside the CP decomposition approach, a suboptimum direct-
fit optimization of (7) was proposed in [13] (called DIEM for “diag-
onalization using equivalent matrices”), offering a closed-form 
(noniterative) solution. Moreover, DIEM can deal with the non-
symmetric case since the matrices AL  and AR  are not constrained 
or linked in the derivations. A necessary and sufficient condition 
for the uniqueness of the DIEM solution is that the set of K  
underlying diagonal matrices , ...,D DK1  spans the N-dimensional 
subspace of diagonal matrices in .CN N#  New BSS applications 
using nonsymmetric JD are discussed in the last section. 

Combination of the direct  
and indirect-fit criteria
Combining the indirect and direct fit of JD is conceptually simple 
and computationally efficient. A generic algorithm of this type 
works with a partially diagonalized set of matrices ,B M B[ ] [ ]

L
i

k R
i  

, , ,k K1 f=  i  is the iteration index. Initially, one can start with 
.B B I[ ] [ ]

L R
0 0= =  Each step consists of one iteration of a direct-fit 

procedure, which may or may not use weighting. In the 
unweighted (or uniformly weighted) version, we have 

	 , ,argminA A D AA B M B[ ] [ ]
,
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,
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i i
L k RR RL
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where .DiagD B M B,
[ ] [ ]

k L
i

k R
i

B =
9 " ,  The direct-fit procedure can be 

of Gauss–Newton type, for fast convergence in a neighborhood 
of the true local minimum and is sought close to .A A IL R= =  
Only one iteration of the Gauss–Newton procedure is applied in 
each step because, at the initial point A A IL R= = , the Hessian 
matrix has an attractive decoupled form that enables its inver-
sion through solving distinct sets of 2 2#  linear equations. 

Once an approximation of the best fitting mixing matrices 
A[ ]
L
i  and A[ ]

R
i  is found, the estimated demixing matrices are 

updated as ( )B A B[ ] [ ] [ ]
L
i

L
i

L
i1 1=+ -  and .B B A[ ] [ ] [ ]

R
i

R
i

R
i1 1

=+ -
` j  This 

algorithm was named WEDGE (for “weighted exhaustive diago-
nalization with Gauss iteration”), or U-WEDGE in its uniformly 
weighted version, in [43]. 

Maximization of a log-likelihood criterion
The last principle of AJD is a maximum likelihood (ML) 
approach. It was developed by Pham [35] for JD of a set of sam-
ple covariance matrices taken from distinct signal-blocks, where 
the statistical model assumes independent Gaussian distributed 
sources with variances that are constant within each block but 
varying between blocks. For real-valued signals and mixtures, 
the ML method with B B BL R

T= =  leads to the criterion 

	 ( )
( )

 
,  

{ }
log

det
det

C
Diag

B
BM B

BM B

k

K

k
T
k

T

1
LL =

=
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which is scale-invariant in B and does not require any con-
straints. This criterion may also be used as a generic AJD criter-
ion (outside the ML framework), however it is meaningful only 
for positive definite target-matrices { } .Mk  

M ≈

≈

a1 ο a1 ο d1 + a2 ο a2 ο d2 + a3 ο a3 ο d3

ο ο ο++

[Fig2]  The AJD of the target-matrices of Figure 1 viewed as a 
partially symmetric CP decomposition (INDSCAL). 
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Computational complexity
The fastest nonorthogonal AJD algorithms such as U-WEDGE/
WEDGE [43], fast AJD (FAJD) [28], and Pham’s [35] have asymp-
totic computational complexity of ( )O KM2  operations per itera-
tion. This is the lower bound for any algorithm that should have 
access to all elements of the target-matrices. Some other algo-
rithms have slightly higher complexity, ( )O KM3  operations per 
iteration, such as quadratic AJD (QAJD) [48], Souloumiac’s [40] 
or Afsari’s [1]. The number of iterations is varying. Among the 
algorithms, U-WEDGE/WEDGE, Pham’s, Souloumiac’s, and Afsa-
ri’s algorithm exhibit a quadratic convergence, as inherited from 
the approximate Gauss–Newton methods, and usually only need a 
few dozens of iterations to converge; FAJD and QAJD are based on 
alternating minimization, exhibit only linear convergence, and 
usually require hundreds of iterations. 

