
CHAPTER 7

2D and 3D Image Analysis by Gaussian�Hermite Moments

Bo Yang, Tomas Suk, Mo Dai and Jan Flusser

This chapter introduces 2D and 3D Gaussian�Hermite moments and rotation invari-
ants constructed from them. Thanks to their numerical stability, Gaussian�Hermite
moments provide better reconstruction and recognition power than the geometric and
most of other orthogonal moments while keeping the simplicity of design of the invari-
ants. This is illustrated by experiments on real 2D and 3D data.

7.1 Introduction

Although moments have been used in many image analysis tasks and areas, probably
their most important and most frequent application is in object recognition. The key
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point is to �nd descriptors that can represent the object regardless of certain trans-
formations and/or deformations. Moment invariants were proved to be very powerful
tools for feature representation and it has been demonstrated many times that moment
invariants perform e�ectively in object recognition [7].

So far, various kinds of moment invariants to spatial transformations of the object
have been proposed. Among all transformations that have been studied in this context,
rotation plays a central role. Being a part of rigid-body transformation, object rotation
is present almost in all applications, even if the imaging system is well set up and the
experiment has been prepared in a laboratory. On the other hand, rotation is not trivial
to handle mathematically, unlike for instance translation and scaling. For these two
reasons, invariants to rotation have been in focus of researchers since the beginning.

The development of rotation invariants in 2D space has a long history. As early
as in 1962, Hu �rst derived seven rotation invariants that formed an incomplete and
dependent system [12]. After Hu, various approaches to the theoretical derivation of
moment-based rotation invariants were published. Li employed Fourier-Mellin trans-
formation to derive rotation invariants up to order nine [17]. Wong et al., on the
other hand, derived the rotation invariants up to order �ve based on the theory of
algebraic invariants [31]. Flusser o�ered the solution for complete and independent
set constructed from complex moments [5]. Zernike moments were also considered
for developing rotation invariants. Khotanzad and Hong pointed out that magnitudes
of Zernike moments possess rotation invariance [16]. Wallin and Kubler formulated
an approach to derive a complete set of rotation invariants from Zernike moments
[29]. Some other polynomial bases (Legendre, Krawtchouk, Gaussian�Hermite) were
employed in a similar manner [10, 37, 36].

With the rapid progress of applied mathematics, computer science and sensor tech-
nology, 3D imaging comes into engineering and practice. Undoubtedly, developing
rotation invariants for 3D images has become a hot topic in the computer vision com-
munity. However, 3D rotation is more di�cult to handle than its 2D counterpart,
since it has three independent parameters. That is probably why only few papers on
3D rotation moment invariants have appeared so far. The �rst attempts to derive
3D rotation moment invariants are relatively old. Sadjadi and Hall explored ternary
quadratics extensively and derived three translation, rotation and scaling (TRS) mo-
ment invariants. Their derivation was accomplished by using the invariant properties
of the coe�cients in a ternary form [24]. Guo proved Sadjadi and Hall's results in
the di�erent way and he derived more invariants to translation and rotation in 3D
space [9]. Cyganski and Orr applied tensor theory to derive 3D rotation invariants
[2]. This method was also mentioned by [23], who used invariant image features to
recognize planar objects. Xu and Li developed the invariants in both 2D and 3D space
based on geometric primitives such as distance, area, and volume [32]. Galvez and
Canton [8] and Canterakis [1] employed normalization approaches for constructing 3D
moment invariants, which overcame the necessity of an explicit deriving the invariants
but introduced potential numerical instability. Another method to derive 3D rota-
tion invariants is based on complex moments [18, 6]. Several application papers were
published, for example [19], where the authors used 3D TRS invariants for tests of
handedness and sex from MRI snaps of brains as well as two other papers [14] and
[28] discussing utilization of invariants in registration. Most recently, [26] proposed an
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automatic algorithm to generate 3D rotation invariants from geometric moments up
to an arbitrary order.

