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Abstract. The goal of this paper is to describe a Robust Artifact Removal (RAR)

method – an automatic sequential procedure which is capable of removing short-

duration, high-amplitude artifacts from long-term neonatal EEG recordings. Such

artifacts are mainly caused by movement activity, and have an adverse effect on

automatic processing of long-term sleep recordings. The artifacts are removed

sequentially in short-term signals using ICA transformation and wavelet denoising.

In order to gain robustness of the RAR method, the whole EEG recording is processed

multiple times. The resulting tentative reconstructions are then combined. We show

results in a data set of signals from ten healthy newborns. Those results prove, both

qualitatively and quantitatively, that the RAR method is capable of automatically

rejecting the mentioned artifacts without changes in overall signal properties such as

the spectrum. The method is shown to perform better than either the wavelet-enhanced

ICA or the simple artifact rejection method without the combination procedure.
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1. Introduction

One of the most important indicators used to study the maturation of the brain is an

electroencephalogram (EEG). EEG describes the electrical activity of the brain and

contains important information about the state of the patient’s health. Visual analysis

of the EEG activity is a difficult and tedious task; automatic quantitative methods of

relevant signal parameters (other than spectrum or coherence analysis) are needed.

In previous studies, e.g., Gerla et al. (2009), methods have been developed that

help to analyse different features obtained from neonatal EEGs. The major drawback

of automatic methods is the fact that the neonatal EEG is almost always contaminated

by various kinds of artifacts – see, e.g. Celka et al (2001). They may be caused

by muscle activity (EMG artifacts), movement of the body, eye-induced artifacts (eye

blinks and movements) etc. The amplitude of the artifacts can be quite large relative to

the amplitude size of the cortical signals of interest. This is one of the reasons why an

expert is needed to correctly interpret clinical EEGs, and why the artifact presence can

damage an automatic EEG analysis. Because of this, an artifact-removing algorithm is

much needed.

This work was first motivated by the fact that methods of the Independent

Component Analysis (ICA) have been shown to be very useful in analysing biomedical

signals, such as EEG and MEG, see Makeig et al (1996), Vigario et al (2002), Joyce

et al (2004), James and Hesse (2005). These methods have an ability to separate

artifacts which are statistically independent of useful biological signals, and have non-

Gaussian probability density function or different spectra. In the EEG signal processing,

the most widely studied ICA algorithms are Infomax (Bell and Sejnowski et al 1995),

SOBI (Belouchrani et al 2002), and FastICA (Hyvärinen and Oja, 1997). While SOBI

is based on second-order statistics, the other two algorithms use high-order statistics.

In this paper, we use an algorithm BGSEP (Block Gaussian Separation, Pham and

Cardoso, 2002) implemented through the algorithm of Tichavsky and Yeredor (2009).

This method produces excellent separation performance and it is also very efficient

computationally. A comparative study of several ICA methods can be found, e.g., in

Delorme et al (2012) or Klemm et al (2009).

Performance of ICA can be enhanced by the Spatially Constrained ICA (scICA),

first described in Ille (2001). ScICA not only extracts artifact-based independent

components but it also incorporates prior knowledge about spatial topographies, for

example of artifacts, into the ICA algorithm by means of constraints. In Hesse and James

(2005), an efficient gradient-based algorithm was introduced to perform a spatially

constrained ICA. It was also studied by Phlypo et al (2006) and De Vos et al (2011a).

In Akhtar (2012), the spatially constrained ICA is combined with wavelet denoising.

An automatic artifact rejection method for the purpose of neonatal seizure detection

was proposed recently by De Vos et al (2011b). The method was again based on ICA,

and identification of artifact components relied on correlation with a simultaneously

recorded polygraphic signal. The goal of that paper is somewhat different from ours.
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Figure 1. Steps of the RAR method. First, artifacts with too large amplitudes
are removed (first blue block). This is performed by sequential usage of the
wavelet-enhanced ICA (green blocks).

