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Abstract. In many real optimization problems the objective function is
either hardly tractable or its evaluation is expensive. Hence, we have not full
information on its form and can afford to evaluate it at just a few points. Then,
certain assumptions on the objective function form (shape) must be done. This
could be with advantage taken as a prior information in a Bayes scheme. The
Bayes approach to optimization, extensively studied in last several decades,
then offers the way of effective search for the extremal point. In the present
paper we shall recall the ideas behind Bayes optimization procedures, describe
the technique using the model of Gauss process and derive a regression-like
method dealing with noisy information on objective function.
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1 Introduction

The paper deals with the problem of optimization in the case that we have not complete information on
the objective function and that its evaluation is costly (computationally or even literally). Hence, we
wish to reduce its evaluation just to a few points. Therefore, we have to find an effective way how to
,,reconstruct” objective function, at least in a neighborhood of its extremal point. To make it possible,
it is necessary to make some assumptions on the objective function form. These assumptions can as
well be taken as a prior information, which is further specified on the basis of other reasonably selected
observations. Such a point of view leads quite logically to the use of Bayes approach.

In the present paper two cases are distinguished. In Part 2, it is assumed that the objective function
can be evaluated (practically) without error. Then, one of the convenient methods takes the form of
objective function as a trajectory of Gauss process, with parameters describing its covariance structure.
Such an approach is in detail described in Brochu et al (2010). The authors provide also a rich list of
relevant references dated from 70-ties till today and covering also some competing approaches.

However, when the objective function is evaluated with random noise, the interpolating model of
Gauss process has problems not only with tracing unknown function shape but also with locating its
mode. Therefore in this case we prefer non-parametric regression model estimating the objective function
and extrapolating its estimate to the region where the mode is expected. This approach is described in
Part 3. The objective function is constructed from regression (i.e. smoothing) splines (De Boor, 1978).
Their parameters, namely the location of splines knots and also their numbers, are subjected to bayesian
estimation. Practical Bayes search then uses the MCMC (Markov chain Monte Carlo) procedures. More
on the MCMC method can be found in a number of papers and monographs, see for instance Gamerman
(1997) and also Volf (2006).

In both cases, the search procedure should be adaptive in the sense of a trade-off between exploration
(revealing the objective function shape) and knowledge exploitation, especially in the neighborhood of
expected extremal point. In practise it means that after each step the posterior is re-analyzed and the
next step selected on the basis of re-computed predictive probabilities.
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2 Gauss process model

The use of Gauss process as a model for unknown objective function dates back to 70-ties. The advantage
is that all finite-dimensional and also conditional distributions are normal. Hence, the process is fully
specified by its expectation function m(z) and covariance function cov(z1, z2). In the present case we
consider an isotropic (homogeneous) process with constant m(z) = m and covariance depending only on
distance |z1 − z2|. Namely,

cov(z1, z2) = d2 · exp(−c |z1 − z2|2) (1)

is a convenient choice (Brochu et al, 2010, Močkus, 1994). Thus, the Gauss process is described by three
parameters m, d > 0, c > 0.

Let us assume that we already know values of objective function gi = g(zi) at several points zi, i =
1, ..., n. Our task is now to select another point z convenient for new evaluation of objective function,
having in mind that we wish to approach the argmax g(z). Let g(z) be the value at a new point z,
further let us denote m = (m, ...,m)′, g = (g1, ..., gn)′, D = cov(g), and dz = cov(g, g(z)). Then the
joint distribution of ,,old” and new values is(

g

g(z)

)
∼ N

[(m
m

)
,

(
D,dz
d′z, d

2

)]
.

Finally, the conditional distribution of the interest is

(g(z)−m|g, z) ∼ N(µ(z), σ2(z)), (2)

with
µ(z) = d′zD

−1 (g −m), σ2(z) = d2 − d′zD
−1 dz.

