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This study proposes a novel near infrared face recognition algorithm based on a combination of both
local and global features. In this method local features are extracted from partitioned images by means
of undecimated discrete wavelet transform (UDWT) and global features are extracted from the whole
face image by means of Zernike moments (ZMs). Spectral regression discriminant analysis (SRDA) is then
used to reduce the dimension of features. In order to make full use of global and local features and
further improve the performance, a decision fusion technique is employed by using weighted sum rule.
Experiments conducted on CASIA NIR database and PolyU-NIRFD database indicate that the proposed
method has superior overall performance compared to some other methods in the presence of facial
expressions, eyeglasses, head rotation, image noise and misalignments. Moreover its computational time
is acceptable for on-line face recognition systems.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Face recognition (FR) has received much attention over the past
decades due to its potential value for many applications as well as
wide challenges such as illumination variations, facial expression,
head rotation, eyeglasses and misalignments which result in a sig-
nificant decrease of the accuracy of the best known techniques [1,
2]. On the other hand, collecting sufficient prototype images which
can cover all challenges is practically impossible. Hence proposing
an accurate face recognition system which is robust to most of the
variations is still a challenging problem in the field of face recogni-
tion. Many face recognition techniques have been developed over
the past few decades, some of which can be found in [3–5]. Most
of them have focused on visible face recognition due to the fact
that face recognition is one of the primary activities of the human
visual system. The main limitation of visible face recognition, how-
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ever, is the high dependency of system performance on external
light, angle of light and even skin color [6,7]. Various methods have
been developed and introduced to solve the illumination problem
by proposing illumination invariant face recognition [8–10].

Recently, researchers have investigated the use of near infrared
(NIR) imagery for face recognition with satisfactory results [11–13].
Three advantages of near infrared images in comparison with visi-
ble imagery can be expressed as follows. First, near infrared images
are scarcely influenced by natural light. Hence it is possible to take
images under very dark illumination whereas visible cameras have
deficiency in this case [12,14]. Second, the eye is not sensitive to
near infrared illumination and thus can be used in a more flexible
and possibly covert manner [9]. Third, face detection, based on the
position of the eyes, can be made more accurate than visible im-
ages due to “bright pupil” effect which simplifies eye localization
and face detection consequently [9,15]. As a result, an automatic
and accurate face recognition system based on near infrared spec-
trum can be implemented more easily than visible imagery.

Different face representations have been proposed in near in-
frared domain which can be roughly classified into two main
categories: global-based and local-based. In the global-based face
representation, each dimension of the feature vector corresponds

http://dx.doi.org/10.1016/j.dsp.2014.04.008
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to some holistic characteristics in the face and hence encodes the
global information embodied in every part of facial images. In con-
trast, in the local-based face representations each dimension of
feature vector contains the detailed information corresponding to
a certain local region of facial images [16].

An advanced design of the active NIR camera and progressive
local-based method to propose illumination invariant face recog-
nition was introduced by Li et al. [17]. In this method, first, face
images are produced by active near infrared (NIR) imaging system
regardless of visible light in the environment. Second, local binary
pattern (LBP) features are used to compensate monotonic trans-
form and propose illumination invariant face recognition. Finally,
statistical learning algorithms are used to extract most discrimi-
native features. The main weakness of this study, however, is the
high sensitivity of LBP features to noise, head rotation and mis-
alignments [18,19].

He et al. offered a global feature-based method based on dis-
crete wavelet transform (DWT) and two dimensional principal
component analysis (2DPCA) [20]. Coefficients of low frequency
component which contribute to global information of images are
used as features for the proposed method. Despite its advantages,
there are several weaknesses in this approach as follows. First, the
number of images in training is high and the accuracy of a system
with a small number of images in the training set is not examined.
Second, discrete wavelet transform is used in this paper which is
not translation invariant. In other words, shift of the image by an
odd number of pixels may change the whole coefficients of wavelet
transform [21,22]. Hence, its accuracy will be highly affected when
misalignments occur [23].

Zhang et al. introduced a novel local-based face recognition
method, namely directional binary code (DBC) to capture the di-
rectional edge information of NIR facial images [24]. They showed
that DBC achieves better performance than LBP. But they did not
consider the effect of noise and misalignments which are the grand
challenges in face recognition systems. Some other prior works can
be found in [25–28].

The researches to date have tended to develop a face recogni-
tion system based on local features which are believed very ro-
bust to eyeglasses, pose variations and facial expressions. However,
many studies have shown that both local and global features are
crucial for highly accurate face recognition systems [16,23,29,30].
The underlying reason is that local and global features play differ-
ent roles in face recognition scenarios. While local features contain
more detailed local information of images and correspond to finer
representation, global features are proper for coarse representation
because they reflect the information of the whole face.

Inspired by the works presented in [23] which is based on com-
bination of local and global features, and trying to avoid the trans-
lation sensitivity of DWT, in this paper, a novel face recognition
method based on the integration of undecimated discrete wavelet
transform (UDWT), Zernike moments (ZMs) and spectral regression
discriminant analysis (SRDA) is proposed. We expect better perfor-
mance by combining local and global features.

Though the basic idea of the proposed method is somewhat
similar to other methods which are based on a combination of
local and global features, this study has made the following tran-
scendent contributions:

• Unlike previous studies which are based on a combination
of Fourier, wavelet or Gabor wavelet transform, this paper
exploits undecimated discrete wavelet transform (UDWT) as
local features and Zernike moments as global features. Our ex-
perimental results confirm the effectiveness of the proposed
method in the near infrared domain compared to similar
transformations.

• Unlike classic methods which use discrete wavelet transform
(DWT), we use UDWT to enhance the performance of sys-
tem and to highlight the effectiveness of UDWT. We show
experimentally that the generated features by UDWT are more
robust to facial expressions, noise and misalignments in com-
parison with generated features by DWT.

• Unlike the method in [23] which employs fixed weights for
feature vectors, in this paper a new method for weighting pro-
cess is proposed.

• Unlike the method in [23] which uses Principal Component
Analysis (PCA) coupled with Linear Discriminant Analysis
(LDA) as dimension reduction, in this paper a Spectral regres-
sion discriminant analysis (SRDA) is used for this purpose.

• Unlike the previous methods in NIR domain which examined
proposed method’s performance in the context of some of
challenges [31], in this study comprehensive experiments and
analysis encompassing all of challenges are done.

• The proposed method has high accuracy in the presence of
eyeglasses whereas our previous work [28] has deficiency in
this case.

• The proposed face recognition system is extensively evaluated
on CASIA NIR database and PolyU-NIRFD database and the
results show that our proposed method shows good perfor-
mance for most common challenges such as facial expression,
eyeglasses, head rotation, noise and misalignments. Therefore,
it is an accurate method which can be the core for real-world
face recognition systems.

The remainder of the paper is organized as follows. In Sec-
tions 2 and 3 a brief review of undecimated discrete wavelet
transform and Zernike moments are provided. Spectral regression
discriminate analysis is discussed in Section 4. The proposed algo-
rithm is provided in Section 5. Experimental results are presented
in Section 6. Finally, Section 7 concludes this paper.