In this paper, we propose a Robust Artifact Removal (RAR) method for artifact

rejection from an arbitrary-length signal. We are mainly interested in removal of short-

duration artifacts characterised by a high amplitude. The main motivation is detection

of sleep stages, which is difficult due to the frequent presence of artifacts. The method

does not rely on polygraphic signals, but if these are available it is possible to utilise

them as well, as is done in the De Vos paper.

The artifacts are removed sequentially: in a short-term signal, the ICA

transformation of the signal is computed (subsection 2.1) and demixed artifacts are

then thresholded by Wavelet Denoising (subsection 2.2). In order to achieve robustness

within the RAR method, the whole EEG recording is processed multiple times and these

tentative reconstructions are then combined (using a method presented in subsection

2.4). In order to reject high-frequency artifacts as well, the RAR method is completed

by a standard low-pass filter. In the simulation section, we show results of processing

the EEG recordings of ten healthy newborns. The results prove that the RAR method

is capable of automatically rejecting the mentioned artifacts without changes in overall

signal properties such as the spectrum. In particular it is shown to perform better than

either the plain wavelet-enhanced ICA of Castellanos and Makarov (2006) or the simple

artifact rejection method without the combination procedure.

2. Building blocks of the RAR method

In order to make the description of the RAR clearer, processing of an EEG record is

schematically depicted in Figure 1. Details of the method are described in the following

subsections.
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2.1. ICA

The aim of ICA is to convert a multichannel signal X via an invertible linear

transformation to so-called independent components S. Actually, the separated

components may not be truly statistically independent, but they are as independent

as possible according to certain criteria. Symbolically, the considered model is

X = AS (1)

where S represents a d × N matrix, composed of d rows and N samples, so that each

row denotes one independent component.

In this paper, we estimate the inverse of A using an algorithm BGSEP (Block

Gaussian Separation) of Pham and Cardoso (2002) implemented through Tichavský

and Yeredor, 2009. BGSEP is based on second-order statistics as is done in algorithm

SOBI (Belouchrani et al 1998), but it uses the non-stationarity of separated signals.

While SOBI is achieved by approximate joint diagonalisation (AJD) of a set of time-

lagged covariance matrices of the signal (the mixture), BGSEP performs an AJD of

zero lag covariance matrices in a partition of the signal. We use BGSEP because it

is computationally very efficient and also produces better separation performance than

other studied algorithms, e.g FastICA of Hyvärinen and Oja (1997) and Infomax (Makeig

et al 1996). Comparison of BGSEP with other ICA methods can be found in Tichavský

and Koldovský (2011).

In the context of the artifact removal, it is desirable to have unwanted signals

concentrated in a small number of separated components. The original signal can

be reconstructed without the artifact components (i.e., the components containing

artifacts) using the estimated matrix A. An illustrative example is shown in Figure

2.

2.2. Wavelet-enhanced ICA

Dealing with real EEGs, estimated independent components capturing artifacts

frequently contain a considerable amount of cerebral activity. Rejection of such

components results in loss of a part of the cerebral activity and, consequently, distortion

of the artifact-free EEG, see Figure 3 for example.

To mitigate this problem, we use the method of wavelet-enhanced ICA (wICA)

proposed in Castellanos and Makarov (2006). This method uses Wavelet Denoising

(WD), e.g., Quiroga et al (2003), on ICA components. The advantage of this approach

is that it enables us to retain a residual neural signal in components containing artifacts.

In order to use WD for artifact removal, the partly separated component s is

assumed to be composed of the high amplitude artifact a(t) and a low amplitude residual

neural signal n(t), symbolically

s(t) = a(t) + n(t). (2)

For removing artifacts without losing the residual neural signal n(t), an estimate of

a(t) proposed by WD is subtracted from s(t) and the inverse ICA transformation is
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Figure 2. Short EEG with artificially added artifacts. The Figure contains: a) the

original data, b) added artifacts, c) contaminated data and d) separated components

provided by BGSEP. The artifacts have been separated into the last two components.

