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Abstract Since their discovery, fermentation processes

have gone along not only with the industrial beverages

production and breweries, but since the times of Alexander

Fleming, they have become a crucial part of the health care

due to antibiotics production. However, complicated

dynamics and strong nonlinearities cause that the produc-

tion with the use of linear control methods achieves only

suboptimal yields. From the variety of nonlinear approa-

ches, gradient method has proved the ability to handle these

issues—nevertheless, its potential in the field of fermenta-

tion processes has not been revealed completely. This paper

describes constant vaporization control strategy based on a

double-input optimization approach with a successful

reduction to a single-input optimization task. To accomplish

this, model structure used in the previous work is modified

so that it corresponds with the new optimization strategy.

Furthermore, choice of search step is explored and various

alternatives are evaluated and compared.

Keywords Optimal control � Nonlinear systems �
Fermentation process � Gradient method optimization �
Antibiotics production

Introduction

Rapid increase of the industrial productivity of antibiotics

that might be witnessed during the last few decades is

basically owed to a massive improvement of production

technologies rather than to a sophisticated control back-

ground. As a consequence, only suboptimal operation

manners have been involved with final product concen-

trations deep below maximum reachable values. The

important next step is to consider and carefully analyze all

advantages and disadvantages of the used control strategy.

A wide variety of ways how to operate the input feed flow

(which influences the formation of the final product espe-

cially by the amount of the substrate nutrient supplied to

system through it) has been discussed in literature so far.

As an initial attempt, one can consider indirect feedback

methods for nutrient feeding based on pH or dissolved

oxygen measurements [1]—the substrate concentration is

then maintained at predetermined setpoint by either a

simple open-loop controller [2] or an on/off [3] or a PID

type controller, followed by fuzzy approaches which

appeared in the 1990s [4] and have been revitalized at the

beginning of the millennium [5]. However, the most

impressive results have been reached using model predic-

tive control (MPC) approach. Several studies describing

the MPC control of bioprocess, in general [6–10], and

penicillin production, in particular [11, 12], can be found.

The main drawback of this method is the fact that it is

usually performed either with an approximately or exactly

linearized mathematical model of the controlled process.

Approximate linearization performed at certain operating

point [7] can be invalid for operating points far away from

the original one (and it is known that the operating points

range varies a lot during the cultivation). Moreover, no

stability assumptions can be made for closed-loop control
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based on the approximate models obtained at each step and

even one unstable model obtained by approximate linear-

ization can degrade the MPC performance vastly. Exact

linearization blows all these problems away—unfortu-

nately, in the area of fermentation processes, the existence

of exact linearization is rather rare and occasional. There-

fore, a proper alternative is needed—gradient descent

method which has already proved encouraging results in

various research areas [13–15] is a strong candidate as it

can handle even a nonlinear process model very effec-

tively. The crucial points for this model based method are

the availability of a mathematical model describing the

biochemical process and determination of an adequate cost

functional to be optimized.

The aim of this paper is to continue the previous efforts

of the authors in [16], where they consider the single-input

model with the input being the feed flow. The first

attempts to consider a non-nutrient input and use different

strategies for the double-input model were presented in

[17], while the comparison of both the so-called quasi-

double-input and the true-double-input strategies was

performed in [18]. Based on that, the present paper goes

deeper into the strategy used in [17] and studies further its

efficiency both from the biotechnological and the numer-

ical point of view. In the current paper, gradient search

step choice is discussed and three alternative families are

provided: (i) fixed step family, (ii) parabola-minimizing

step family, and (iii) general-curve-minimizing step fam-

ily. Each of the mentioned families contains more mem-

bers whose results are later compared with respect to the

following criteria: optimality, iterations-to-converge and

time-to-converge.

The paper is organized as follows: ‘‘Model of the

fermentation process’’ introduces nonlinear dynamical

model of the fermentation process which is used for the

optimization purposes. The penicillin cultivation is chosen

to represent the fermentation processes, modification of

the previously used model (which is crucial for the use of

new control strategy introduced later in this paper) is

explained. In ‘‘Optimal control design’’, the optimization

issues of the final product concentration maximization

including the constraints specification are formulated. The

gradient method is introduced, its theoretical background

is clarified and having done the necessary problem order

reduction, the used control strategy is proposed. In

‘‘Optimization results’’, results of constant vaporization

strategy are presented, compared to those obtained using

strategy presented earlier and discussed. ‘‘Choice of gra-

dient search step’’ introduces search step families and

brings a brief description of particular family members,

while ‘‘Results with enhanced search step choice’’ sum-

marizes the results of the numerical experiments for

different step choices and comments upon them. ‘‘Con-

clusions’’ concludes the paper.