In Bayes setting, the prior space is the space of trajectories of the Gauss process, with its prior distribution
given by parameters m, c, d. It means that they are taken as hyper-parameters. The likelihood is then
given by the joint Gauss distribution of the data, which actually also stands for a finite-dimensional
part of the Gauss process posterior. We are, however, mainly interested in the conditional distribution
(2), as it represents the Bayes predictive distribution of the next observation. It is seen that when the
hyper-parameters are selected (fixed), the Bayes ,scent’ is presented just implicitly, offering one of several
possible interpretations of the method. The choice of covariance function (1) can as well be taken as a
selection of a kernel influencing the smoothness of the Gauss process trajectories. Hence, some rules for
the choice of optimal smoothing kernel can be applied (again, cf. Brochu et al, 2010).

The main aim of the model construction is to provide a tool for the selection of the next point which,
with high probability, is closer to argmax g(z) than points already screened. Let z+ =argmax g(zi), i =
1, ..., n be the extremal point from them. Then the ,,probability of improvement”, i.e. the probability
that at a point z the value is higher, is

PI0(z) := P(g(z) > g(z+)) = 1− Φ
(g(z+)− µ(z)

σ(z)

)
,

where Φ(.) denotes the distribution function of standard Gauss distribution. Intuitively we should select
z maximizing PI0(z). However, this choice has tendency to dwell in the vicinity of z+ not supporting
jumps to other areas. Therefore, an improved rule is based on the criterion

PI(z) := P(g(z) > g(z+) + v) = 1− Φ
(g(z+) + v − µ(z)

σ(z)

)
,

(cf. Kushner and Yin, 1997, Torn and Žilinskas, 1989). Here v ≥ 0 is a tuning parameter, chosen rather
subjectively. It is recommended to decrease it to zero (exponentially, for instance) with growing number of
procedure iterations. An analogy can be found in tuning the cooling parameter in the simulated annealing
method of randomized optimization. The following simple example illustrates the method on the case of
one-dimensional objective function, however, generalization to more dimensions is quite straightforward.

Example 1. Let us consider an objective function

g(z) = 10− z · sin(
z2

10
)
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Figure 1 Use of Gauss process model: Initial phase of search with just 3 points (left), state of search after
4 iterations (right)

on interval Z = (0, 10) and let us search for its maximum. Further, let us assume that, initially, the
function is evaluated at only 3 points. Figure 1, left plot, shows such a case, maximum of g(zi), i = 1, 2, 3,
is at the left point. Solid curve shows the mean µ(z) of Gauss process constructed from these 3 points,
while two dashed curves show µ(z)± 2σ(z). Dash-dots curve is then (unknown) objective function g(z).
The right plot shows the progress of search after 4 iterations of the search procedure described above.
Function has been evaluated sequentially at 4 new points proposed by the PI. They are shown in the
plot, the last of them is already quite close to the mode of g(z). In this experiment the parameters of
the procedure were fixed to d = 1, c = 0.5, m was estimated by the mean of g(zi). Tuning parameter in
j-th iteration was set to v(j) = 0.5j .

3 Nonparametric regression model

Let us now assume that evaluation of the objective function is not precise, that instead g(z) we observe
y(z) = g(z) + ε(z). In the simplest case it is assumed that ε(z) are independent copies of the same
random variable ε possessing the Gauss distribution with zero mean and an unknown variance δ2. There
are essentially two different ways how to estimate unknown (we assume that smooth enough) function
g(z). The first consists in the local (e.g. kernel) smoothing. The other approach, utilized here, employs
the approximation of g(z) by a combination of functions from some functional basis. For instance, the
polynomial splines are the popular choice. Then the model of function g(z) has the form

gM (z) = α′B(z;β) =
M∑
j=1

αjBj(z;β), (3)

where α = (α1, . . . , αM )′ is a vector of linear parameters, Bj are basis functions and β = (β1, . . . , βM )′