Figure 3. Artifacts added into the data in Figure 2 estimated by ICA are shown in the

left part of this Figure. An estimate was computed via inverse ICA transformation after

replacing all non-artifact components (the first six of them) by zeros. The estimate

using wICA is shown in the right part.

performed using only n(t) instead of s(t). In particular, we apply level 7 decomposition

with Daubechies wavelet ψD6, and a threshold T =
√

2 log(d) for the denoising, where

d denotes the number of samples in the segment‡. The WD we used can be described

schematically

• compute the Discrete Wavelet Transformation (DWT) of s(t), i.e., compute the

wavelet coefficients aj,k

• for all aj,k perform the soft thresholding

âj,k =

{
sgn(aj,k)(|aj,k| − T ) if |aj,k| ≥ T,

0 if |aj,k| < T.

• compute the inverse DWT â(t) using wavelet coefficients âj,k.

‡ In later experiments, we used d = 5000, thus T = 4.1273 .
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component 1 2 3 4 5 6 7 8

sparsity 3.057 1.903 1.814 1.862 1.278 1.905 9.358 7.367

Table 1. Numerical values of the sparsity (3) computed for components in Figure 2.

Here, the â(t) approximates the artifact a(t) without the neural signal n(t).

In the original wICA of Castellanos and Makarov, the wavelet denoising is applied

to all ICA components (without any selection). Each ICA component is decomposed

into a sum of the noise and the rest. The “noise” is interpreted as the neural signal, and

the rest is considered to be an artifact. The updated ICA components after removing

the artifacts are multiplied by the estimated mixing matrix A to reconstruct the data.

This procedure is capable of rejecting artifacts to some extent in our application, see

Section 3 below. However, it appears to be more effective to apply the wavelet denoising

only to those components that are classified to contain artifacts.

2.3. Automatic detection of artifact components

Correct identification of artifact components is crucial for the proposed method. In the

spatially constrained ICA, the selection of the artifact component is performed jointly

with the separation. It is also possible to utilise a simultaneously recorded polygraphic

signal, if it is available, as is done in De Vos et al (2011b).

In this paper, we do not assume existence of the polygraphic signal and propose an

ad hoc criterion that, although simplistic, is suitable in our application. In any case,

the choice of the criterion is not crucial for the method: it can easily be replaced by

another method of selecting the artifact component.

The criterion is based on the assumption that artifacts with high amplitude have

one feature in common: their duration is short in comparison to the chosen frame

length. Such signal components will be called sparse in the time domain. Sparse

components have a large maximum absolute value (due to the presence of the artifact),

and simultaneously the median of the absolute value close to zero relative to std[s
(j)
i ],

where “std” stands for a standard deviation. Thus, we propose the following definition

of sparsity

sparsity(s(j)) =
max[|s(j)i |]
std[s

(j)
i ]

log

(
std[s

(j)
i ]

median[|s(j)i |]

)
, (3)

where s(j) = (s
(j)
1 , . . . , s

(j)
N ) is the j−th component, i is the time index, and N is the

number of samples in the frame.

The component is regarded to be sparse (artifact) if its sparsity exceeds some

threshold. A higher value of the limit means a more conservative (a weaker) artifact

reduction. For illustration, numerical values of the criterion on components from Figure

2 are shown in Table 1. In later computations, we use the threshold sparsity equal to

2.5.
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Note that if the threshold sparsity is set to zero, it is assumed that each ICA

component contains an artifact and the WD is performed in all of them. The resulting

algorithm is equivalent to wICA of Castellanos and Makarov.

Another trivial artifact denoising procedure would be obtained if the wavelet

denoising is applied to the original (raw) EEG data. Again, the “noise” is interpreted

as the useful (cerebral) signal and the rest as the artifact. No ICA is needed at all in

this procedure. Unfortunately, performance of this method appears to be even worse

than performance of wICA; however, it can be expected.

2.4. Robust artifact rejection from long-term signal

The simplest way to cope with long-term signals is to take non-overlapping frames, and

perform the artifact rejection in each of them separately. This simple sequential method

will be denoted as the SAR (Simple Artifact Removal) method. The length of the frames

should be selected so that each frame contains a sufficient amount of artifact-free signal.