Model of the fermentation process

Let us consider a penicillin cultivation [12, 16, 19]

described by the following model:

dV

dt
¼ u� Vk e

w
Topt�Tf
Tb�Tf � 1

� �
;

dCX

dt
¼ ðl� KDÞCX �

dV

dt

CX

V
;

dCS

dt
¼ �rCX þ

CS;inu

V
� dV

dt

CS

V
;

dCP

dt
¼ pCX � KHCP �

dV

dt

CP

V
:

ð1Þ

Here, V (l) refers to cultivation broth volume, CX (gl-1)

represents biomass concentration, CS (gl-1) stands for the

limiting substrate concentration (let us consider carbon to

be the limiting substrate), and CP (gl-1) represents the final

product (penicillin) concentration. The substrate feed flow

rate u (lh-1) is the operated input.

Parameters k (h-1), and w (-) are specific vaporization

constants, Topt (K) represents empirically obtained optimal

operational temperature (see [20]), and Tf (K) and Tb

(K) refer to the freezing and the boiling temperature of the

broth, respectively, which are considered to be the same as

those of the water [12].

A simple constant term KD (h-1) models biomass death

kinetics, while the total of specific biomass growth

rate l (h-1) and the specific production rate p (h-1)

weighted by biomass-on-substrate yield coefficient YX/S and

the product-on-substrate yield coefficient YP/S gives specific

substrate consumption rate r (h-1):

r ¼ Y�1
X=Slþ Y�1

P=Sp:

In this paper, Contois kinetics of the biomass growth [21]

and Haldane kinetics [22] of the product formation are

considered, which results in the following expressions for

the l and p:

l ¼ lmax

CS

KXCX þ CS

; p ¼ pmax

CS

KP þ CS þ C2
S=KI

; ð2Þ

where lmax (h-1), pmax (h-1) are the maximum specific

growth and production rates, KX (-) is the Contois satu-

ration constant, KP (gl-1) is product formation saturation

constant and KI (gl-1) is inhibition constant for product

formation.

Input substrate concentration CS,in (gl-1) reflects the

effect of the input flow u on the substrate concentration CS.

Finally, penicillin hydrolysis is modeled by a degradation
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constant KH (h-1). At this point, more interested readers

are referred to [19] and [12] where the model is described

in more detail.

Now, let us assume that the cultivation volume V can not

only be increased by exogenous input u, but a volume

withdrawal can be performed as well. This requires a new

input variable to be introduced and the volume differential

equation changes into:

dV

dt
¼ u1 � Vk e

w
Topt�Tf
Tb�Tf � 1

� �
� u2; ð3Þ

where u1 corresponds with the old input variable, and

u2 (lh-1) stands for volume withdrawal. The resulting

scheme of the cultivation tank is shown in Fig. 1.

From the practical point of view, the introduction of the

volume withdrawal brings several advantages—firstly, the

engineer can control the tank volume and the tank overflow

can be prevented. In industrial practice, this is often the

main reason of introducing the effluent flow; however, the

withdrawal is usually controlled ad hoc (if the volume

reaches chosen level, certain part of the broth is with-

drawn). The approach presented in this paper and described

in detail in the following section takes the volume with-

drawal directly into account and exploits it in favor of final

product concentration maximization. Secondly, all the state

variables are present in the withdrawn broth which can be

exploited for state variables measurements (which in many

cases of cultivations is performed manually) and cultiva-

tion analysis.

This little change of volume differential, however, effects

the differential equations of other state variables as well. Let

us remind that the state variables are in form of concentration

which cannot be increased nor decreased by volume with-

drawal. Therefore, terms including volume differential

should be modified as follows: dV=dt! dV=dt þ u2.

