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Abstract— In this paper, the task of finding an algorithm
providing sufficiently excited data within the MPC framework
is tackled. Such algorithm is expected to take action only when
the re-identification is needed and it shall be used as the “least
costly” closed loop identification experiment for MPC. The al-
ready existing approach based on maximization of the smallest
eigenvalue of the information matrix increase is revised and
an adaptation by introducing a semi-receding horizon principle
is performed. Further, the optimization algorithm used for the
maximization of the provided information is adapted such that
the constraints on the maximal allowed control performance
deterioration are handled more carefully and are incorporated
directly into the process instead of using them just as a
termination condition. The effect of the performed adaptations
is inspected using a numerical example. The example shows
that the employment of the semi-receding horizon brings major
improvement of the identification properties of the obtained
data and the proposed adaptive-search step algorithm used for
the “informativeness” optimization brings further significant
increase of the contained information while the aggravation of
the economical and tracking aspects of the control are kept at
acceptable level.

I. INTRODUCTION

Over the few decades since its introduction, model pre-
dictive control (MPC)—being perhaps the most perspec-
tive member of the broad family of the advanced control
approaches—has been cured of most of the “childhood”
diseases, its theoretical properties have been well-proven and
therefore, it has gained much popularity within both the
theoretically- and practically-oriented branches of the control
community. Thanks to numerous advantages, the areas in
which MPC is employed have accrued rapidly and nowadays,
its practical use is no more restricted to chemical engineering
where it started [1]. The evolution in the field of numerical
optimization [2] enabling implementation of MPC algorithms
on low-demand industrial computers and PLCs and their use
for control of the fast systems opens the door for more and
more challenging industrial applications of MPC.

However, not all drawbacks related to the deployment of
MPC have been eliminated satisfactorily. The crucial role
played by the mathematical model of the controlled system
still restricts its usage. Furthermore, it is usually the process
of obtaining of the suitable model candidate which is the
most time-consuming part of the whole procedure of bringing
MPC to life and requires much more time than the design,
implementation and tuning of the controller itself. Actually,
some references indicate that the identification phase may
take up to 90 % of the overall time [3]. Taking this enormous
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percentage into account, it is desirable to pay sufficiently
much attention to the identification of the model for MPC.

The identification aspects of MPC use are very often
omitted in the literature. Usually, it is assumed that certain
identification experiment has been performed to obtain a
suitable model. This, however, does not correspond to the
real life situation – in industrial practice, it is generally
impossible to execute such experiment due to numerous
economical and operational reasons. In such case the only
data which are available for identification purposes are those
from ordinary closed-loop operation of the controlled pro-
cess. Such data suffer from lack of contained information and
from negative aspects related to input-to-noise correlation.

So far, several methods for closed-loop identification have
been introduced [4], [5]. The main disadvantage of these
approaches is that while they work well for simple controllers
with properties which are favorable from the identification
point of view (causality, linearity), they do not work properly
in case of advanced optimization based controllers [6]. The
most effective way how to tackle this task in case of MPC
seems to be simultaneous control and excitation of the
system. If performed carefully, such approach has the po-
tential to provide well-excited data suitable for identification
purposes while also satisfying the given performance criteria.

The first approaches mentioned in the literature come up
with adding of an external so-called dithering signal [7]
to the control input while the next group of approaches is
based on use of sufficiently excited reference signal. Both
these branches can lead to a situation that the resulting
closed-loop behavior will be far away from the desired
control performance. In several other works [8], [9], an
alternative method has been presented. The requirement on
informativeness of the data has been added to the MPC cost
function as an additional constraint. This demands solving of
a complicated nonconvex task which is solved by the authors
using a suitable relaxation as the semi-definite programming
task. This approach suffers from one serious drawback – the
excitation in the output directions is usually omitted.

In [10], [11], the authors have utilized the receding horizon
principle which has enabled them to split the process of
solving of the originally non-convex problem into two steps
by solving twice the quadratic programming task. However,
the output excitation has been omitted as well.