For example, in our case of eight channel EEG the number of artifacts should not exceed

two or three artifacts per frame, each having a length of 1 to 2 seconds. If the number

of artifacts is higher or if artifacts are longer, the artifact removal is not reliable.

If the number of channels forming the EEG record is higher, we assume that the

method would work as well, or even better, because more information about the neural

activity is available. However, some fine-tuning of the parameters might be necessary.

In this section, we propose a method that is better than SAR, namely in difficult

scenarios where the artifact presence is frequent. In this method, called RAR (Robust

Artifact Removal), the plain artifact removal is performed in multiple frames three times,

each time with a different partitioning of the signal. Each partitioning gives one possible

artifact-free reconstruction of the whole signal. These reconstructions are combined

together in a special way so that the final reconstruction is generally smoother and

more artifact-free than the tentative reconstructions. The advantage of using multiple

processing becomes apparent in the experimental section.

2.4.1. Data partitioning Let N denote the length of one frame and L be the total

length of the data. At first, the signal is divided into frames [1 + (k − 1)N, kN ] where

k = 1 . . . n, n = bL/Nc. The second tentative reconstruction is done in a similar way

with frames [1 +N/3 + kN,N/3 + (k + 1)N ] for k = 1 . . . n− 1. The third partitioning

is [1 + 2N/3 + (k − 1)N, 2N/3 + kN ] with k = 1 . . . n − 1. For the second and third

reconstructions, ICA is not performed at the beginning and end of the signal. Here, the

first reconstruction is used as a final reconstruction instead.

The combination of three reconstructions into one proceeds sequentially,

independently channel by channel, in segments of the length T which are generally

shorter than N . Hence, segments have the form [1 + (k − 1)T, kT ] for k = 1 . . . bL/T c.
Division of the signal into frames and segments is shown schematically in Figure 4.
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A
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B2
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C

Figure 4. In three independent steps, the signal A is divided into frames Bi where

the denoising is applied. After obtaining tentative reconstructions, they are combined

channel by channel, segment by segment, into the final reconstruction. Locations of

segments C are schematically shown.

2.4.2. Adaptive folding Let r1, r2 and r3 denote three tentative reconstructions of a

segment in a data channel. Let µi denote the maximum absolute value of elements

in ri. We assume that at least one tentative reconstruction is artifact-free (otherwise,

there is no possibility of obtaining artifact-free reconstruction from their combination).

Without any loss of generality we assume that µ1 ≤ µ2 ≤ µ3. Therefore, at least r1 is

artifact free. Let ρij = ‖ri− rj‖2 denote the squared Euclidean norm of reconstructions

and let ρr denote the average squared Euclidean norm ‖r‖2 of a segment r of the same

length as ri, randomly or systematically chosen from the entire available signal.

The final reconstruction r is obtained as the average of one, two, or all three

tentative reconstructions depending on validity of the conditions:

max(ρ12, ρ13, ρ23) < 2ρr, (4)

max(ρ12, ρ13, ρ23) ≤ 2 min(ρ12, ρ13, ρ23) . (5)

The condition (4) indicates that there is probably no artifact in the segment. The

condition (5) means that differences between the reconstructions are small. If any of

these conditions is fulfilled, all three partial reconstructions are averaged to produce the

final reconstruction. The complete procedure is summarised in Figure 5.

An illustrative example of the combination procedure is shown in Figure 6.

3. Experiments

In this section, performance of the RAR method is studied on a database of EEG

recordings of ten different healthy newborns. Every recording has eight channels, about

70 min long, and was sampled at 256Hz under a bipolar montage. The recordings were

processed by the RAR method with parameters N = 5000 samples (cca 19.5 s), T = 256

samples (1 s), BGSEP had an internal parameter of 10, sparsity threshold was 2.5, and

the low-pass filter was the Butterworth type of the order 10 and cut-off frequency 50 Hz.