2. Undecimated discrete wavelet transform

In the last two decades, wavelets have become very popular
due to their flexibility, locality and their high ability to analyze
image at different resolutions or scales [22,32]. They have been
successfully used in many fields, such as, image processing, sig-
nal analysis and pattern recognition. The two dimensional wavelet
transforms can be carried out as a set of filter banks including
a low-pass and high-pass filter, each followed by downsampling
by a factor of two (↓2). One of the major problems with dis-
crete wavelet transform (DWT) is that it suffers from translation-
sensitivity. In other words, a simple shift of the input signal may
change all coefficients of wavelet transform [22,32]. This deficiency
is visualized in Fig. 1.

UDWT arises as a good solution to deal with the DWT’s trans-
lation sensitivity. It can be considered to be an approximation to
the continuous wavelet transform which removes a downsampling
process from the DWT to produce over complete representation.
From the implementation point of view in the context of filter
banks, the filtering process is done without any downsampling
(decimation), so all bands keep the same size as the original im-
age. The implementation process of UDWT is shown in Fig. 2. The
shift-invariance is achieved by two main parts. In the first part,
filter coefficients of selected wavelet are upsampled by a factor
of 2( j−1) in the jth level. In the second part, the coefficients of
the approximation are convolved with an upsampled version of the
original filters to generate coefficients of approximation and details
in the next levels. The result is shift-invariant wavelet transform. It
has been already used for face virtual pose generation, translation-
invariant feature extraction and object tracking [33–35].
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Fig. 1. Illustration of the shift sensitivity of discrete wavelet transform: (a) original
signal, (b, c, d) coefficients of discrete wavelet transform subbands related to the
original signal, (e) shifted signal “a” to right (one unit), (f, g, h) new coefficients of
discrete wavelet transform subbands related to shifted signal [36,37].

Fig. 2. Implementation of UDWT. ha,i+1 and hd,i+1 are filters in each level which are
up-sampled versions of the previous [38].

3. Zernike moments

Zernike moments (ZMs) as powerful feature extractors have re-
ceived a lot of attention in pattern recognition field due to their
good performance in recognition of circular shapes such as face
and their high robustness to noise [39]. Their history dated back
to 1980 when Teague introduced ZMs based on the theory of
orthogonal polynomials in image analysis [40]. The discrete ap-
proximation of ZMs of order p with repetition q is defined by the
following equation for an image function f (x, y):

Z pq = λZ (p, R, C)

R−1∑
i=0

C−1∑
k=0

R pq(rik)e− jqθik f (i,k) (1)

where N = max(R, C),

λZ (p, R, C) = 2(p + 1)

π(R − 1)(C − 1)
(2)

xi =
√

2

N − 1
i − 1√

2
, yk =

√
2

N − 1
k + 1√

2
(3)

rik =
√

x2
i + y2

k , θik = tan−1
(

yk

xi

)
(4)

and R pq is the real-valued radial polynomial which is expressed as
follows:

R pq =
p−|q|

2∑
k=0

(−1)k (p − k)!
k!( p+|q|

2 − k)!( p−|q|
2 − k)! r p−2k (5)

where p ≥ q and p − |q| is even.
Zernike moments have proved a good performance in face

recognition [41,42] but if they are used solo, they cannot handle
properly local occlusions. That is why a combination with appro-
priate local features is desirable.

4. Spectral regression discriminant analysis

4.1. Definition

Spectral Regression Discriminant Analysis (SRDA) is one of the
advanced techniques designed for high dimensional discriminant
analysis [43]. In this technique, discriminant analysis is cast into
regression framework by using spectral graph analysis that accel-
erates computation and simplifies the use of the regularization
technique which can cope with small sample size (SSS) problem.
It shares the same objective function of the original Linear Dis-
criminant analysis (LDA). Especially noteworthy is that unlike LDA,
in SRDA only a set of regularized least square problem is solved
and no eigenvector computation is involved, which leads to con-
siderable save of both time and memory.

4.2. Algorithmic procedure

Suppose x1, ..., xm ∈ Rn be a set of data points that belong
to c classes and mk be the number of samples in the kth class
(
∑c

k=1 mk = m). The algorithmic procedure of SRDA is given as fol-
lows:

4.2.1. Response generation

Let yk = [0, ...,0︸ ︷︷ ︸∑k−1
i=1 mi

,1, ...,1︸ ︷︷ ︸
mk

, 0, ...,0︸ ︷︷ ︸∑c
i=k+1 mi

]T , k = 1, ..., c

and y0 = [1,1, ...,1]T be a vector of ones. Now y0 is taken as the
first vector and then the Gram–Schmidt process is used to orthog-
onalize {yk}. Since y0 is in the subspace spanned by {yk}, c − 1
vectors are obtained as follows:

{ ȳk}c−1
k=1

(
ȳT

i y0 = 0, ȳT
i ȳ j = 0, i �= j

)
(6)

4.2.2. Regularized least squares
In the second step, first a new element “1” is appended to

each xi and is still denoted by xi for simplicity. Then c − 1 vectors
{ak}c−1

k=1 ∈ Rn+1 which are the basis vectors of SRDA are calculated
by the regularized least squares problem as follows:

ak = arg min
a

(
m∑

i=1

(
aT xi − ȳk

i

)2 + α‖a‖2

)
(7)

where ȳk
i denotes the ith element of ȳk and α is a regularization

parameter that controls the smoothness of the estimator.

4.2.3. Embedding to (c − 1) dimensional subspace
Suppose A = [a1, ...,ac−1] be an (n +1)× (c −1) transformation

matrix, in the last step the samples can be embedded into (c −
1)-dimensional subspace as follows:

x → z = AT
[

x
1

]
(8)
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Fig. 3. The block diagram of the proposed face recognition system (training phase).

Fig. 4. Wavelet decomposition tree and spatial-frequency used in the proposed system.

5. The proposed system

The proposed face recognition system includes different com-
ponents which are discussed in detail in this section. The block
diagram of the proposed face recognition system is shown in Fig. 3.
This is followed by feature extraction, decision fusion and weights
computing phases which are expressed in detail.

5.1. Feature extraction

Feature extraction is the most important phase in face recog-
nition methods which considerably affect the algorithm’s perfor-
mance. As shown in Fig. 3, facial features in the proposed ap-
proaches are classified into local and global features. In this sub-
section, the feature extraction process which is composed of local
and global feature extraction procedures is discussed in detail.

5.1.1. Local feature extraction
Local features contain the local information of facial images

which are dependent on position and orientation. The process of
local feature extraction can be summarized as follows:

• In the first step of the local part, an image is partitioned
into 12 patches to produce stable and meaningful information
(Fig. 3).

• In the second step, every patch is decomposed to 3 levels us-
ing UDWT. As shown in Fig. 4, in the first level L1, H1, V1
and D1 are generated. Due to the high sensitivity of high fre-
quency H1, V1 and D1 to facial expressions and noise and
to speed up the algorithm, they are not used and generated.
Moreover, it has been shown that these subbands result in
low performance for classification [44]. Accordingly the gen-
erated subbands in level 3 are used in our proposed method
due to the best performance of generated subbands in compar-
ison with other subbands in level 1 and 2 (Table 4). Because
UDWT does not have downsampling, the resolution of decom-
posed patches is the same as the original patches.