The approach published recently in [12] offers another al-
ternative. It works in two stages – in the first one, the original
MPC task is solved and in the second step, the maximization
of the information matrix is performed while the maximal
allowed perturbation of the original MPC cost function is
employed as the constraint. To simplify the second-stage
optimization, elliptic approximation is exploited.

The authors themselves have also contributed to the lastly
mentioned two-stage branch. Unlike [12], they performed no
approximation and optimized directly the quantization of the
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provided information contained in data. In [13], two algo-
rithms have been provided: the first of them considers only
the first input sample for the optimization of informativeness
while the second based on gradient optimization optimizes
certain chosen subsequence of the whole optimal input
sequence pre-calculated by MPC. According to comparison
provided in [13], the two algorithms are equivalent for the
class of the reference-tracking MPCs. In [14], the second
(gradient-optimization-based) approach has been tested for
the rapidly spreading class of zone MPC. Its versatility with
respect to the used optimization criterion and considered
constraints has been shown.

In the current paper, the authors provide several improve-
ments of the existing methodology. First of all, in order to
fully exploit the pre-calculated input samples ensuring suffi-
cient excitation, semi-receding horizon approach is proposed.
The authors provide also improvement of the optimization
algorithm that is employed at the second stage in the view
of constraints handling. Instead of keeping the optimization
steps constant, the distance from the constraints on the
allowed MPC performance deterioration is taken into account
and the optimization steps are adapted accordingly. The
semi-receding horizon approach together with the adaptive
step provide major increase of the information gathered from
the system.

The paper is organized as follows. In Section II, the
problem to be solved is introduced including the model
description, control requirement formulation and quantifi-
cation of the amount of the information contained in the
obtained data. Section III presents the proposed solution.
Firstly, constraints-dependent step adaptation of the two-
stage algorithm is provided and secondly, semi-receding
horizon approach is introduced. Section IV presents the case
study on which the performance of the proposed improve-
ments is demonstrated. After the brief description of the
considered system and the comparison quantifiers, the results
are summarized and corresponding discussion is provided.
The paper is concluded by Section V.

II. PROBLEM FORMULATION

In the following paragraph, the necessary background is
provided. The descriptions of the model and the considered
controller follow.

A. Model under investigation
In this paper, a simple linear time-invariant (LTI) model is

considered. Such model can be described by the well-known
ARX structure as

yk = ZT
k θ + εk, (1)

where yk and uk are the system output and input sequences
and εk stands for zero-mean white noise. The vector of
parameters θ is considered in the following form:

θ = [bnd
. . . bnb

− a1 . . .− ana ]
T (2)

while Zk = [uk−nd
. . . uk−nb

yk−1 . . . yk−na ]
T is the regres-

sor. Parameters of the structure na, nb, nd specify numbers
of lagged inputs and outputs and a relative input-to-output
delay (nd = 0 means direct input-output connection).

B. Model predictive control
The objective of MPC is to find the optimal input se-

quence that minimizes the given performance criterion. The
model of the system is used for predictions of the future
behavior. Typical MPC formulation penalizes both the energy
consumed for the control and the deviation of the outputs
from the pre-defined reference trajectory. Such formulation
can be mathematically expressed as:

JMPC ,k =

P∑
i=1

∥∥∥Q(yk+i − yrefk+i)
∥∥∥2
2

+ ‖Ruk+i‖22

s.t.: linear dynamics (1),
umin
k+i ≤ uk+i ≤ umax

k+i , (3)

with yrefk specifying the reference trajectory, Q and R being
the control algorithm tuning matrices of the appropriate size
and P being the prediction horizon. Formulation (3) can be
solved by common solvers for quadratic programming.