For the needs of optimization and to follow the

conventional notation, let us rewrite the extended

model (1) into the ordinary form using xT ¼ x1; . . .; x4½ � ¼
V;CX;CS;CP½ � and uT ¼ u1; u2½ �:

_x1 ¼ u1 � kðew
Topt�Tf
Tb�Tf � 1Þx1 � u2;

_x2 ¼ lmax

x3

KXx2 þ x3

� KD

� �
x2

� u1 � k e
w

Topt�Tf
Tb�Tf � 1

� �
x1

� �
x2

x1

;

_x3 ¼ �
lmax

YX=S

x3

KXx2 þ x3

þ pmax

YP=S

x3

KP þ x3 þ x2
3=KI

� �
x2

þ CS;inu1

x1

� u1 � k e
w

Topt�Tf
Tb�Tf � 1

� �
x1

� �
x3

x1

;

_x4 ¼ pmax

x3

KP þ x3 þ x2
3=KI

x2 � KHx4

� u1 � k e
w

Topt�Tf
Tb�Tf � 1

� �
x1

� �
x4

x1

: ð4Þ

For the better comprehension of the model, let us introduce

a brief description of the model and an explanation of the

phenomena typical for the penicillin cultivation.

The first differential equation describes the change of

the volume profile. The increase of the volume happens

due to the presence of the first input u1 and it is decreased

either applying the second input u2 or in a very natural way

due to the vaporization expressed by the vaporization term.

Like every other living organism, the biomass repro-

duces and dies—in the model (4), the increase of the bio-

mass concentration is described by the reproduction term

represented by biomass growth rate l, while the decrease

of biomass concentration follows from biomass death

modeled by a constant death rate KD. Except of these

physiological ways of growth and decay, the biomass

concentration is affected in a slightly ‘‘artificial’’ way—

thanks to the vaporization, the biomass concentration

increases while the volume increase (caused by the feed

poured into the tank) leads to its decrease.

The ‘‘fuel’’ (essential nutrient) which is consumed by the

‘‘driving engine’’ of the whole bioprocess (biomass) is rep-

resented by the substrate concentration. It is crucial not only

for keeping biomass alive but also for the product formation.

Both of these consumption phenomena are described by the

third state differential equation including the yield constants

YX/S and YP/S. Moreover, dual impact of input feed flow on

substrate concentration can be observed—the input feed

flow increases the substrate concentration (via qualitative

constant of the feed CS,in) and, on the other hand, the level of

the substrate concentration in the broth is decreased due to

dilution. Following from the concentration character of the

third state variable, the vaporization term is included in its

differential equation as well.

Product concentration (the most attractive variable from

the industrial point of view) is increased at production rate

p which, however, is completely different from the growth

rate l. This reflects different phases of the microorganismsFig. 1 Scheme of the cultivation tank
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life—at certain phase, either the biomass reproduction or

the product formation is preferred. Hydrolysis of the pen-

icillin is modeled by constant term KH, while the last two

terms are related to the concentration nature of the fourth

state variable.

The model (4) is adapted to the newly proposed constant

vaporization strategy described in the next section, and it is

further used in the optimization procedure as the repre-

sentant of the controlled system behavior.

Optimal control design

In [16], an optimal feeding strategy coming out of a pro-

jected gradient method has been introduced. Theoretical

complication given by the state dependence of the input

saturation has been successfully addressed, and assumption

on sufficiently large cultivation tank volume has been

made. However, in industrial application, the cultivation

tank may be filled up with a such large initial volume that

application of the computed input feed flow rate leads to

the tank overflow in short horizon. A perspective-offering

solution to this problem has been tackled in the previous

section. Here, we propose a way to operate the second

input which can bring interesting results improvement.

Constant vaporization strategy

Applying another exogenous input u2, one can avoid tank

overflow, yet another problem occurs. A thoughtful reader

has surely already noticed that having introduced two input

variables, the first differential equation of mathematical

description of the system does not comply with physical

laws. It can be shown that at certain point the volume can

reach zero value and further withdrawal can theoretically

cause negative volume, which is physically impossible.

One way of avoiding this is to set a dynamical constraint on

the second input u2 which ensures that at the point of zero

volume V, the withdrawal does not exceed the inlet flow.

However, looking at the issue from the engineering point of

view, it is not either convenient to decrease the volume

below certain too low value, as the final product amount

equals to concentration CP multiplied by the volume V.