Note that each processing (70 min. long recordings) takes approximately 30 s on an

ordinary PC with a 2 GHz processor and 3 GB RAM in Matlab R2010b.
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r1, r2, r3

(4)∨(5) r = r1+r2+r3
3

ρ12 < ρ23 r = r1+r2
2

r = r1

yes

no

yes

no

Figure 5. Scheme of combination of tentative reconstructions. The first decision

means that there are not significant differences between r1, r2, and r3. The second

decision divides the cases according to whether r2 contains the artifact or not (note

that the r1 is assumed to be artifact-free).

Figure 6. Real example of a combination procedure of possible reconstructions

r1, r2, r3 that still contain some artifacts. The final reconstruction r is in the fourth

channel, vertical lines denote partitioning into frames and segments (shown in the

bottom part).
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no. feature method

1 standard deviation std(xt)

2 amplitude of the signal max(xt)−min(xt)

3 norm of PSD in the band 0.5-1.6 Hz using FFT(xt)

4 norm of PSD in the band 1.6-3.0 Hz using FFT(xt)

5 norm of PSD in the band 3.1-5.0 Hz using FFT(xt)

6 norm of PSD in the band 5.1-8.0 Hz using FFT(xt)

7 norm of PSD in the band 8.1-14.0 Hz using FFT(xt)

8 mean absolute value of the first derivative E(|xt+1 − xt|)
9 maximum of absolute value of the first derivative max(|xt+1 − xt|)
10 maximum of absolute value of the second derivative max(|xt+1 − 2xt + xt−1|)

Table 2. Ten features that statistically characterise EEG signals. Reference values

and std for falling asleep and REM sleep stages are displayed in Table 3.

.

3.1. Methodology

The main motivation for designing the artifact removal procedure was to develop a

preprocessing tool for classification of sleep stages of newborns, which is often difficult

because of artifacts. For this purpose, the signals (original and processed) were expertly

divided into parts so that each part can be assigned to one of three possible classes:

falling asleep stage, Non-Rapid Eye Movement (NREM) sleep (also known as quiet

sleep) and Rapid Eye Movement (REM) sleep (also known as active sleep). Then, 20 s

long parts corrupted by artifacts (expertly identified and denoted by Karel Paul) were

selected from each EEG record from both the falling asleep and REM stages. The NREM

sleep stages were excluded from further study because our data set was almost artifact-

free in this domain. Moreover, our method does not cause any significant changes in

the artifact-free signals, as we show in one of the later experiments.

In particular, we select twelve 20 s long parts, three corrupted by artifacts and three

artifact-free from each of the two studied sleep stages and each of ten patients. Thus

we have 60 parts of 20s long data samples containing artifacts and the same amount of

artifact free signals.

In order to compare statistical properties of the processed and the original signals,

every channel of signal xt is described by ten features summarised in Table 2. These

features are often used for various diagnostic purposes. Table 3 contains numerical

values (mean and standard deviation) of these characteristics for healthy newborns in

artifact-free parts for falling asleep and REM stages. Values were obtained by evaluating

the statistics for every 20 s long part and taking their mean value and standard deviation

across parts and channels.
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falling asleep REM

artifact-free contaminated artifact-free contaminated

no. orig RAR orig RAR orig RAR orig RAR

1 45 ± 12 39 ± 11 132 ± 81 46 ± 17 34 ± 6 30 ± 6 150 ± 116 42 ± 18

2 281 ± 72 248 ± 69 914 ± 599 321 ± 98 218 ± 43 190 ± 42 977 ± 696 275 ± 81

3 148 ± 48 126 ± 46 345 ± 185 150 ± 56 107 ± 25 91 ± 25 324 ± 250 129 ± 67

4 92 ± 29 87 ± 27 118 ± 50 102 ± 37 62 ± 16 59 ± 15 96 ± 49 81 ± 34

5 56 ± 13 55 ± 12 62 ± 18 59 ± 16 43 ± 11 43 ± 10 55 ± 19 51 ± 14

6 40 ± 8 40 ± 8 42 ± 11 41 ± 9 35 ± 7 35 ± 7 39 ± 10 38 ± 8

7 26 ± 5 26 ± 5 35 ± 11 29 ± 7 23 ± 4 23 ± 4 32 ± 8 27 ± 5

8 2 ± 1 2 ± 1 7 ± 4 2 ± 1 2 ± 1 2 ± 1 6 ± 4 2 ± 1

9 11 ± 3 11 ± 3 104 ± 166 14 ± 7 9 ± 2 9 ± 2 68 ± 57 13 ± 6

10 2 ± 1 3 ± 1 119 ± 160 3 ± 1 2 ± 1 2 ± 1 82 ± 79 3 ± 1

Table 3. Comparison of the studied characteristics for the artifact-free signal and the

signal contaminated by artifacts processed by the RAR method.