Although MPC possesses many favorable properties, its
potential and utilization crucially depend on the availability
of a high accuracy mathematical model with good prediction
behavior. In the real-life operation, it oftentimes happens
that a model that used to work properly and reliably looses
its accuracy and ability to provide good predictions and
then, it is inevitable to obtain a new one. This illustrates
the need for designing such controllers that are able to
generate data which are sufficiently rich and contain enough
information that can enable the occasional re-identification.
Still, the overall control performance must not be signif-
icantly degraded and the resulting behavior should meet
the requirements defined by the cost function (3). This
might be a welcomed alternative to lengthy, complicated and
(often also) cumbersome identification experiments which
sometimes might not even be realizable due to either eco-
nomical or operational reasons. The very first straightforward
question before formulating the problem itself is how the
“informativeness” of a set of data should be evaluated. One
way is to quantify the information content of the data set
based on the so-called information matrix [15] and the
persistent excitation condition.

C. Persistent excitation condition
Let us consider ARX model structure (1). Then, the matrix

∆Ik+M
k defined as

∆Ik+M
k =

k+M∑
t=k+1

ZtZ
T
t . (4)

represents the increment of the information matrix from the
time k to the time k + M and quantifies the amount of
the gathered information. Knowing this matrix, the so-called
persistent excitation condition can be formulated as follows

∆Ik+M
k ≥ γE > 0, (5)

where γ is a scalar specifying the level of the required
excitation and E is a unit matrix of corresponding dimension.

III. PERSISTENT EXCITATION WITHIN MPC
As already mentioned, the goal of this paper is to provide

algorithm for the MPC which will be able to not only satisfy
the control requirements but also to provide sufficiently
excited data making the re-identification easier. Similarly
to the recent work [12], we propose a two-stage algorithm
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based on the maximization of the information matrix. The
procedure is as follows: firstly, the original MPC task (3) is
solved and then the maximization of the information matrix
is performed in the second step while the maximal allowed
perturbation of the original MPC cost function is employed
as the constraint:

U∗ = arg max
U

γ

s.t.:
k+M∑
t=k+1

ZtZ
T
t ≥ γE,

JMPC ,k(U) ≤ J∗
MPC ,k + ∆J,

umin
k+i ≤ uk+i ≤ umax

k+i , i = 1, . . . , P (6)

Here, ∆J specifies the maximum allowed increment of the
original MPC cost function J∗

MPC ,k. Note that in [12],
the involved non-convex task which is to be solved in the
second step is approximated using an elliptic approximation
which works reliably only for simple low-order systems.
On the other hand, we try to propose an algorithm that
is able to solve the second-stage optimization task without
any approximations with acceptable computational demands
and favorable performance independent of the order of the
system. The following subsection brings a more detailed
description of the algorithm.

A. Optimization with adaptive constraints-dependent step
In the following text, the two-stage procedure that leads

to the solution of the task of persistent excitation within
the MPC is described. In the first stage, the original MPC
problem is solved while in the second stage, numerical
optimization algorithm with adaptive constraint-dependent
search steps is employed to attack the optimization task (6).

First stage
The first step of the algorithm can be viewed as a kind of
initialization for the second stage. The MPC task formulated
by (3) and supplied by the corresponding constraints on the
inputs is solved. As the output of the first stage, both the
optimal input sequence U∗

MPC = [uk+i], i = 1, 2, . . . , P
and the corresponding cost function value JMPC,k(U∗

MPC)
are obtained. While the optimal input sequence U∗

MPC
is used for the initialization of the numerical gradient
search algorithm as the initial guess of the optimal input
sequence U0 = U∗

MPC , the optimal cost function value
JMPC,k(U∗

MPC) is used as a constraint.

Second stage
In the second stage, the optimization task related directly to
the maximization of the gathered information is solved. The
performance criterion to be optimized is formulated as:

J (U) = max (min eig(∆Ik+M
k )) (7)

where ∆Ik+M
k corresponds to (4). Here, let us mention

that several other choices of the maximization criterion (e.g.
determinant or the trace of the increment of the information
matrix) can come to mind. The reason why the minimal
eigenvalue has been chosen is that it corresponds to the
direction in the gathered data which contains the least
information. In other words, the criterion (7) reflects that the
identifiability of the most difficultly identifiable parameter
shall be improved.