• Since a large number of data are generated in the previous
step, using all of the data will cause the system to be com-
putational expensive. Hence a dimension reduction technique
such as PCA or LDA should be used. PCA cannot present good
results since the number of images in training set is not high.
The LDA cannot be used due to “small sample size” problem.
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Regularized LDA (RLDA) also needs a large memory to store a
matrix with a size of 1024 × 1024 = 1 048 576 which imposes
a costly computational complexity on the process [45]. Hence
to reduce the burden of using all of the generated coefficients,
in the last part SRDA is applied to decrease the dimension of
data and produce the salient features. Finally 48 (12 × 4) dis-
tinct data vectors related to 12 patches are produced.

5.1.2. Global feature extraction
Global features contain the holistic information about facial im-

ages. Accordingly, the global information is encoded by means of
ZMs. The process of global feature extraction can be summarized
as follows:

• ZMs up to order 10 are calculated for an image to generate
global features. Since ZMs are complex valued, imaginary part,
real part and magnitude of ZMs are used as a data vector and
they are concatenated together.

• Low classification accuracy might have stemmed from the si-
multaneous usage of the generated data vector that encom-
passes both low and high discriminative features. Therefore,
in the last step, data vectors are sent to SRDA to remove the
low-discriminable features and to enhance the discrimination
power of the system.

5.2. Decision fusion

The last part of the proposed method is decision fusion. It con-
sists of 5 steps which are described below:

5.2.1. Calculation of confidence score
Suppose we have c classes with mi samples per class (mi is the

number of samples in ith class) in our database, then the confi-
dence score S v,i of the system decision for vth feature vector and
ith class is defined as follows:

S v,i = 1

min
1≤p≤mi

d(FV v(test), FV v,i,p(database))
,

v = 1, . . . ,49, i = 1, . . . , c (9)

where FV v (test) is the vth feature vector related to test images,
FV v,i,p (database) is the vth feature vector of pth sample of ith
class related to database and d(.) stands for the distance function
(Euclidean distance) between two feature vectors.

5.2.2. Normalization of confidence score
In this step, the values of confidence score are normalized as

follows. Suppose the confidence score to vth feature vector of
ith class be S v,i and there are c classes in our database and the
normalized values are denoted as Nv,i , which are calculated as fol-
lows:

Nv,i = S v,i∑c
i=1 S v,i

⇒
c∑

i=1

Nv,i = 1 (10)

5.2.3. Formation of decision profile matrix
In this phase the decision profile matrix is formed as follows:

D1(P) =

⎡
⎢⎢⎢⎢⎢⎣

∑c
i=1 NL,1,i=1︷ ︸︸ ︷

NL,1,1 NL,1,2 · · · NL,1,c

NL,2,1 NL,2,2 . . . NL,2,c
...

...
...

...

NL,48,1 NL,48,2 · · · NL,48,c

NG,49,1 NG,49,c · · · NG,49,c

⎤
⎥⎥⎥⎥⎥⎦

49×c

(11)

where NL,v,i is the normalized confidence value of vth local fea-
ture vector related to ith class (v = 1, . . . ,48 and i = 1, . . . , c) and
NG,i is the normalized confidence value of global feature vector
related to ith class. Since we have 48 local feature vectors and 1
global feature vector the dimension of D1(P) is 49 by c.

5.2.4. Combined decision
In the last part, combined decision is applied. It consists of two

main parts which are described as follows:

• In the first part, the normalized confidence values of local part
are combined with a weighted sum rule for every class which
is formulated as follows:

NL,i =
48∑

v=1

λv NL,v,i, i = 1, . . . , c (12)

where NL,v,i is the normalized confidence value of vth local
feature vector related to ith class and λv is the weight of vth
local feature vector. Hence c values corresponding to c classes
are resulted in this step and a new decision profile matrix is
as follows:

D2(P) =
[

NL,1 NL,2 · · · NL,c

NG,1 NG,2 · · · NG,c

]
(13)

where the first row is related to local feature vector and the
second row is related to global feature vector.

• In the second part, the normalized confidence value of global
part (NG,i) and the summation of normalized confidence value
of local part (NL,i) are combined again with a weighted sum
rule which is formulated as follows:

NE,i = (λL)NL,i + (1 − λL)NG,i (14)

where λL is the weight of NL,i and balances the importance of
local and global information. The reason for using this strategy
is that the performance of local and global information are
quite different [16]. In a nutshell the decision profile matrix
is resulted as follows:

D3(P) = [
NE,1 NE,2 · · · NE,c

]
(15)

5.2.5. Decision strategy
The last stage of this part is the decision strategy. In this step,

the label of the highest NE,i (i = 1, . . . , c) is selected as the output
of system.

5.3. Weights computing for local features, local part and global part

In this section, the procedure of weight computing is described.
In the first part the weights of local feature vectors (λv ) which are
used in decision fusion part are derived. This is followed by weight
computation of local part (λL ) and global part (λG ).

5.3.1. Weight computation of local features
Suppose we have c classes with mi samples per class. Let

FV v (test) be the vth feature vector of test sample and FV v,i,p
(database) is the vth feature vector of pth sample related to ith
class. The weight computation method for local part consists of
three steps which are described as follows:

• In the first step, the minimum distances between each lo-
cal feature vector of test image and local feature vectors of
database images are calculated. It can be described by the fol-
lowing formula:
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D v,i = min
1≤p≤mi

d
(
FV v(test), FV v,i,p(database)

)
,

v = 1, . . . ,48, i = 1, . . . , c (16)

• In the second step the distances related to each local feature
vector over all classes are included in a vector which can be
written as follows:

Dv = (D v,1, D v,2, ..., D v,c) (17)

• In the third step the values of Dv are sorted increasingly for
each v and a vector called D ′

v is formed as follows:

D′
v = (

D ′
v,1, D ′

v,2, ..., D ′
v,c

)
(18)

where D ′
v,1 ≤ D ′

v,2 ≤ D ′
v,3 ≤ ... ≤ D ′

v,c for each v .
• In the fourth step the weight of vth feature vector (λ′

v ) is cal-
culated by the following formula:

λ′
v = D ′

v,2

D ′
v,1

, v = 1, . . . ,48 (19)

• Finally the values of λ′
v are normalized by the following equa-

tion:

λv = λ′
v√

λ′ 2
1 + λ′ 2

2 + ... + λ′ 2
48

, v = 1, . . . ,48 (20)

5.3.2. Weight computation of local part and global part
Since we calculated 48 weights which are related to local fea-

ture vectors, we take the average of these weights as a represen-
tative of local part. Hence in this part the weight of the local part
λL and weight of global part λG are defined as follows:

λL = mean(v) (21)

λG = 1 − λL (22)

where v = [λ1, λ2, ..., λ48] is a vector including weights of lo-
cal feature vectors which were calculated previously. It should be
noted that Eqs. (20)–(21) were found heuristically. Other normal-
izations and choices of λL are also possible.