Let us introduce an idea leading to a strategy solving the

sketched negative volume difficulty. It consists in an

assumption that the second input u2 is used to compensate

the effect of the first input u1 on the volume V. From the

first differential equation of model (4), it is obvious that the

volume is affected by feed flow rate u1, volume withdrawal

rate u2 and by natural vaporization described by the middle

term. The key idea of the constant vaporization strategy is

that we require the volume to be just naturally vaporizing

without any other dynamical response to the exogenous

signals—from the first differential equation of the model

(4) which (in agreement with the requirement for constant

vaporization of the broth) should be equal to vaporization

term only, the second input u2 can be calculated directly as

u2 = u1, which results in _x1 ¼ �Kvapx1 where Kvap is the

overall vaporization constant, Kvap ¼ kðexpðw Topt�Tf

Tb�Tf
Þ � 1Þ.

Let us note that the sketched idea of double-input problem

simplification is also described in [18] where except of

quasi-double-input strategies, the true-double-input strate-

gies performing complete optimization with both inlet and

outlet flow inputs are described and compared.

Following the above mentioned strategy, the inlet flow

stays the only optimization variable and the system

description of the original process given by (4) changes

into the following model with reduced input set:

_n1 ¼ �Kvapn1;

_n2 ¼ lmax

n3

KXn2 þ n3

� KD

� �
n2 � t� Kvapn1

� � n2

n1

;

_n3 ¼ �
lmax

YX=S

n3

KXn2 þ n3

þ pmax

YP=S

n3

KP þ n3 þ n2
3=KI

 !
n2

þ CS;int
n1

� t� Kvapn1

� � n3

n1

;

_n4 ¼ pmax

n3

KP þ n3 þ n2
3=KI

n2 � KHn4 � t� Kvapn1

� � n4

n1

:

ð5Þ

State vector n corresponds to the original state vector,

n ¼ n1; . . .; n4½ �T¼ V ;CX;CS;CP½ �T while t represents inlet

feed flow rate.

Model (5) supplemented by the corresponding model

parameters (Table 1) provides an engineer with a tool to

Table 1 Model parameters

Parameter Value

lmax 0.11

pmax 0.004

KP 0.1

YX/S 0.47

KD 0.0136

KX 0.06

KH 0.01

YP/S 1.2

CS,in 500

Kvap 6.23 9 10-4

KI 0.1

Topt 298

Tf 273

Tb 373
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design the optimal control minimizing a properly chosen

criterion.

Optimization task formulation

From the optimization point of view, penicillin production

optimization can be viewed as fixed initial state, free time

interval and free final state issue. Without any loss of

generality and due to upper cultivation duration constraint,

let us now consider multiple optimization routines with

fixed time intervals of length tend 2 f200; 300; 400; 500g.
This helps us to simplify the optimization procedure and

avoid difficulties with general time interval solution.

For the optimization purpose, the objective functional

reflecting the optimization effort needs to be formulated

mathematically. From the industrial point of view, two

quite antagonistic goals can be chosen—both the quantity

(represented by the amount of the product) and the quality

of the final product (represented by its concentration in the

cultivation broth) can be desired to be maximized. It can be

intuitively seen that following only one of these optimi-

zation directions, two extremes are reached neither of

which is preferable. Maximization of product amount

(without any concentration check) can end up with an

extremely large volume containing only a very low level of

penicillin concentration, while maximization of concen-

tration (without any volume limitation) can lead to a highly

concentrated tiny-volumed broth. Without doubt, the

quality of the final product is the factor affecting the

duration of the product post-processing and subsequently

also the efficiency of the whole industrial process cru-

cially—the more concentrated the broth is, the shorter post-

processing procedure is needed and, therefore (assuming a

very common situation in the industrial practice with

multiple cultivation tanks, but only a limited number of

post-processing machines available), the cultivation can be

repeated more frequently which can positively influence

the overall productivity. Moreover, the maximization of the

product concentration is very often directly requested in the

industrial practice—if some product amount is guaranteed,

the industrial companies are usually interested in obtaining

the product of highest possible quality. Taking the high-

quality-product requirements into account, concentration

maximization (also considered in [12, 23–25] and many

other papers) is chosen to be the preferred optimization

criterion. However, it has been already mentioned that the

absence of volume limitation can results in a small vol-

ume—these issues are in detail handled in [18] where in the

true-double-input cases, the volume constraints are applied.

In the case considered in this paper, the effect of vapori-

zation phenomena is not critical enough to degrade the

control performance and therefore, no volume limitations

need to be considered.

As the main goal is to maximize the final product con-

centration, the following criterion in the Mayer form is

formulated:

J ¼ �n4ðtendÞ; ð6Þ

where J denotes the criterion for the constant vaporization

strategy.