The direct input constraints umin
k+i ≤ uk+i ≤ umax

k+i
that are to be satisfied ensure that the calculated control
action is practically realizable. Moreover, the optimizer in
the second stage is allowed to perturb the original MPC
criterion by at most ∆J which is mathematically expressed
as JMPC,k(U) ≤ J∗

MPC,k + ∆J, i = 1, 2, . . . , P .
The optimal input sequence from the first stage U∗

MPC is
then split into two parts –the first M samples are available
for the optimization of the informativeness while the rest
P −M samples are kept fixed and with the first M samples,
they are used to evaluate the original MPC cost function.
The reason to optimize more than just 1 sample in the sense
of data excitation is very pragmatical. Optimizing just 1
particular input sample, only a single direction corresponding
to particular estimated parameter can be excited. The more
parameters are to be identified, the more input samples
should be taken into account. The numerical optimization of
these samples is then performed utilizing a modified gradient
search as follows.

The first M samples of the input sequence calculated by
the MPC in the previous step are used as the initial guess
U0 of the profile which is optimized iteratively following the
direction of the increase of the cost function (7),

U l+1 = U l + β ? Gl, (8)

where Gl is the search direction for the l-th iteration of the
gradient search, β is the vector of lengths of the performed
steps and ? denotes element-wise multiplication of vectors.
The gradient of the criterion (7) is calculated numerically:
one by one, all M samples of U l are gradually perturbed
with chosen ∆u. Performing this, a set of M perturbed input
vectors is obtained,

U = {Ui = [u1, u2, . . . , ui + ∆u, ui+1, . . . , uM , ],

i = 1, 2, . . . ,M}. (9)

Then, evaluating the change of the performance criterion for
the second stage defined by (7) for each of the perturbed
input profiles

∆Ji = J (Ui)− J c

with J c denoting the current criterion value, the vector of
numerical gradients G can be obtained as follows:

G =

[
∆J1
∆u

,
∆J2
∆u

, . . . ,
∆Ji
∆u

, . . . ,
∆JM
∆u

]
. (10)

Now, let us return to the search step vector β. While in
the previous work, all samples of the vector β had the same
magnitude (the movements in all M optimized dimensions
was uniform), adaptive constraint-dependent search steps β
are employed in the current paper. In the previous work, the
maximal deterioration of the MPC performance was used
as one of the terminating conditions – at each iteration,
the actual deterioration was calculated and if it was higher
than ∆J , the gradient algorithm was terminated and the
input subsequence from the previous iteration (which did
not violate the MPC performance condition) was used as the
output of the algorithm. In the current work, we combine
the MPC-performance constraints with the search for the
optimally excited inputs and the MPC performance criterion
is directly incorporated into the optimization. In case that the
perturbation of i-th input sample should cause deterioration
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close to the ∆J , the gradient search step βi in the corre-
sponding i-th dimension is decreased and the movement in
that corresponding direction is slowed down.

To accomplish that, the search steps are adapted using
hyperbolic tangent function with the argument being the dif-
ference between the actual and maximal allowed degradation
of the MPC cost function. In order to prevent the algorithm
from “falling back” in case that the expected deterioration
should be greater than ∆J , the steps are restricted to be
greater than or equal to 0. The resulting search steps βi then
correspond to

βi = max(0, tanh(w(∆J −∆Ji))). (11)
where ∆J specifies the maximal allowed perturbation and
∆Ji corresponds to the violation of the MPC cost function
considering i-th perturbed input sequence Ui. The parameter
w is used to shape the expression for the search step
appropriately and is considered as the tuning parameter of the
algorithm. With lower w, the algorithm is more “careful” and
pays more attention to the distance from the maximal allowed
perturbation. With w → ∞, the expression (11) approaches
max(0, sign(∆J − ∆Ji)) and only the input perturbations
causing unacceptable deteriorations ∆Ji ≥ ∆J are banned
while the others are not handled at all. Let us note that at
each iteration l of the gradient search algorithm, a new set
of search steps β is obtained.