6. Experimental results and performance analysis

In this section, we investigate the performance of the proposed
method using CASIA NIR database [17] and PolyU-NIRFD database
[24]. Comparative study is carried out against some existing face
recognition schemes:

• Linear Discriminant Analysis (LDA) [3].
• Principal Component Analysis (PCA) [4].
• Kernel Principal Component Analysis (KPCA) [5].
• Pseudo Zernike Moments (PZMs) + Radial Basis Function Neu-

ral Network (PZMRBF) [46].
• Orthogonal Locality Preserving Projection (OLPP) which is also

called orthogonal Laplacianface [47].
• Local binary pattern (LBP) + Fisherface (LBPF) [17].
• The method using decimated redundant discrete wavelet

transform and Fisherface (DRDWTF) [23].

Furthermore, one more experiment based on discrete wavelet
transform + SRDA (DWTSRDA) is conducted to highlight the con-
tributions of UDWT. Descriptions of the settings of the aforemen-
tioned methods for performance evaluation are summarized in
Table 1. In all experiments, we applied our method in three ver-
sions, global features based on Zernike moments only (denoted as
ZMSRDA), local UDWT features only (denoted as UDWTSRDA) and

Table 1
Descriptions of settings for different methods used in performance evaluation.

Method Specification

LDA Fisherface technique is utilized.
PCA The eigenspace distance measure is Mahalanobis.
KPCA Polynomial is used as a kernel and the polynomial parameter is

set to 0.7.
PZMRBF It is combination of Pseudo Zernike Moments and Radial Basis

Function (RBF) neural network. The order of PZM is 10. The
number of input layers equals to the dimension of feature
vectors which are generated by PZM and the number of output
layers equals to the number of classes. Spread value of radial
basisfunctions is set as 0.9.

OLPP Supervised OLPP is used. The weight metric criterion is cosine.
LBPF LBPU2

8,1 is used. The image is first divided into 64 blocks of size 8
by 8 and then an LBP histogram is calculated for each block.
Finally Fisherface technique is used to decrease the dimension of
features.

DRDWTF This method is based on decimated redundant discrete wavelet
transform. The decomposition level is 3 and the wavelet basis is
‘Db 4’. The method is based on a combination of local and global
features in decision step. The Fisherface technique is used for
dimension reduction.

DWTSRDA All of the parameter settings are the same as the local part of
the algorithm (UDWTSRDA).

both global and local part together (DF). The global part is basically
identical (except SRDA reduction) with popular simple methods re-
ferred in [41,42].

In the first part of this section, we briefly describe the database
and preprocessing. This is followed by the experiments carried out
to evaluate the performance of different methods and comparison
between them.

The following sets of experiments are carried out:

• Testing the performance of the proposed method for parame-
ter settings.

• Testing the performance of system against facial expression
variations.

• Testing the influence of eyeglasses on the performance of the
system.

• Testing the performance of the algorithms in the presence of
head rotation in the x and y-axis.

• Testing the robustness of the system against additive zero-
mean white Gaussian noise.

• Testing the performance in the presence of misalignments.
• Measurement of computation time.

6.1. Image normalization and database

The face images of CASIA NIR database [17] and PolyU-NIRFD
database1 [24] (Fig. 5) are used in our experiments. The database
specifications are described in Table 2. The sizes of the training
set, gallery set and probe set for CASIA NIR are 700, 800 and 800
respectively. The sizes of the training set, gallery set and probe set
for PolyU-NIRFD are 500, 300 and 500 respectively. There is no
overlap between training set, gallery set and probe set. The flow of
preprocessing is as follows.

• Face images are aligned by placing the two eyes at fixed posi-
tion (Fig. 5(b)).

• Face images are cropped to remove hair and background
(Fig. 5(c)).

• Face images are resized to 64 × 64 with 256 gray levels to de-
crease computational time (Fig. 5(d)). This resizing is decided
experimentally (data not shown) as choosing a larger size does

1 http://www4.comp.polyu.edu.hk/~biometrics/polyudb_face.htm.
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Fig. 5. The proposed preprocessing method: (a) raw image, (b–c) preprocessing steps, (d) the normalized images.

Table 2
Summary of the CASIA NIR database and PolyU-NIRFD database [17].

Database

CASIA NIR database PolyU-NIRFD database

Acquisition device Home-brew camera with 850 nm wavelength JAI camera with 850 nm wavelength
No. of subjects 197 335
Number of still images per subject 20 100
Distance 50 centimeters and 100 centimeters 80 centimeters and 120 centimeters
Resolution 640 × 480 768 × 576
Format BMP JPG

not significantly increase accuracy but increases computational
time. The resized image still retains the useful information for
face recognition.

6.2. Testing the performance of the proposed system for parameter
settings

In this section, we assess the performance of system to en-
hance the performance of different components in the proposed
system by setting different parameters with various allowed val-
ues. Three experiments were conducted in this section. 600 normal
face images of 100 subjects (6 images per person) were chosen
randomly from the training set of CASIA NIR database and used in
our experiments. The normal faces are frontal faces without facial
expression, head rotation and eyeglasses. Each test is repeated 20
times and the results are averaged. The following sets of experi-
ments were conducted in this section:

• Testing the performance of ZMs with different orders.
• Performing best decomposition level and best subband analy-

sis for UDWT.
• Testing the performance of the system with different values of

α in SRDA and pick the optimum one to improve the perfor-
mance of SRDA.

6.2.1. Testing different orders of Zernike moments
In the first experiment, the influences of different orders re-

garding to recognition rate and computational time (recognition
time of all 300 test images) are checked and the results are shown
in Table 3, respectively. As can be seen in this table, there is an im-
provement in the performance of the system when order of ZMs
increases. The underlying reason is that, when higher orders are
used, more salient features with higher discrimination power are
generated which may increase the recognition rate. Further analy-
sis shows that the satisfactory result is acquired with order 10 and
the recognition rate of ZMs does not increase considerably when
the order is higher than 10. Although higher others may result bet-
ter accuracy, but the computational time of the system increases
highly when the order is higher than 10 (Fig. 7). As a result, order
10 which may give a suitable trade-off between recognition rate
and time computational time is used in the proposed algorithm
and the feature vectors of order 0 to 10 are used for our further
experiments.

Table 3
Face recognition results and cumulative time for testing 300 normal images on
CASIA NIR database for ZMs.

Order Cumulative
dimensionality
up to the
specified order

Mean ± Std-Dev Computational
time (seconds)

0 1 10.29 ± 3.51 2.04
1 3 38.39 ± 3.64 2.48
2 6 50.28 ± 3.88 4.09
3 10 57.24 ± 3.77 4.97
4 15 60.34 ± 3.41 7.01
5 21 63.73 ± 2.54 9.53
6 28 69.37 ± 2.70 12.51
7 36 74.11 ± 2.43 15.32
8 45 80.27 ± 1.88 17.04
9 55 84.22 ± 2.18 20.22

10 66 87.78 ± 1.90 23.65
11 78 88.62± 2.79 28.73
12 91 89.12± 1.87 34.93

6.2.2. Best decomposition level and best subband analysis
In the second part, we search for the most discriminant de-

composition level by evaluating the performance of its selected
subbands. Because it is more time-consuming when the decom-
position level L is larger than 3, L = 3 is used in the experiment.
Hence, different subbands of UDWT at different levels are evalu-
ated and the results are tabulated in Table 4. Daubechies 3 (“Db 3”)
is used as a basis due to its symmetry, orthonormal nature and
compact support [48]. It is interesting to observe that level 3 at-
tains the highest correct classification rates as compared to other
levels. The same result can be found in [23,49]. In fact, with further
wavelet decomposition, finer scale information which may include
salient features is generated; however, the computational time of
the system increases. Consequently, level 3 which may give a suit-
able trade-off between scale information and computational time
is used in the proposed algorithm.