Regarding state optimization constraints, it can be

shown that the model (5) satisfies physical constraints

(state variables nonnegativity) and no further attention is

necessary to be paid to low state constraints. Moreover,

constant vaporization strategy eliminates the need for

upper volume constraint handling. Thus, input saturation

constraint 0 B t B Umax and input piecewise constant

character dt/dt = 0 for ml� t\ðmþ 1Þl; m ¼ 0; 1; . . .
(accomplished by sampling of the inputs t with sampling

period l = 4 h) are the only static constraints related to this

optimization task.

Having properly defined the system equations, the input

constraints and the objective functional, the optimization

problem for t 2 t0; tend½ � (without any loss of generality, let

us consider t0 = 0 h) can be summarized:

t�ðtÞ ¼ arg min
tðtÞ
J nðtÞð Þ ð7Þ

such that the following constraints hold:

_nðtÞ ¼ f ðnðtÞ; tðtÞÞ;
nðt0Þ ¼ n0;

0� tðtÞ�Umax:

ð8Þ

Here, f ðnðtÞ; tðtÞÞ refers to the model (5). The values of n0

and Umax are summarized in Table 2.

Nonlinear gradient method

This method belongs to the family of the optimal control

methods [26]. For the problem stated by (7) and the con-

straints given in the form of (8), the optimal input t* is

searched iteratively. First of all, the initial input vector t0 is

estimated (in our case, zero vectors have been chosen).

Then, the following procedure is applied:

t�kþ1 ¼ t�k � a
oJ
ot

; ð9Þ

Table 2 Optimization constraints

Parameter Value

n1,0 To be specified

n2,0 1.5

n3,0 6

n4,0 0

Umax 0.05

Bioprocess Biosyst Eng (2014) 37:71–81 75
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where k ¼ 0; 1; 2; . . . is the number of the iteration, and a is

the search step parameter whose choice is described later.

Here it should be noted that direct calculation of oJ =ot is

quite complicated due to the fact that n4 depends on t via a

differential equation. Therefore, let us rather introduce

Hamiltonian H in this general form:

H ¼ Lþ pTf : ð10Þ

Here, L represents the integral penalty of the optimized

criterion, f refers to the model (5), and p is the adjoint state

vector solved back in time. As our criterion J does not

contain the integral penalty, the Hamiltonian turns into the

following form:

H ¼ pTf : ð11Þ

To compute the gradient of (6) with respect to t(t), set first:

� _p ¼ oH
on

;

_n ¼ oH
op

;

nðt0Þ ¼ n0;

pðtendÞ ¼ �
d/
dn
jt¼tend

� �
;

ð12Þ

where / is the terminal term of the optimization criterion.

In our case, / ¼ �n4ðtendÞ from which it follows

p(tend) = [0, 0, 0, 1]T. It can be shown (mathematically

rigorous proof is beyond the scope of this paper) that

oJ =ot ¼ �oH=ot—thus, gradient oH=ot can be used in

iterative procedure (9), which changes into:

t�kþ1 ¼ t�k þ a
oH
ot

: ð13Þ

At this moment, a constant search step parameter has been

chosen a = 0.002. Examination of another step choices is

provided in the following section. Input saturation con-

straint is handled by mapping the iterated input vectors tkþ1

on an admissible input sets !admiss ¼ ft; 0� t�Umaxg by a

simple saturation. Requirement of piecewise constant nat-

ure of the input t is satisfied by sampling with sampling

period l = 4 h.

The iterative procedure described by (13) terminates at

the moment when the improvement obtained at the (k ? 1)-

st iteration is less than a chosen tolerance compared to the

k-th optimization iteration result.

Optimization results

In this section, results obtained by the constant vaporiza-

tion strategy are presented and compared to those obtained

by the original one-input gradient method optimization

(CG) presented in [16] and constant volume strategy which

instead of natural vaporization keeps the volume constant.

The latter one is described in [17] and [18]. The optimi-

zation results have been simulated with the penicillin cul-

tivation model in MATLAB environment.

Strategy results comparison

First, the constant vaporization (CVap) strategy has been

tested on simulations with initial volume V0 = 7 l and

compared to the constant volume (CVol) strategy. Figure 2

shows very satisfactory cultivation results and reveals a

slight superiority of the CVap strategy. It is due to the fact

that the effect of input feed flow is inversely proportional to

the actual amount of the broth in tank. While the effect of

the input feed flow is always the same with the constant

volume strategy, with the constant vaporization its positive

influence improves as the volume decreases with time.