The box-constraints for the values of the particular input
samples are satisfied performing a simple projection on the
admissible input interval 〈umin, umax〉. The iterative search
is terminated if the improvement of the criterion (7) is less
than a chosen threshold.

B. Semi-receding horizon approach
In the following text, the adaptation of the usually fol-

lowed methodology is proposed and explained.
Freely spoken, the main idea of the above mentioned

approaches based on optimization can be summarized as
follows: first, let us calculate the optimal input minimizing
the MPC cost function. Then, let us consider that the first
M samples of the optimal sequence are available for the
optimization of the excitation and can be perturbed in order
to maximize the obtained information. Meanwhile, the rest
(P −M ) of the original input sequence calculated by MPC
is considered fixed. The restrictions on the perturbation of
these M samples are given by the original hard constraints
on the applied inputs and by the maximal deterioration
of the optimal value of the cost function calculated by
MPC (here, the deterioration is obviously calculated for
the whole prediction horizon of MPC). Following the well-
known receding horizon control principle, once the second-
stage optimization is accomplished, the first perturbed input
sample is applied and the whole procedure is repeated.

Unfortunately, it can be expected that as long as the
last M–1 samples optimized in the second stage are never
applied to the system, the achieved excitation might not reach
the calculated level. From this perspective, the difference
between optimizing the whole subsequence of length M and
optimizing just the first applied input might be negligible.

In the current work, we come up with a semi-receding
horizon approach which decreases the gap between the
expected and achieved excitation level and therefore obtains
more informative data. The procedure is as follows:

1) calculate the input sequence optimizing the MPC cost
function

2) optimize the first M samples of the P -sample sequence
with respect to the provided excitation

3) apply the whole M -sample sequence, go to 1).
Obviously, this approach makes use of the receding hori-

zon principle in order to ensure sufficient feedback which
is necessary to satisfy the control/safety requirements while
it also introduces certain type of relaxation which favors
the data excitation effort. Moreover, for stable systems with
M � P such relaxation of the feedback does not bring
observable control performance degradation compared to the
receding horizon approach which is also demonstrated in the
following Section.

IV. CASE STUDY
A. Description

To show the properties and demonstrate the performance
of the proposed algorithm, we consider a SISO system with
ARX structure with the parameters na = 3, nb = 3, nd = 1,
and θ0 = [0.01 0.0008 0.00087 0.996 0.36 0.376]

T

and with white noise with variance σe = 0.05.
In fact, this example has not been chosen arbitrarily – it

mimics a simplified heat transfer model between the heating
medium (heating circuits in concrete ceiling) and zone air
in a building with the constant ambient temperature and
sampling period Ts = 15 min. Let us mention that rather
than providing a procedure to design a controller for the
building control, the objective of this illustrative example
is to demonstrate the properties of both the newly proposed
methodology and the improved numerical optimization algo-
rithm. Therefore, certain level of simplification of both the
model and controller is adopted.

The system is controlled by the MPC corresponding to
(3) minimizing the supplied energy (u corresponds to the
temperature of the heating medium) and satisfying thermal
comfort (to keep the output y as close to reference value
as possible) with constraints umax = 50◦C, umin = 20◦C
while yref is generated according to the following 7 days
schedule with night and weekend setbacks:

yref =

{
22◦ C from 8 a.m. to 6 p.m.,
20◦ C otherwise.

(12)

Weighting matrices are chosen as Q = 10000 and R =
1, the prediction horizon P = 40 steps (with the sam-
pling period Ts = 15 min, it is equivalent to 10 h) is
assumed. In order to bring the example as close to reality
as possible, the model which is used by the MPC for
the predictions does not perfectly match the real system
but its parameters are slightly shifted and are considered
as θ̂ = [0.99 0.35 0.37 0.01 0.0007 0.0009]

T. The
comparison is based on a numerical example with length
N = 10000 samples (for the above mentioned sampling
period, this corresponds to 3 months). The tuning parameters
have been set as: input perturbation ∆u = 0.1, search step
shaping parameter w = 0.02, number of samples optimized
in the second stage M = 6 and maximal allowed MPC
function deterioration ∆J = 1500. For a more detailed
discussion of the tuning of the parameters, see [13].