6.2.3. Parameter selection for SRDA
α (Eq. (7)) is an essential parameter that controls the smooth-

ness of the estimator in SRDA algorithm. In this experiment the
impact of parameter on the performance of our algorithm is
checked. Two individual experiments for local and global part of
the algorithm are evaluated. Different values of α are tested and
the results are considered. As shown in Table 5 there is a signifi-
cant improvement in the recognition rate when α is decreased and
the optimum value is 0.01 with the highest recognition rate.
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Table 4
Comparison of the performances of the system using different decomposition levels
and subbands (Mean ± Std-Dev).

Level Subband UDWT

1 L1 93.51 ± 0.82
1 H1 91.04 ± 0.76
1 V1 93.34 ± 0.89
1 D1 81.67 ± 2.09
2 LL2 95.24 ± 1.46
2 LH2 92.19 ± 1.69
2 LV2 92.97 ± 0.90
2 LD2 93.40 ± 2.04
3 LLL3 96.73 ± 0.87
3 LLH3 92.59 ± 0.84
3 LLV3 94.50 ± 0.97
3 LLD3 95.58 ± 0.68

Table 5
Effect of different values of α on the face recognition rate (Mean ± Std-Dev).

α Local part
(UDWTSRDA)

Global part
(ZMSRDA)

0.400 95.70 ± 0.93 94.38 ± 0.80
0.100 96.70 ± 0.75 95.93 ± 0.71
0.070 98.36 ± 0.81 96.33 ± 0.41
0.040 99.05 ± 0.81 96.97 ± 0.74
0.010 99.05 ± 0.81 97.40 ± 0.65
0.009 99.05 ± 0.81 97.40 ± 0.65
0.008 99.05 ± 0.81 97.40 ± 0.65

6.3. Testing the performance of the algorithms in facial expression
variations

Facial expressions are one of the grand challenges in face recog-
nition methods [50]. In this section some experiments are per-
formed on the face images with different facial expressions to
evaluate the robustness of the different methods to variations in
facial expressions. 120 frontal normal images of 40 subjects be-
longing to gallery set are randomly chosen and used as gallery
images and 120 random images having facial expression variations
are chosen from probe set and used as probe images. Some sam-
ples of normal images and images with facial expressions from CA-
SIA NIR and PolyU-NIRFD are shown in Fig. 6. The test is repeated
20 times and the results are averaged to get the representative
values. Tables 6 and 7 show the mean recognition rates of differ-
ent methods along with standard deviation and confidence interval
with 95% significant level. Confidence interval is one of most use-
ful criterion to evaluate the reliability of results. Smaller confidence
intervals indicate the high precision of the method. We use the fol-
lowing formula to calculate confidence interval

[
x̄ − z∗ × δ√

n
, x̄ + z∗ × δ√

n

]
(23)

where x̄ stands for mean, z∗ is the score for level of confidence
which is 1.96 when the significance level is 95%, n is the number
of observations which is 20 in our case and δ stands for standard
deviation.

The following conclusions can be made:

• As shown in Tables 6 and 7, the local part of the proposed
method (UDWTSRDA) has better performance in comparison
with DWTSRDA counterpart in terms of the recognition rate.
The underlying reason lies in the fact that UWDT generates the
full resolution subbands without any downsampling. Accord-
ingly, more discriminative information is achieved compared
to DWTSRDA.

• Since both local and global parts of the algorithm have high
robustness to facial expressions the performance of the pro-
posed method is not severely affected by the expression vari-
ations in both databases. Further analysis shows that there is
no overlap between the confidence intervals of the proposed
method and those of other methods. This narrow width of
confidence intervals of the proposed method shows the high
accuracy, precision and robustness of the proposed method to
various training and test samples.

• The proposed method outperforms the DRDWTF method coun-
terpart which is also based on local and global features. This
result may be explained by a number of different factors. First,
ZMs which are used as global features in our method have
better performance in comparison with generated global fea-
tures by DRDWT in the presence of facial expressions. Second,
SRDA as a sophisticated technique, improves the accuracy of
the system compared with classical Fisherface which is used
in DRDWTF as a dimension reduction technique.

• Comparing ZMSRDA and PZMRBF, it can be seen that the
ZMSRDA achieves better performance than PZMRBF. This
seems to contradict [41] which showed that PZMs work better
than ZMs. The explanation is that in ZMSRDA, the discrimina-
tion power of the features is enhanced by SRDA. Obviously, the
resulted features are more salient than raw features in PZM-
RBF.

• What is interesting in Tables 6 and 7 is that OLPP performs
the best among other appearance-based methods including
LDA, PCA, and KPCA. The underlying reason is that OLPP has
more discriminative power than other methods due to or-
thogonal basis function in OLPP which alleviates the problem
of data reconstruction better compared to other appearance-
based methods.

6.4. Testing the performance of the algorithms for images with
eyeglasses

Wearing glasses generally affects the performance of FR systems
and it has been introduced as one of the remaining challenging

Fig. 6. (a) Normalized images used as gallery images, (b) images with facial expression from CASIA NIR database and PolyU-NIRFD used as probe images.
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Table 6
Performance of different methods in the presence of different challenges (CASIA NIR database).

Algorithm Mean Standard deviation Confidence interval

Face recognition results under different facial expressions
LDA 91.12 2.03 [90.23, 92.00]
PCA 75.45 3.82 [73.77, 77.12]
KPCA 83.20 2.21 [82.23, 84.16]
PZMRBF 86.76 1.24 [86.21, 86.21]
OLPP 93.16 1.01 [92.71, 93.60]
LBPF 94.62 1.30 [94.05, 95.18]
DRDWTF 92.54 1.13 [92.04, 93.03]
DWTSRDA 91.04 1.29 [90.47, 91.60]
ZMSRDA (global part) 92.59 1.32 [92.01, 93.16]
UDWTSRDA (local part) 93.41 0.71 [93.09, 93.72]
DF (decision fusion) 96.58 0.74 [96.25, 96.90]

Face recognition results of different methods for images with eyeglasses
LDA 89.16 1.62 [88.45, 89.87]
PCA 82.95 2.68 [81.77, 84.12]
KPCA 86.25 1.78 [85.46, 87.03]
PZMRBF 70.24 1.71 [69.49, 70.98]
OLPP 87.75 2.16 [86.80, 88.69]
LBPF 96.41 1.01 [95.96, 96.85]
DRDWTF 94.33 0.69 [94.02, 94.63]
DWTSRDA 95.16 0.95 [94.74, 95.57]
ZMSRDA (global part) 72.08 3.29 [70.63, 73.52]
UDWTSRDA (local part) 97.29 1.37 [96.68, 97.89]
DF (decision fusion) 98.50 0.95 [98.08, 98.91]

Face recognition results of different methods for images with head rotation in the x-axis
LDA 64.37 4.01 [62.61, 66.12]
PCA 39.29 4.57 [37.28, 41.29]
KPCA 58.12 2.37 [57.08, 59.15]
PZMRBF 73.12 2.08 [72.20, 74.03]
OLPP 71.62 2.58 [70.48, 72.75]
LBPF 70.16 4.82 [68.04, 72.27]
DRDWTF 72.66 3.66 [71.05, 74.26]
DWTSRDA 71.87 4.25 [70.00, 73.73]
ZMSRDA (global part) 74.75 1.66 [74.02, 75.47]
UDWTSRDA (local part) 80.25 2.67 [79.07, 81.42]
DF (decision fusion) 85.82 1.21 [85.28, 86.35]

Table 7
Performance of different methods in the presence of different challenges (PolyU-NIRFD database).