Next, from the picture, it is obvious that the cultivation

period that contributes to the final product concentration

CP(tend) the most takes approximately the last 75 h. A rapid

product concentration increase can be observed during this

period; however, the biomass concentration decreases

badly. This has a simple biological explanation—as can be

seen from the characters of both l and p (see Eq. 2),

increasing one of them, the second one decreases, which

corresponds to the fact that either the biomass population

growth or the penicillin production is being preferred at the

very same time.

Volume dependency

Next, the CVol and CVap strategies have been tested on

multiple simulations with various initial volume V0. Initial

volume conditions have been chosen as linearly increasing,

V0ðlÞ ¼ 7þ 3k; k 2 f0; 1; . . .; 10g.
Looking at the Fig. 3, it can be seen that with increasing

V0, final product concentration CP(tend) decreases for both

the strategies which can be (once again) explained as the
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Fig. 2 Process variable profiles—comparison (dashdot CVol, full

CVap)
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consequence of the inverse proportional effect of the actual

initial volume. On the other hand, the total amount of

product P increases with initial volume V0 increase. This is

due to the fact that the total product amount P is propor-

tional not only to product concentration CP but also to

broth volume, P = CPV. From this point of view, the

constant volume strategy is able to obtain better results as

the volume is held constant—with the constant vaporiza-

tion, the volume decreases steadily and, thus, the total

amount of product at tend is lower than with the CVol

strategy. Nevertheless, comparing the quality of the culti-

vation in the sense of the product concentration, CVap

strategy is the more succesful candidate.

Yet, another interesting tendency is to be observed from

Fig. 4—it is a convergency of input profiles to a high-

saturation-valued vector with V0 increase. From techno-

logical point of view, this is caused by the increase of

V0/Umax ratio—the higher the volume is, the more feed is

needed to keep the whole system developing and the higher

the V0/Umax ratio is, the longer a high-saturated input must

be applied.

To inspect the effect of various V0 in more details,

another set of simulations has been performed; however,

with a constant ratio V0/Umax = 7/0.05. The initial volume

V0 has been set linearly growing as in the previous simu-

lation set.

Figure 5 shows that holding the V0/Umax ratio fixed, CP

profiles aggravation (namely the final product concentra-

tion decay) for CVol strategy is not as drastic as in the

previous case and, moreover, the CP profile for CVap

strategy does not change at all. However, this is to be

expected as with fixed V0/Umax ratio and the same initial

concentrations, the system parameters does not change at

all and the system with higher V0 is an exact scale-up of the

lower V0 one. The scale-up claim is supported by the

Fig. 6, where input profiles for various V0 are shown and it

is obvious that the dynamical character of the CVap input

profile remains the same and the vectors are multiplied by

the V0/Umax ratio.

Cultivation length dependency

As has already been mentioned, cultivation length is con-

sidered to be constant, yet it can be chosen from a set

{200,300,400,500} h. Figure 7 compares cultivation with

classical gradient method (presented in [16]) to the CVol

and CVap strategy, respectively. For every chosen culti-

vation length, it is obvious that the CVap strategy achieves

better results than the other ones and the product concen-

trations at the final time CP(tend) are higher.
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Looking at the Fig. 8, convergence of input profiles to a

certain ‘‘superprofile’’ can be seen. Similar kind of con-

vergence has already been mentioned in [15] as well.

However, although the profiles are stable backward in time,

they do not settle down at the same value (here, we assume

settling down in negative march of time). In negative time,

CG method settles down on a zero value, while CVol and

CVap strategies obtained the input profiles settle down on

upper saturation. The fact that volume is held constant

(constantly decreasing, respectively) by the second virtual

input (virtual due to the fact that it is not considered in

optimization) and it cannot dynamically aggravate the

product concentration profile enables to deliver more feed

into the cultivation tank without negative effect of volume

increase and, thus, with better fed biomass population, the

product concentrations obtained at the end of the cultiva-

tion are higher.

Choice of gradient search step

In the previous sections, constant search step a has been

assumed. Although gradient methods are able to find the

(closest local) optimum, in industrial practice the quality of

the solution (product concentration at final time) is of

similar importance level as the promptness of the optimi-

zation algorithm (which is nothing but the convergence

property). Convergence speed of the gradient method is

directly related to the choice of the step with which the

descent is performed—in this section, various families of

gradient search steps with the effort to find the best one are

investigated and evaluated. Let us remark that this evalu-

ation can be performed and generalized for other strategies

as well.