Although moments are probably the most popular 3D shape descriptors, it should
be mentioned that they are not the only features providing rotation invariance. For
example, Kakarala and Mao used the bispectrum, well-known from statistics for feature
computation [13]. Kazhdan used an analogy of phase correlation based on spherical
harmonics for comparison of two objects [14]. In this particular case it was used
for registration, but can be also utilized for recognition. In [15], the authors used
amplitude coe�cients as the features. Fehr used the power spectrum and bispectrum
computed from a tensor function describing an object composed of patches [3]. In
[4] the same author employed local binary patterns and in [25] he used local spherical
histograms of oriented gradients.

There have been numerous discussions what kind of moments (i.e. what polyno-
mial basis) provide the best performance. The criteria could be discrimination and
reconstruction power, robustness to noise, computational e�ciency, and also suitabil-
ity and accessibility for theoretical considerations. Traditional geometric and complex
moments are excellent for theoretical analysis but their numerical properties are not
optimal. On the other hand, the main advantage of orthogonal moments is their bet-
ter numerical stability, limited range of values and existing recurrent relations for their
calculation. Note that there is no di�erence from theoretical point of view because
any two polynomial bases of the same degree are equivalent. Hence, several authors
have tried to derive the 2D invariants from orthogonal moments. In 3D, however,
the situation is more di�cult than in 2D, but one can still expect that 3D orthogonal
moments preserve their favorable numerical properties.

Both in 2D and 3D, there exist polynomials orthogonal inside a unit ball and others
that are orthogonal on a unit cube. Seemingly, the polynomials de�ned on a unit
ball are more convenient for deriving rotation invariants because the ball is mapped
onto itself and the polynomials are transformed relatively easily under rotation. The
invariance is achieved by proper phase cancellation. The most popular basis of this
kind is the Zernike basis. However, real images coming from CT and MRI are de�ned
on a cube and must be mapped into a unit ball before the moments are calculated.
Such mapping requires resampling which always lead to a loss of precision.

Polynomial system orthogonal on a cube is (mostly but not necessarily) a product
of three 1D polynomials. Since 1D orthogonal polynomials can be evaluated by e�-
cient recurrent formulas, we can expect good numerical stability. On the other hand,
derivation of invariants is in general very di�cult, because the basis polynomials are
transformed in a complicated way under rotation.

In this chapter we show that Gaussian�Hermite moments could be a good choice.
Gaussian�Hermite basis is orthogonal on a cube which implies good numerical proper-
ties. At the same time, Gaussian�Hermite polynomials are transformed under rotation
in the same way as the monomials xpyq. Thanks to this, the respective rotation
invariants have the same forms as the rotation invariants from geometric moments.
Under our knowledge, Gaussian�Hermite polynomials are the only ones showing this
property. This is an important conclusion valid in both 2D and 3D which allows us
to reduce rotation invariant derivation from Gaussian�Hermite moments to that from
geometric moments, which is much easier to accomplish but we still bene�t from the
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numerical stability of Gaussian�Hermite moments.
The chapter is organized as follows. First we introduce Gaussian�Hermite polynomi-

als and moments. Then we formulate the central Theorem on the form of Gaussian�
Hermite rotation invariants in 2D and 3D. Finally, we demonstrate the invariance
property and the discrimination power on simulated as well as real 2D and 3D data.

7.2 Gaussian�Hermite Moments

Before we discuss Gaussian�Hermite moments, it is necessary to introduce Hermite
polynomials �rstly. Hermite polynomials are orthogonal polynomials de�ned on the
interval (−∞,∞)

Hp(x) = (−1)p exp (x2)
dp

dxp
exp (−x2). (7.1)

It can be e�ciently computed by the following 3-term recurrence relation

Hp+1(x) = 2xHp(x)− 2pHp−1(x) for p ≥ 1, (7.2)

with the initial conditions H0(x) = 1 and H1(x) = 2x. Hermite polynomials are
orthogonal when weighted by a Gaussian function

ˆ ∞
−∞

Hp(x)Hq(x) exp (−x2)dx = 2pp!
√
πδpq, (7.3)

where δpq is the Kronecker delta. The basis functions we use for the de�nition of
Gaussian�Hermite moments are normalized versions of Hermite polynomials. Hermite
polynomials are scaled and modulated by a Gaussian