Algorithm Mean Standard deviation Confidence interval

Face recognition results under different facial expressions
LDA 93.25 1.26 [92.69, 93.80]
PCA 91.66 1.48 [91.01, 92.30]
KPCA 83.20 2.21 [82.23, 84.16]
PZMRBF 88.66 2.01 [87.77, 89.54]
OLPP 95.29 1.48 [94.64, 95.93]
LBPF 94.58 1.28 [94.01, 95.14]
DRDWTF 93.70 1.76 [92.92, 94.47]
DWTSRDA 93.22 1.04 [92.76, 93.67]
ZMSRDA (global part) 93.91 1.11 [93.42, 94.39]
UDWTSRDA (local part) 95.83 0.90 [95.43, 96.22]
DF (decision fusion) 97.58 0.71 [97.26, 97.89]

Face recognition results of different methods for images with head rotation in the y-axis
LDA 30.50 4.15 [28.68, 32.31]
PCA 27.87 1.61 [27.16, 28.57]
KPCA 34.08 2.26 [33.08, 35.07]
PZMRBF 45.24 1.72 [44.48, 45.99]
OLPP 35.12 4.42 [33.18, 37.05]
LBPF 35.62 3.70 [33.99, 37.24]
DRDWTF 37.00 4.92 [34.84, 39.15]
DWTSRDA 29.16 1.98 [28.29, 30.02]
ZMSRDA (global part) 47.16 3.72 [45.52, 48.79]
UDWTSRDA (local part) 40.12 4.00 [38.36, 41.87]
DF (decision fusion) 54.01 2.01 [53.12, 54.89]

issues in FR algorithms [50]. To determine the effect of eyeglasses
on the performance of systems another experiment is designed.
Since the subject never wears glasses in the target imagery, 120
random images of 40 subjects (3 images per person) without eye-
glasses are used as gallery images and 120 random images with

eyeglasses are used as probe images. We just use the images from
CASIA NIR database since PolyU-NIRFD database does not include
such a scenario. The images are chosen from gallery set and probe
set of CASIA NIR database respectively. Some samples of images
are shown in Fig. 7. The test is repeated 20 times and the results
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Fig. 7. (a) Normalized images without eyeglasses used as gallery images, (b) images
with eyeglasses from CASIA NIR database used as probe images.

are averaged to get the representative values. The face recognition
results are tabulated in Table 6 from which the following conclu-
sions can be made.

• In Table 6, there is a clear trend of decrease in the recogni-
tion rate of appearance-based methods. A possible explanation
for this is that the performance of appearance-based method
largely relies on the representation of the training samples.
Hence the recognition accuracy of appearance-based methods
degraded sharply when the eyeglasses versus no-eyeglasses
scenario is applied in experiments.

• In this experiment, wearing eyeglasses was found to cause
considerable degradation in the performance of global part of
system (ZMSRDA). The observed degradation in the recogni-
tion performance of ZMSRDA (global part) is attributed to the
global structure of this approach which affects the values of
all moments in the presence of eyeglasses. Hence the perfor-
mance of ZMSRDA degrades sharply when local change such
as eyeglasses occurs. The results here prove the high sensitiv-
ity of ZMs to eyeglasses which were mentioned as a crucial
problem of ZMs in [28]. The same analysis applies in case of
PZMRBF, too.

• LBPF has a good performance in this experiment. This find-
ing is in agreement with the result proposed by Li et al. [17]
which shows the high stability of the LBPF method to eye-
glasses due to the local nature of the proposed method.

• Since local part of our method has high robustness in the pres-
ence of eyeglasses the accuracy of system is not affected in
this case.

6.5. Testing the performance of system in the presence of head rotation
in the x-axis and the y-axis

Head rotation is one of the most common challenges in face
recognition systems which affects the performance of algorithms
significantly. Handling head rotation is more difficult than other
challenges. Different methods have been introduced to address the
problem caused by head rotation [51,52]. Three types of head ro-
tations are shown in Fig. 8. The rotations around x and y-axis
cause the major difficulty in recognition because they significantly
change the appearance and the visible part of the face. On the
other hand, the in-plane rotation (head rotation in z-axis) is not
a serious problem because such transformation only rotates the
image without any occlusions and without changes of the visible
parts. Moreover, the physical constraints often limit the in-plane
rotation to small angles only.

In the current implementation, the proposed method tolerates
the in-plane rotation up to 6 degrees (data not shown). If we
know we have to deal with this kind of rotation, we can sim-
ply switch off all local features and use only the ZM magnitudes,
which are rotation invariant. The method is then equivalent to a
simple recognition system [28] and is completely rotation invari-

ant. Hence, here we concentrated to the tests of the performances
in the presence of head rotation in x-axis and y-axis. Two sepa-
rate experiments are done in this section. In the first experiment
the performance of the proposed method in the presence of head
rotations in the x-axis is investigated. The images of CASIA NIR
database with small degree of head rotations in the x-axis are
used as probe images for this evaluation (Fig. 9). In the second
experiment the performance of the proposed method in the pres-
ence of head rotation in the y-axis is examined. The facial images
of PolyU-NIRFD with higher degree of head rotations in y-axis
(both left and right) are used as probe images for this experi-
ment (Fig. 9). It is necessary to mention that in the PolyU-NIRFD
database the angles of head rotations in y-axis are sharper than in
CASIA NIR database. The databases do not provide the angle val-
ues but we estimate that in CASIA NIR database the angles are less
than 20 degrees while in PolyU-NIRFD database the angles used
are even more than 45 degrees. In all of the experiments 120 ran-
dom images of 40 subjects (3 images per person) without head
rotations are used as gallery images and 120 random images with
head rotations are used as probe images. Each test is repeated 20
times and the results are averaged to get the representative values.
Tables 6 and 7 compare the results obtained from the analysis of
head rotations with different methods.

From Tables 6 and 7, the following conclusions can be drawn.