For fixed and moderate K  and ,M  a very fast AJD algorithm 
is the noniterative DIEM algorithm of Chabriel and Barrère [13] 
that, however, only attains an approximate optimum of the 
direct fit, and works with matrices of the size ,M M2 2#  so that 
its complexity is at least ( ) .O KM6

All direct-fit algorithms have complexity of at least ( )O KM3  
per iteration because this is the complexity of one least-squares 
solution step (fixing two factor matrices and minimizing w.r.t. the 
third one). Indeed, more complex algorithms require a higher 
number of operations per iteration. For example, the fastest avail-
able implementation of the Levenberg–Marquardt algorithm has 
complexity ( )O KM M3 6+  operations per iteration.

Approximate joint block diagonalization
In this subsection, we briefly mention the concept of approximate 
joint block diagonalization that was first introduced in [54]. 
Indeed it might happen that for some given sets of target-matri-
ces it is not possible to find mixing or demixing matrices such 
that the indirect or direct-fit error is satisfactorily small, but it is 

possible to fit them well by a block diagonal model. The latter 
model resembles (3), but the matrices Dk  are block diagonal, 
with diagonal blocks of appropriate size; see Figure 3(a). Such a 
model is usually relevant in cases where not all sources are inde-
pendent, but several groups of sources exist, with intragroup 
dependence but with intergroup independence. As in the ordinary 
diagonalization task, the block diagonalization can be either uni-
tary or nonunitary. The first block-diagonalization algorithms 
were unitary, [7]. Later, nonunitary algorithms were proposed as 
well: direct-fit methods by Nion [31], indirect methods by 
Tichavsky et al. [44], and ML methods by Lahat et al. [27].

Nonunitary joint zero diagonalization
In this section, we consider the case where, in (2) or (3), the 
matrices Dk  are zero diagonal for all k  and where the searched 
matrix is a priori nonunitary; see Figure 3(b). This problem is 
termed approximate zero diagonalization (AZD). The matrices 
Dk  for all k  are denoted Zk  here for a direct interpretation. We 
consider both the symmetric and the nonsymmetric cases when 
all matrices are square .N N#  This can always be considered in 
using a first-dimension reduction operation. 

In the symmetric case, the problem can be addressed by con-
sidering the indirect least squares criterion [21] ( )BC =  

{ }Diag BM Bk H
k
K

1

2

=
/  that has to be minimized. As initially 
proposed in [21], the optimization of ( )BC  can be performed 
row by row in searching iteratively for eigenvectors associated 
to matrices built from the target-matrices. Even if the optimiza-
tion scheme is rather simple, it can lead to nonuseful solutions 
(certainly corresponding to local minima). However since JD 
algorithms are more robust, very interestingly, it can be shown 
that the above problem can be cast as an ordinary nonunitary 
JD problem [11]. This is possible when the set of K  underlying 
zero-diagonal matrices , ...,Z ZK1  spans the N N2-  dimensional 
subspace of zero-diagonal matrices in .CN N#  In fact, this 

[Fig3]  (a) The approximate joint block diagonalization of four 3 3#  symmetric target-matrices , , , ,M M M M1 2 3 4  with one 2 2#  block 
and one 1 1#  “block.” (b) The approximate joint zero diagonalization of four 3 3#  symmetric target-matrices , , , .M M M M1 2 3 4  
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condition is also a sufficient for essential uniqueness of the joint 
zero diagonalizer. Note that the number of target-matrices has 
to be relatively large, K N N2$ -  for this condition to hold. 

In the nonsymmetric case, matrices AR  and AL  are a priori 
not linked. Following [11], a nonsymmetric algorithm [12] can 
be derived in turning the problem into a nonsymmetric JD one 
that can be solved using, e.g., the nonsymmetric version of 
DIEM mentioned earlier. 