I Fixed step family (FSF)—the first and the simplest family

contains search steps a which are constant over the whole

duration of optimization. These steps are chosen as

aq ¼ q� 10�4; q 2 f1; 2; . . .; 10g. Fixed search step

family members are then denoted as Faq, e.g., F1e-3

stands for fixed step approach with a = 1 9 10-3.

II Parabola-minimizing family (PMF)—this family uni-

fies approaches looking for step ak as a minimum of

parabola. The main idea is that (having computed the

gradient oHk=ot at the k-th iteration of the procedure

described by (13)) the value of optimization criterion at

this iteration J k is assumed to be a quadratic function

of the step a,

J kðaÞ ¼ K2;ka
2 þ K1;kaþ K0;k: ð14Þ

Under this assumption, the minimum of this parabola

can be found analytically choosing three different steps

½aa; ab; ac�, computing the corresponding values

½J kja¼aa
;J kja¼ab

;J kja¼ac
� for input vectors tk�1þ

aaoHk=ot; tk�1 þ aboHk=ot and tk�1 þ acoHk=ot
and determining coefficients K0,k, K1,k, K2,k. As

the parabolic approximation of the criterion J k might

be inaccurate in certain cases, we consider a set of

triplets ½aa; ab; ac� at which the criterion is evaluated as

follows:

½aa; ab; ac� ¼ ½0� abas; 1� abas; 2� abas�;

abas ¼
q

2
� 10�4; q 2 f1; 2; . . .; 8g:

ð15Þ

Let us note that with aa ¼ 0; J kja¼aa
¼ J k�1. With

this choice, one third of computational effort can be

spared. The search step ak which is then applied at the

k-th iteration is computed as

ak ¼ arg minðK2;ka
2 þ K1;kaþ K0;kÞ: ð16Þ

From now on, members of parabola-minimizing step

family are denoted as Pmq, e.g., Pm7 represents

approach where abas ¼ 7
2
� 10�4.

III General-curve-minimizing family (GCMF)—approaches

performing exhaustive line search are grouped in this

family. Two different sub-branches are explored: (1) a

sub-branch considering linear distances between the

search steps, (2) and the one performing brute-force

search on logarithmically spaced vector of steps.

The members of the first sub-branch are denoted

as GmLins with s being the spacing of the line-

arly increasing vector of the examined search

steps, ak;j ¼ j � s; j 2 f1; 2; . . .; jmaxg; 0\ak;j � 1.

Here, jmax is the value of 1/s truncated to zero decimal

digits,

jmax ¼ truncð1=s; 0Þ ¼ b1=sc: ð17Þ

In most cases, a quasi-convexity of J as a function of a is

assumed, it means that if for certain ak,j from the explored

vector J k;j [J k;j�1, the line search at that a-search
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iteration is terminated and the applicable step for the gra-

dient-optimization iteration is chosen as ak = ak,j-1. Such

approaches are then denoted GmLinsQC to remark the

quasi-convexity assumption, e.g., GmLin5e-4QC performs

exact line search through a vector of 2,000 steps a with

linear spacing s = 5 9 10-4 under assumption that J ðaÞ is

quasi-convex. The second sub-branch tries to reduce the

number of searched steps and it involves approaches

searching through logarithmically spaced vector of steps a.

Regarding this sub-branch, two approaches are considered:

GmLog13 exploits vector of 13 values from 1 9 10-4 to 1

with logarithmic spacing, while GmLog13QC takes the

same vector into consideration and adds quasi-convexity

assumption.

Results with enhanced search step choice

In this section, results of the three-step choice families

described in the previous section are presented.

Table 3 brings comparison of optimality J ðgl�1Þ,
number of iterations-to-converge ItC (-) and time-to-

converge TtC (min) for the inspected families and their

member approaches. ‘‘NA’’ value means that the conver-

gence has not been achieved.