• As expected, head rotation affects the recognition accuracy
of methods considerably which highlights the importance of
compensating head rotation in face recognition systems. This
result may be explained by the fact that head rotations in
x-axis and y-axis change in the visual appearances of the face
image significantly. Hence the performance of the methods
especially appearance-based method degrades sharply under
head rotations. Further analysis shows that the performance
of the methods based on PolyU-NIRFD database decreases
more severely than those of the methods based on CASIA NIR
database. The underlying reason is that the images in PolyU-
NIRFD database include sharper yaw and roll angles. Hence the
appearances of images are changed more significantly which
affect the results as well.

• Although the proposed method cannot cope with head rota-
tion in x-axis and y-axis, this problem can be successfully
resolved by brute force only (i.e. by expanding the training set
and including many rotated images) or by an application of 3D
imaging technologies.

• No significant differences are found between the performances
of ZMSRDA and PZMRBF in the presence of head rotation in x
and y-axis.

• Both DRDWTF and our proposed method (DF) which are based
on combination of local and global features have better accu-
racy in the presence of head rotation in comparison with other
methods in both databases.

• Strong evidence of improvement in the recognition rate of sys-
tem based on decision fusion can be seen in this experiment.
As can be seen in Table 6 the recognition accuracy of the pro-
posed method based on CASIA NIR database boosts almost 5
points from our local framework (UDWTSRDA). Further anal-
ysis based on PolyU-NIRFD database (Table 7) shows that the
recognition accuracy of the proposed method increases almost
7 points from our global framework (ZMSRDA). This result
proves that both local and global features are indeed mutually
complementary which can handle pose variations effectively.
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Fig. 8. (a) The direction of rotation, (b) rotation in x-axis, (c) rotation in y-axis, (d) rotation in z-axis.

Fig. 9. (a) Sample of normalized images used as gallery images, (b) sample of images with head rotation in x-axis and y-axis used as probe images.

Fig. 10. Samples of images with different levels of white Gaussian noise. From left to right signal to noise ratio (SNR) is: no noise, 21 dB, 18 dB and 16 dB respectively.

Table 8
Effect of noise on the performance of different methods (Mean ± Std-Dev).

Algorithm Signal to noise ratio (SNR) level

No noise 21 18 16

LDA 97.42 ± 0.91 96.05 ± 0.39 94.93 ± 0.81 89.87 ± 1.25
PCA 94.63 ± 1.02 86.17 ± 0.68 61.27 ± 1.37 44.36 ± 0.88
KPCA 95.66 ± 1.31 88.87 ± 1.01 66.06 ± 1.45 47.22 ± 1.04
PZMRBF 95.58 ± 0.71 92.11 ± 0.52 84.51 ± 1.11 75.11 ± 1.29
OLPP 98.31 ± 0.86 88.86 ± 0.92 67.17 ± 1.76 51.06 ± 1.68
LBPF 99.27 ± 0.43 3.46 ± 0.34 2.17 ± 0.31 1.77 ± 0.12
DRDWTF 99.42 ± 0.74 94.51 ± 1.08 85.75 ± 2.42 74.67 ± 1.57
DWTSRDA 99.36 ± 0.81 96.20 ± 0.72 91.52 ± 1.48 82.98 ± 1.82
ZMSRDA (global part) 98.90 ± 0.64 95.91 ± 0.77 89.65 ± 1.35 77.06 ± 1.48
UDWTSRDA (local part) 99.73 ± 0.51 99.11 ± 0.94 98.23 ± 0.69 97.11 ± 0.81
DF (decision fusion) 99.96 ± 0.25 99.75 ± 0.27 99.36 ± 0.35 97.70 ± 0.54

6.6. Testing the robustness against additive zero mean white Gaussian
noise

Unlike visible imaging, noise is a serious problem in NIR imag-
ing. To assess the effects of noise on the performance of algo-
rithms and to evaluate the usability of different methods for non-
cooperative systems such as video surveillance scenarios where
the resolution of images is low, we conduct another experiment
based on noisy images. 600 normal images of 60 subjects belong
to CASIA NIR database (10 images per person) without eyeglasses,
head rotation and facial expression are chosen from the gallery and
probe set and used for this experiment. Some samples of degraded
images are shown in Fig. 10. While training, 5 normal images with-
out noise are used as gallery images. For probe images, the images

are corrupted with additive zero mean white Gaussian noise with
different signal to noise ratio (SNR) level. 20 realizations of noisy
images are generated and their accuracies are averaged to get the
representative value. The mean recognition rates along with stan-
dard deviations of different methods based on additive zero mean
white Gaussian noise with different SNRs are shown in Table 8.

From this table, we have the following conclusions.

• It is apparent from Table 8 that our method performs signifi-
cantly better than other methods in the presence of noise. As
shown in Fig. 10 when SNR is 16, it is not easy to recognize
the face images even by human eyes. However our proposed
method does an excellent job in this case which shows the
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Table 9
Performance comparison of different methods against misalignments using the robustness value as an evaluation measurement.

Methods r0 Translation Rotation Scale

r∗ R r∗ R r∗ R

LDA 97.42 94.80 0.97 73.97 0.75 81.59 0.83
PCA 94.63 91.07 0.96 80.45 0.85 79.90 0.84
KPCA 95.66 90.48 0.94 72.04 0.75 73.57 0.76
PZMRBF 95.58 94.41 0.98 93.27 0.97 87.32 0.91
OLPP 98.31 95.49 0.97 82.17 0.83 89.52 0.90
LBPF 99.27 97.32 0.98 96.73 0.97 97.33 0.98
DRDWTF 99.42 98.84 0.99 91.19 0.91 98.65 0.99
DWTSRDA 99.36 96.91 0.97 91.37 0.91 98.65 0.99
ZMSRDA (global part) 98.90 97.88 0.98 96.83 0.97 91.28 0.92
UDWTSRDA (local part) 99.73 99.18 0.99 96.71 0.96 99.07 0.99
DF (decision fusion) 99.96 99.51 0.99 98.11 0.98 99.46 0.99

high robustness of the proposed method to noise even when
the noise strength is high.

• What is interesting is that there is a significant difference be-
tween the recognition accuracy of DWTSRDA and UDWTSRDA
(local part) which shows the high robustness of UDWT to
heavy noise. This finding is in agreement with the presented
findings in [53] which showed the high robustness of UDWT
for object shape prediction in the presence of noise. The rea-
son for this superiority is the redundancy of UDWT which
leads to full resolution low frequency components in compari-
son with DWT which generates decimated components.

• From this data we can see that the performance of our method
is almost 23% higher than that of DRDWTF when SNR is 16. It
seems possible that these results are due to the decimation
process in DRDWTF which decreases the resolution of images
and deteriorates the accuracy of system in the presence of
noise.

• The recognition rate of LBPF is the lowest among the other
recognition accuracies. The high sensitivity of local binary pat-
tern to noise can be seen in this experiment. The underlying
reason is that LBP thresholds exactly at the value of the central
pixel. Hence original LBP tends to be sensitive to noise which
limits its usability for applications which encounter with low
resolution images. Our results here prove the high sensitivity
of LBP to noise which were mentioned in the literature [18].