3.2. Results of the RAR method

Comparison of the original and processed signals is performed through the features

shown in Table 3. The presented results prove that the RAR method significantly lowers

overall artifact activity, both in amplitude and frequency and the resulting signals have

nearly the same properties as the reference signal. In addition, the Table shows that

the RAR method does not significantly affect the properties of the artifact-free signal.

3.3. Comparison with other techniques

In this subsection, the performance of RAR is compared with results of two simpler

artifact rejection methods: SAR with different sparsity thresholds, and wavelet-

enhanced ICA with a different denoising threshold. In the following, SAR(x) will denote

the method with the sparsity threshold x, and wICA(T ) will denote wICA with the

denoising threshold T . Argument T is omitted if T is equal to the default threshold

T0 =
√

2 log(5000) = 4.1273.

The features of the signal processed by competitive methods are shown in the Table

4. In order to save space, we display only the first two features (standard deviation of

the signal and maximum amplitude) in the falling asleep stage.

We note that SAR(2.5) is rather conservative in removing artifacts compared to

RAR, because it compensates the presence of artifacts from 132 ± 81 to 53 ± 23 in

place of 45± 12 in the case of the first characteristic. Note the twice larger variance of

the characteristic compared to RAR. The larger variance is an indicator of the residual

presence of artifacts in the cleaned data, which was observed by inspection of individual

cases. The results for the second characteristic confirm the observed behaviour of the

method. If the denoising threshold x is reduced from 2.5 to 2, the algorithm becomes

more aggressive, but the variance still increases. Moreover, SAR(2.0) significantly affects

the artifact-free signal.
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falling asleep

artifact-free contaminated

no SAR(2.5) SAR(2.0) wICA wICA(25) SAR(2.5) SAR(2.0) wICA wICA(25)

1 40 ± 11 35 ± 10 23 ± 5 32±9 53 ± 23 49 ± 24 34 ± 12 45±19

2 262 ± 69 225 ± 65 153 ± 39 218±63 354 ± 145 334 ± 157 273 ± 121 362±197

Table 4. The first two characteristics (std and amplitude) of the studied EEG signal

in the falling asleep stage processed by SAR(2.5),SAR(2.0), wICA and wICA(25). The

nominal (expected) characteristics obtained for artifact-free signals are 45 ± 12 and

281± 72, respectively (cf. Table 3).

The other simpler method, wICA with the default denoising threshold, is too

aggressive and removes too much of the signal. If the denoising threshold is increased

to T = 25, the mean value of the first characteristic is close to its expected value, but

the other characteristic is spoiled. Apparently it is not possible to tune up both the

first and second characteristics with the aid of a single tuning variable (T ). Moreover,

the method significantly affects the artifact-free signal.

These results prove that RAR outperforms SAR and wICA in removing artifacts

of the considered type in neonatal EEG data.

4. Conclusions

In this article, the Robust Artifact Removal (RAR) method has been presented. The

method has proved to be suitable for rejecting artifacts that stand out either in

amplitude or in frequency (due to the standard low-pass filter). The artifact-free parts of

the signal remain largely unaffected. RAR was shown to perform better than either the

wavelet-enhanced ICA or the simple artifact rejection method (SAR). The RAR method

can be used as a preprocessing step in identification of sleep stages of neonatal infants.

If the purpose is different, we admit that the algorithm is not yet able to distinguish

high voltage short-duration artifacts from a high voltage short-duration pathological

activity. The algorithm allows us to at least indicate both kinds of events and separate

them from other background EEG activity.

Matlab code of the RAR method has been posted on the Internet§.
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