is a vector of parameters of the basis functions (e. g. knots of splines). While the estimates of α can be
obtained directly from linear regression context, estimation of β is more difficult. As a solution to the
nonlinear problem for coefficients β as well as to optimal choice of number of used units, M , it is possible
to use the Bayes methodology in combination with the Markov chain Monte Carlo (MCMC) algorithms.
In this framework, the parameter β is considered to be a multi-dimensional random vector, with a prior
distribution satisfying certain constraint. Simultaneously, M is also regarded as a random variable, with
a decreasing prior on {0, 1, 2, . . . ,Mmax}. Such a choice lowers the chance to accept a model with high
number of units, if the gain of that model is low.

Example 2. Let us consider the same objective function g(z) as in Example 1. However, now it is
assumed that it is evaluated with a random error, namely at selected z we observe

y(z) = g(z) + ε(z),
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Figure 2 Use of splines model: Initial phase of search for maximum of objective function (left), state of
search after 2 iterations (right)

where ε(z) are the i.i.d. random variables ε(z) ∼ N(0, δ2 = 4).

The procedure started from observations at 7 points z(i) located uniformly inside (0, 10), where values
y(zi) = g(zi) + ε(zi) were generated. Notice that here, in the case with considerable noise, the initial
number of point is larger than in Example 1. It is necessary for evaluation of the splines.

Values y(zi) are shown in Figure 2, left plot, again, hidden objective function g(z)) is dashed. Estimate
of g(z) was then constructed from cubic B-splines. As regards the prior for their knots, we used uniform
distribution on the set {0 < β1 < β2 < . . . < βM < 10}. M was bounded by 6 in order to ensure
their identifiability. S = 500 loops of the Markov chain generation were performed. One loop updated
sequentially all components of β, with possible change of M . It means that it contains up to 6 iterations
of model, depending on actual number M .

Only the final result after each loop was registered as a new member of the chain, g(m)(z). The
average of this sequence of functions, after skipping first s = 100 of them,

µ(z) =
1

S − s

S∑
m=s+1

g(m)(z), (4)

serves then as the estimate of g(z). In Figure 2 it is plotted by a full curve. The variability of this set
of S − s functions is not constant. The vertical cut at a given z represents Bayes prediction distribution
for corresponding g(z). Hence, variance of prediction σ2(z) is computed as a sample variance from
values g(m)(z) (compare also discussion in Bishop, 1992, Ch. 10). Dashed curves in the plot again show
µ(z)± 2σ(z). The right plot shows also two new sequentially chosen points tending to the mode of g(z).

Computation of prediction variance

When the nonlinear part of the model (e.g. the knots of splines) is specified, the variance of prediction
can also be quantified with the aid of standard linear regression analysis adapted to our case. We then
deal with the following linear regression model

yi = BT (xi) ·α+ εi, i = 1, . . . , n,

where α are unknown parameters, εi ∼ N (0, δ2) are the i.i.d. normal random variables, B(xi) =
(B1(xi), . . . , BM (xi))

T are B-splines evaluated at data-points x = (x1, . . . , xn)T . Denote B the n ×M
matrix with rows BT (xi), A = (BT ·B)−1, y = (y1, . . . , yn)T . Then the least squares method yields the
estimate

α̂ = A ·BT · y, α̂−α ∼ N (O, δ2 ·A),
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where O is the null vector. Further, at a new point z the prediction of g(z) is ĝ(z) = BT (z) · α̂. Its
expectation is ’true’ g(z), while its variance equals

σ2(z) = var
(
ĝ(z)

)
= BT (z) ·A ·B(z) · δ2.

As expected, it depends both on data (A = A(x)) from which the model was estimated, and on position
of prediction point z.