Examples of BSS applications
In this section, we mention examples of two applications of AJD-
based BSS techniques, one for symmetric AJD and the other 
one for symmetric or nonsymmetric AJD. As an application of 
joint zero diagonalization, we can mention the zero-division 
multiple access wireless telecommunications system [12] where 
all the signals to be sent use the same bandwidth. 

Blind Audio Source Separation
Since modern AJD algorithms allow the JD of sets of large 
matrices with dimensions such as 100 #  100 or 500 #  500 
within time of order fraction of seconds or few seconds, they 
enable us to solve blind audio source separation (BASS), also 
known as the “cocktail-party problem”; see Figure 4(a), in the 
time domain [26]. 

Most of the existing BASS algorithms work in the frequency 
domain by transforming the convolutive mixture model into an 
instantaneous mixture model using the short-time Fourier 
transform. The individual sources were separated in each fre-
quency bin independently. Since, however, the order of sources 
obtained in each bin is arbitrary, it is necessary to resolve the 
permutation ambiguity simultaneously in all the bins. Random 
errors in the estimated order of the components in different bins, 
which are inevitable in practice, lead to nonlinear distortion of 
the estimated signals. 

Time-domain BSS methods do not produce nonlinear distor-
tions in the data but estimate linear MIMO filters that separate the 
sources. In short, the input signals measured by the microphones 
are augmented by their time-shifted replicas to become a multidi-
mensional input of an BSS algorithm. The number of the time-
shifted replicas should be large enough to cover mutual time 
delays of arrival of the individual source signals at the micro-
phones and their reflections. An insufficient number of the time 
replicas would lead to poor performance of the whole system. 

In principle, it is possible to use any ICA algorithm to trans-
form the input data set (microphone outputs with their time-
shifted replicas), in “pseudo-independent” components; the 
“pseudo-independent” components are further grouped and used 
to reconstruct the source images (contributions of all sources at 
all microphones) [26]. A successful ICA algorithm in this applica-
tion was the block Gaussian separation algorithm, which consists 
in applying a nonunitary AJD algorithm UWEDGE/WEDGE to the 
set of covariance matrices of the input signals at nonoverlapping 
time windows. 

In [14], the cocktail-party problem is addressed differently, 
using a compact array of microphones. It is shown that if the 

distance between any pair of microphones is sufficiently small 
(relatively to the coherence time of each source), a linear instant-
aneous mixing model, as the one in (1), holds, but w.r.t. an 
extended mixture model, where the temporal derivatives of the 
sources are added as “additional” (pseudo-independent) sources. 

Operational Modal Analysis
Operational modal analysis (OMA) is concerned with the ana-
lysis of a mechanical or electrical vibration system in terms of 
individual vibration modes; see Figure 4(b). The analysis is 
based on the system output, assuming white input noise. It was 
shown in [4] that SOS-based BSS methods are able to separate a 

[Fig4]  (a) An llustration of the cocktail-party problem with 
three speakers and three microphones. (b) An analytical 15 
degrees-of-freedom system. (Figure reprinted from [4], with 
permission from Elsevier.)
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set of system responses into modal coordinates from which the 
system poles can be extracted by single-degree-of-freedom tech-
niques. In addition, these methods return a mixing matrix 
whose columns are the estimates of the system mode shapes. 

The method is based on JD of the set of time-lagged covari-
ance matrices of the observations. The authors of [4] considered 
the algorithm for multiple unknown signals extraction (AMUSE) 
(based on generalized eigendecomposition of a pair of the covari-
ance matrices with lags 0 and )0!x  [46] and second-order 
blind identification [5] algorithms in forming the AJD problem. 
Next, they proposed their own nonsymmetric AJD algorithm, 
which was shown to be more adequate for this problem. 

Conclusions
We presented a survey of AJD methods and related joint matrix 
decomposition methods that can be used in various BSS applica-
tions, together with conditions for uniqueness of the solutions. In 
addition, we pointed out the option of weighted AJD methods, 
which might yield optimized performance through proper selec-
tion of the weights. The selection of the most suitable AJD/AZD 
method will always depend on the target application because cri-
teria of success might be quite different. Finally, we mentioned 
joint nonsymmetric matrix decompositions that should lead to 
new (promising) BSS or array processing applications.
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