Regarding the FSF, it can be seen that with increase of

the search step, ItC value decreases and so does TtC. This

can be expected as with greater steps a, one can await

faster convergence rate as the gradient method moves

quicker towards the supposed minimum. A situation which

often occurs when using gradient method can be observed

for steps a C 8 9 10-4—from this value, very large search

steps destroy the convergence properties of gradient search

which is known to be susceptible to the oversized step

choice. Here it could be noted that fixed step family is the

most computationally demanding from the three search

steps families with sovereignly highest ItC values. This is

the price to be paid for the fact that the gradient search with

sufficiently small search step guarantees convergence to

the closest local minimum. Its local-minimum-convergence

is the next disadvantage—as can be seen later, this can be

overcome exploring larger part of step-space.

On the other hand, the PMF converges usually extre-

mely fast compared to the other families. However, with

increasing distance between the examined aa, ab and ac, the

approximation is less and less accurate which reflects in

ItC increase and for very large abas, the converge is not

reached.

Looking at the J -column, GCMF achieves the most

superior results. Also this family demonstrates that larger

steps bring faster convergence to a small environment of

the minimum but with very large search steps, convergence

is not guaranteed. An interesting insight offers comparison

of GmLin4e-4QC and GmLin4e-4 approaches—as they

both achieve the same value of the final product concen-

tration, the quasi-convexity assumption is proved right.

Yet, the difference between TtC values is enormous.

Although GmLin4e-4 spares approximately 150 iterations,

it is clear that the most of the a-search iterations performed

at every optimization iteration k are redundant. The same is

supported by the approaches using logarithmically-spaced

a-vectors. Moreover (as is shown in Fig. 9, where the steps

ak which are finally applied at particular iteration k are

depicted), the steps which are most attractive from the

convergence point of view are quite small and large steps

Table 3 Results and computational demands comparison

Family Member J ItC TtC

FSF F1e-4 4.71 48,287 707

F2e-4 4.71 24,137 336

F3e-4 4.71 16,092 224

F4e-4 4.71 12,070 167

F5e-4 4.71 9,651 133

F6e-4 4.71 8,040 110

F7e-4 4.71 6,890 94

F8e-4 NA NA NA

F9e-4 NA NA NA

F1e-3 NA NA NA

PMF Pm1 4.70 275 7

Pm2 4.69 366 10

Pm3 4.70 428 11

Pm4 4.70 453 12

Pm5 4.70 470 12

Pm6 4.70 726 19

Pm7 NA NA NA

Pm8 NA NA NA

GCMF GmLin2e-4QC 4.74 886 121

GmLin3e-4QC 4.76 2,055 108

GmLin4e-4QC 4.76 1,187 73

GmLin5e-4QC NA NA NA

GmLin4e-4 4.76 1,016 16,185

GmLog13QC 4.76 1,410 52

GmLog13 4.76 1,297 124
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Fig. 9 ak evolution (blue GmLog13QC, red GmLog13)
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ak occur rather rarely. This is the consequence of nonlinear

dynamics of the system which turns the optimization task

into a nonconvex one and the t-gradient of the Hamiltonian

oH=ot which is used in the best direction search is usually

only locally valid. Therefore, it is more convenient to

distribute the examined search steps with higher intensity

tightly around the current point in the explored optimiza-

tion variables space while including a few outliers, the

convergence gets faster.

Comparison of J and TtC for the successful members of

particular step choice families can be seen in Fig. 10.

Conclusion

This paper follows the patterns suggested in previous

publications of the authors—a model of the controlled

system involving the second input variable is derived, a

neat way of problem reduction to a single-input optimiza-

tion is performed and thanks to this, a successful constant

vaporization control strategy is introduced. The necessary

model adaptation is performed so that it comports with the

strategy requirements. Results are verified on a set of

numerical experiments and discussed in detail.

The comparison obtained by verifying the constant

vaporization strategy on a set of numerical simulations and

confronting it with the previously introduced methods can

be summarized as very encouraging—CVap strategy

achieves better results which suggest its possible industrial

use. A ‘‘superprofile’’ convergence (observed in earlier

publications) occurs in this case as well, and this supports

the claim that it is a property of the optimization issues

where the fixed time, fixed initial condition and free ter-

minal condition are considered.

Next, various ways of gradient search step choice are

suggested, explained and compared. The most time-sparing

group of approaches appears to be the PMF which approx-

imates the cost criterion by a parabola while regarding the

final product concentration value, the most successful is the

GCMF. As a tradeoff between optimality and time con-

sumption, logarithmically spaced vector of search steps can

be chosen—it combines fast convergence rate and higher

obtained final product concentration and adding the quasi-

convexity assumption, it seems to be the fair choice for

further utilization within the optimization routine.
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