B. Results
Let us remind the objective of the current work which

is to develop an algorithm that is able to both satisfy the
control performance defined by (3) and provide the data
containing such amount of information that is sufficient for

4145



the re-identification. The evaluation of the performance can
be found in the following table. In Table I, first the over-
all “informativeness” of data quantified by the normalized
value of the smallest eigenvalue of the increment of the
information matrix λmin,n is listed. The smallest eigenvalues
for each particular algorithm are normalized with respect to
the eigenvalue achieved by the original gradient algorithm
making use of the ordinary receding horizon principle [13].
In the table, this algorithm is referred to as GA and the
normalization basically means that the GA approach provides
1 “unit of information”. The algorithms belonging into RH
class make use of the classical receding horizon principle
(contrary to GA, the second-stage optimization performed
within the aGA algorithm employs adaptive search step)
while algorithms listed in SRH class are those following the
newly introduced semi-receding horizon approach (GASRH

algorithm employs constant search step, the aGASRH em-
ploys the adaptive search steps proposed in the current pa-
per). Regarding the last abbreviation, MPC refers to classical
MPC control without sufficient excitation condition.

The tracking performance of the algorithms is evaluated
using the absolute value of the overall tracking error,

ey =
1

N

N∑
k=1

‖yrefk − yk‖,

while the consumed energy is evaluated using the quantifier:

IE =

( ∑N
k=1 u

2
k∑N

1 u2k,MPC

− 1

)
(%).

Here, uMPC represents the input applied by the classi-
cal MPC without the sufficient excitation condition. Here,
the question of why a comparison with the original non-
exciting MPC is provided could arise. The reason is that
the proposed excitation-optimizing algorithm is supposed to
restrict the deviation of the control performance from the
ordinary operational conditions. Providing such comparison,
it can be checked that our algorithm for the identification
experiment does cause only negligible deviation from the
ordinary regime, however, it is able to provide more excited
data and therefore, it offers better conditions for the re-
identification.

TABLE I
RESULTS COMPARISON.

RH SRH MPCGA aGA GASRH aGASRH

IE(%) 0.9 2.1 1.5 2.2 0
ey(◦C) 0.03 0.04 0.05 0.07 0.02
λmin,n 1 1.9 2.4 4.2 0.2

As shown in Table I, the energy consumption increase
for each of the tested algorithms compared to the original
MPC never exceeds 2.2 %. Here, it should be noted that this
aggravation is expected only during the performance of the
excitation algorithm until the sufficiently informative data
appropriate for the model re-identification are gathered. This
together with hardly observable violation of the average ref-
erence tracking guarantees very satisfactory control behavior
even during the performance of the excitation experiment
for which the algorithms have been developed. Even for the
semi-receding horizon approaches, the deviation from the

ordinary operational regime is insignificant which supports
the claim that for M � P , the relaxation of the feedback
does not cause serious degradation. The control performance
is even more promising when realizing that nonzero noise
and imperfect MPC model have been considered.

Regarding the “informativeness” of the provided data, it
can be witnessed that the proposed improvements clearly
fulfill their purposes – while the incorporation of the adaptive
search step within the second-stage optimization improves
the information quantifiers almost twice, the employment of
the semi-receding horizon leads to even higher improvement
ratio. As a result, when combined both adaptations, the
results of the original GA algorithm have been improved
by the aGASRH algorithm by a factor greater than 4.

In order to visualize how the improvement of the smallest
eigenvalue of the information matrix increase affects the
identifiability, another comparison is provided. All 5 sets
(one for each of the algorithms listed in Table I) of the
obtained data containing N = 10000 samples have been used
for identification. More than 100 models have been identified
per each provided data set and their step responses have been
confronted with the step response of the original system. The
graphical comparison of all of them is shown in Fig. 1.
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Fig. 1. Comparison of the step responses (red - identified models, blue
dashed - real system).