A case with multidimensional objective function can be, essentially, solved in the same manner. How-
ever, multivariate function has to deal with interactions of several predictors. This is as a rule modelled
by a tensor product of one-dimensional units. The problem is caused by the fact that their number
grows (exponentially) with dimension, so that there also grows the number of ’nonlinear’ parameters.
Nevertheless, there are some approaches to the regression functions modelling able to reduce the number
of parameters, for instance the projection pursuit method.

4 Application to quantile optimization problem

In quantile optimization the main criterion of interest is certain quantile related to the decision maker
risk acceptance. Let us consider a stochastic optimization problem with utility function ϕ(x, z), where
z are input (decision) variables from a set Z and values x are results of a random variable (or vector)
X. Denote F (y; z) the distribution function of random variable Y = ϕ(X, z) with decision z, then, for
selected α ∈ (0, 1) the objective is to maximize, over z ∈ Z, α-quantile Q(α; z) = min{y : F (y; z) ≥ α}.
However, in many cases the evaluation and consequent optimization of quantile criterion is not easy, often
it uses iterative procedures or Monte Carlo generation. Then the method described in the present paper
can be applied. We shall show such an application of method described in Section 2 on an example from
the area of reliability and maintenance optimization.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

δ

τ

G(Z)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

δ

τ

G(Z)

Figure 3 Example 3: Initial phase of search (left), state of search after 12 iterations (right)

Example 3. The Kijima model of non-complete repair (Kijima, 1989) assumes that the device is
repaired in its age τ with a degree δ, which means that after repair the virtual age of the device is
(1− δ) · τ . Thus, δ = 1 means complete repair, renewal, while δ = 0 is the minimal repair.

In the example it is assumed that the Kijima model concerns to preventive repairs, meanwhile after
the failure the device has to be renewed completely. We are given the costs of renewal, C1, and of
preventive repair, C2(δ, τ). The objective is to maximize, over τ and δ, an α-quantile of random function
ϕ(X, δ, τ) equal to proportion of the time to renewal to the costs to renewal. Here X is the random time
to failure of the device. This proportion equals

ϕ(X, δ, τ) =
X

C1
with probability P (X ≤ τ),
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ϕ(X, δ, τ) =
τ + τ · δ · (k − 1) +Xk

C1 + k · C2
with P (X > τ) · P (X1 > τ)k−1 · P (Xk ≤ τ),

where all Xk = {X|X > τ(1 − δ)} and k is the number of preventive repairs before the failure. It is
seen that the direct evaluation of objective function is not easy, moreover, it is strongly non-concave.
Therefore, the distribution of variable Y (δ, τ) = ϕ(X, δ, τ), for different δ, τ , is obtained ,empirically’ by
random generation, quantiles Q(α; δ, τ) then as sample quantiles.

For numerical illustration we selected X ∼ Weibull(a = 100, b = 2), with survival function F (x) =

exp
(
−
(
x
a

)b)
, EX ∼ 89, std(X) ∼ 46. Further, α = 0.1 the costs C1 = 40, C2 = 2 + (δ · τ)γ , γ = 0.2.

Figure 3 shows the results. Objective function is Q(α; δ, τ), procedure started from its Monte Carlo
generation in 9 points showed in the left plot. Maximum is denoted by a circle, its value was 0.876. The
plot contains also contours of resulting Gauss process surface. The right plot shows the situation after
12 iterations. It is seen how the space was inspected, maximal value was stabilized around 1.124, the
corresponding point (δ ∼ 0.7, τ ∼ 20) is again marked by a circle.

5 Conclusion

The contribution has studied the problem of optimization in the case when the objective function is not
known sufficiently and its evaluation is costly. Two methods of the search for the objective function
extremal point were described. Both are based on an appropriate model of the function. However, the
aim is not to reconstruct it fully (like in the regression analysis), but, preferably, in the vicinity of its
extreme, minimizing simultaneously number of function evaluations. The success of the methods is based
also on the design of starting points. Like in other global optimization methods, if they are far from the
optimum and the function is not unimodal, the procedure can end in a local extreme.
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