6.7. Evaluation of robustness against misalignments

Misalignment is one of the inevitable challenges in face recog-
nition systems which typically results from inaccurate estimation
of facial landmarks (eyes, nose, mouth, etc.). Many solutions have
been proposed to solve this problem which could be roughly clas-
sified into three categories: invariant features, misalignment mod-
eling and alignment returning. To determine the effects of mis-
alignments Chen et al. in [54] calculated the standard deviation of
manual labels on 30 randomly selected images from 25 individuals.
A 3.2 pixel standard deviation is reported in their study. To quan-
tify how misalignments influence the performance of algorithms,
we conduct another experiment to evaluate the performance of al-
gorithms in the presence of random translation, rotation and scale.
To measure the degradation degree of the recognition method
against different perturbations, we use a robustness concept, R
which is introduced in [55] as follows:

R = r∗

r0
(24)

where r∗ is the recognition rate of system after specific pertur-
bation and r0 is the recognition rate of the system without any
perturbation. R is a value between 0 and 1. A larger R implies
less sensitivity or high robustness to a specific perturbation. 300

Table 10
Performance comparison of different methods against mixed misalignments using
the robustness value as an evaluation measurement.

Methods Mixed misalignments

r0 r∗ R

LDA 97.42 42.63 0.43
PCA 94.63 68.58 0.72
KPCA 95.66 45.32 0.47
PZMRBF 95.58 84.05 0.87
OLPP 98.41 60.72 0.61
LBPF 99.27 82.19 0.82
DRDWTF 99.42 86.75 0.87
DWTSRDA 99.36 71.85 0.72
ZMSRDA (global part) 98.90 87.59 0.88
UDWTSRDA (local part) 99.73 92.12 0.92
DF (decision fusion) 99.96 96.80 0.96

random normal images of 60 subjects (5 images per person) with-
out facial expressions, eyeglasses, head rotation and misalignments
are used as gallery images and 300 normal images including mis-
alignments are used as probe images. To simulate the spatial mis-
alignments a random translation, rotation and scaling are added to
probe images separately and used in our experiments. The image
translation is set as integer within [−2,2] pixel for both verti-
cal and horizontal directions, the rotation is set randomly within
[−3◦,3◦] and the scaling is set randomly within [0.95,1.05]. To
simulate the misalignments brought by the automatic face align-
ment process, we also apply the mixed spatial misalignments.
Hence a horizontal translation tx ∈ [−1,1] and vertical translation
t y ∈ [−1,1], a rotation r ∈ [−3◦,3◦] and a scaling s ∈ [0.95,1.05]
are added to the original image and the results are considered. The
average recognition rates of different methods with their related
robustness values (Eq. (24)) are tabulated in Table 9, Table 10 and
shown in Fig. 11 from which the following observations can be
made.

• The high degradation of the LDA, PCA, KPCA and OLPP es-
pecially in the presence of mixed misalignments shows the
misalignment sensitivity of the subspace learning techniques
which have been used widely in face recognition systems in
the past three decades. The results here bolster the results pre-
sented in [56].

• As shown in Table 9 and Table 10, UDWTSRDA (local part)
which is based on UDWT has better accuracy to misalignments
in comparison with DWTSRDA which is based on DWT. This
result is consistent with the literature [23] which mentioned
the misalignments as a deficiency of DWT.

• Since DRDWTF uses translation invariant wavelet transform, it
has good accuracy in the presence of misalignments. The find-
ings of the current study are consistent with those of Li et
al. [23] who found that DRDWTF has good robustness to mis-
alignments.
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Fig. 11. The robustness value of different methods in the presence of misalignments.

Table 11
Comparison of recognition time for different algorithms.

Algorithm Recognition time (s)

LDA 0.18
PCA 0.19
KPCA 0.24
PZMRBF 0.39
OLPP 0.20
LBPF 0.32
DRDWTF 0.47
DWTSRDA 0.38
ZMSRDA (global part) 0.32
UDWTSRDA (local part) 0.45
DF (decision fusion) 0.52

• From Table 10 we can see that the accuracy of LBPF decreased
highly in the presence of mixed misalignments. This finding
corroborates the ideas of Yi et al. [19] who mentioned mis-
alignment as one of the deficiencies of LBP.

• Strong evidence of LDA sensitivity to mixed misalignments
was found in this experiment. As can be seen in Table 10, the
robustness value of the LDA technique is the lowest among
other methods. It seems possible that these results are due to
divergence of samples from the same class which enlarges the
within-class scatter and reduces between-class scatter to some
degree. The same result can be found in [55,56].

• Both ZMSRDA and PZMRBF have good performance in the
presence of misalignments especially in the presence of rota-
tion due to rotation invariance property of ZMs and PZMs.

• The current study found that mixed misalignments in probe
images affect the accuracy of systems more highly than sepa-
rate misalignments.

• Since both local and global parts of the proposed method
have high robustness to misalignments, the highest value of
robustness is achieved by the proposed method (DF) which
shows the effectiveness of extracted features by the proposed
method.

6.8. Measurement of computation time

To evaluate the computational load of the proposed method and
other methods, in this section, the recognition time of each algo-
rithm is calculated and shown in Table 11. The recognition time
(per second) is the time needed to extract the features and clas-
sify one new probe image. All of our experiments were conducted
using MATLAB R2013a on a Core 2 Duo 2.50-GHz Windows 7 ma-
chine with 4 GBytes of memory. As can be seen the time required
for recognition of the new probe image by the proposed method
is higher than that of the others. However, it is still allowing on-

line processing, because the persons are supposed to approach the
system one by one with at least one-second intervals.

7. Conclusion

We human beings, employ both global and local face features to
identify faces. In this paper, we presented a novel algorithm based
on the combination of local features extracted using UDWT and
global features extracted using ZMs to compensate facial expres-
sions, eyeglasses, head rotation, image noise and misalignments for
near infrared face recognition. In the proposed method, local fea-
tures are extracted from partitioned image patches by UDWT and
the global features are extracted by calculation of ZMs. By applying
SRDA on both local and global features, multiple feature vectors are
obtained. Finally they are combined with a weighted sum rule to
make a full use of local and global features.

This paper also compared the performance of the proposed
method with popular face recognition algorithms in the presence
of the most common challenges in face recognition systems. The
CASIA NIR database and PolyU-NIRFD database were used to val-
idate the performance of the proposed method and to compare
with other known methods. Experimental results show that the
combination of UDWT and ZMs, greatly improve the face recog-
nition accuracy. The following conclusions can be drawn from the
present study:

• Both local and global features are crucial for proposing a ro-
bust face recognition system and the combination of local and
global information in decision part, improves the performance
of the system significantly.

• ZMs are powerful feature extractor which can be used as
global features in FR methods.

• UWDT has better performance than DWT especially in the
presence of noise and misalignments. Hence its usage in FR
method can improve the performance.

The study has gone some way towards enhancing our under-
standing the nature of different challenges in face recognition
systems. Moreover, it makes several noteworthy contributions to
automatic face recognition in the near infrared domain which is
suitable for identification purpose in face recognition systems. Now
we can precisely describe how different challenges affect the per-
formance of algorithms. The important limitation of this study
is related to interfacing with legacy systems that may only have
visible imagery and may need matching visible imagery to NIR
imagery. We are currently exploring this problem in theory and
practice and future works will be on enhancing solutions to over-
come these limitations.
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