Comparing the two step responses either in one row or
one column, it can be observed that they get improved both
when employing semi-receding or the adaptive search step
proposal. In accordance with Table I, the biggest deviations
from the real system step response occur for the GA algo-
rithm while the models identified from the data provided
by aGASRH algorithm match the real step response almost
perfectly. Here, the green dashed line marks the prediction
horizon of the MPC being 10 h. Freely spoken, the prediction
performance of the model on the horizons larger than P
are of small interest as the behavior of the system for such
horizons is not taken into account within the controller and
neither the input is optimized for these horizons.

Fig. 2 compares the ultimate deviations from the real
step response for the three most interesting candidates –
MPC, GA and aGASRH . While in the previous work, the
improvement which was provided by the GA algorithm cut
the deviations from the real system response in half in
average, very similar improvement has been obtained also
in the current work. As can be seen, the deviations for the
aGASRH algorithm are condensed more tightly around zero
and also the magnitude of the worst case deviation is at most

4146



0 2 4 6 8 10 12 14 16 18 20
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t (h)

e
rr

o
r

Fig. 2. Deviations from the real step response (black - MPC, red - GA,
blue - aGASRH ).

one half of the worst case deviation for the GA. Again, green
dashed line marks the horizon of 10 h.

As long as considerable part of the presented improvement
can be owed to the incorporation of the adaptive search
step exploited during the second stage, Fig. 3 illustrates its
performance at the chosen sampling instance.
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Fig. 3. Adaptive constraints-dependent step algorithm – illustration.

The subfigure in the left upper corner depicts the value of
the smallest eigenvalue of the information matrix increase
as the function of algorithm iterations. In each subfigure,
two significant points (iterations) where its slope changes
considerably are marked. Looking at the subfigures located
in the right upper and right lower corner showing the actual
violation of the MPC cost function ∆J l at l-th iteration,
it is obvious that these two points are strongly related to
the distance from the maximal allowed perturbation ∆J
(represented by the red dashed line). For the better clarity,
the subfigure located in the right lower corner shows a detail
of the subfigure located above it – here, the second point is
clearly visible. In case that the algorithm approaches con-
siderably the ∆J threshold, the adaptive search step should
“slow down” the movement in the most critical dimension.
This can be witnessed inspecting the subfigure placed in the
lower left corner which shows the evolution of the particular
perturbed input samples ui, i = 1, 2, . . . , M . Here, it can be
also seen that while at the first marked point, all optimized
input samples “slow down”, at the second marked point not
all input samples are affected (apparently, the one plotted
in dark green is not affected at all) which illustrates the
performance of the incorporated adaptive step. Here, let us
note that with the constant search step, the original algorithm
would be terminated soon after the first marked point, the
current improved algorithm continues in optimization and
is able to improve the value of λmin approximately twice
compared to the value at the first marked point.

Last of all, let us note that the computational demands are
kept admissibly low – in average, the calculations that need
to be performed at particular sampling instance do not take
more than 4 s.

V. CONCLUSION

Two improvements of the approach for sufficiently excit-
ing MPC have been proposed. First of them modifies the
utilization of the input samples optimized for the sufficient
excitation. Instead of commonly considered receding horizon
principle, its relaxed version called semi-receding horizon
principle is employed. Second improvement introduces adap-
tive constraint-dependent search step for algorithm used in
the second stage of the whole procedure. The adaptive step
reflects the actual distance from the maximal allowed per-
turbation of the original MPC cost function. As long as both
of them are able to provide approximately twofold increase
of the information contained in the data, their combination
improves the “informativeness” quantifier by a factor of
more than 4 compared to the previously used algorithm. The
control performance degradation has been also inspected –
with the average energy consumption increase of no more
than 2.2 % and negligible average tracking error, the solution
presented in the current paper is highly suitable for utilization
as a closed loop experiment for MPC.
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