Ĥp(x;σ) =
1√

2pp!
√
πσ

Hp

(x
σ

)
exp

(
− x2

2σ2

)
. (7.4)

The scaling parameter σ is common to both factors. Figure 7.1 shows the basis
functions of orders 0 up to order 5. Obviously, Eq.(7.4) is not only orthogonal but
also orthonormal, which means that

ˆ ∞
−∞

Ĥp(x;σ)Ĥq(x;σ)dx = δpq. (7.5)

Given any image function f(x, y) its Gaussian�Hermite moments are therefore de�ned
as

ηpq =

ˆ ∞
−∞

ˆ ∞
−∞

Ĥp(x;σ)Ĥq(y;σ)f(x, y)dxdy. (7.6)

For a 3D image f(x, y, z), its Gaussian�Hermite moments are computed directly by

ηpqr =

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

Ĥp(x;σ)Ĥq(y;σ)Ĥr(z;σ)f(x, y, z)dxdydz. (7.7)

Discrete implementation of Gaussian�Hermite moments is mainly focused on the
discretization of the basis functions. Here we only discuss the 1D case. The results
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Figure 7.1: The basis functions of Gaussian�Hermite moments of orders 0 up to 5 with
σ = 0.20.

can be directly extended to 2D, 3D and any high�dimension spaces because the basis
functions in high�dimension spaces are the products of several basis functions in 1D
case.
In the discrete case, the signal I(i) is of a �nite length K (0 ≤ i ≤ K−1). In order

to select a meaningful scale parameter σ, we map the signal into [−1 ≤ x ≤ −1] by
setting

x =
2i−K + 1

K − 1
. (7.8)

This transformation results in the change of integration variables and introduces a
normalization coe�cient

√
2/(K − 1). So considering this coe�cient and together

with Eq.(7.4), we can get the values of basis function corresponding to a signal of
length K:

Ĥp(i,K;σ) =
1√

2p−1(K − 1)p!
√
πσ

exp

(
− x2

2σ2

)
Hp

(x
σ

)
(7.9)

and thus the Gaussian�Hermite moment of order p in the discrete case is given by

ηp =

K−1∑

i=0

Ĥp(i,K;σ)I(i). (7.10)

Finally, the inverse moment transformation can be carried out with its all moments of
orders (p ≤ Nmax) by

Î(i) =

Nmax∑

p=0

ηpĤp(i,K;σ). (7.11)

The extension to 2D, 3D even high�dimension spaces is straightforward. The only
di�erence is the generation of counterparts of the basis functions. For example, in 2D
space, the basis functions should be Ĥp(i,K;σ)Ĥq(j,K;σ) for an image whose size



148 B. Yang et al.

is K ×K pixels. In 3D space, they should be Ĥp(i,K;σ)Ĥq(j,K;σ)Ĥr(k,K;σ) for
an image in a K ×K ×K voxels cube.

7.3 Rotation Invariants of Gaussian�Hermite

Moments

Gaussian�Hermite polynomials belong to the family of functions orthogonal on a square
in 2D and on a cube in 3D. Generally, it is di�cult to derive rotation invariants from
such moments because they transform themselves under rotation in a complicated
manner. That is why most authors, when dealing with orthogonal moments, have
preferred polynomial systems orthogonal on a unit disc, such as Zernike and Pseudo-
Zernike polynomials, where the invariance can be easily achieved by a proper phase
cancellation. However, working with these polynomials requires image mapping into
the unit disc, which introduces resampling errors.
In case of traditional geometric and complex moments, the rotation invariants are

known and comprehensively studied [7]. In this section we derive rotation invariants
from Gaussian�Hermite moments. We accomplish this using an interesting property
of Hermite polynomials. We show that Gaussian�Hermite moments are transformed
under rotation in exactly the same way as geometric moments. This property enables
us to construct rotation invariants from Gaussian�Hermite moments in both 2D and
3D cases indirectly and very easily.

7.3.1 Rotation Invariants in 2D Case

7.3.1.1 Mathematical Preliminaries

We de�ne non�coe�cient Gaussian�Hermite moments as

η̃pq =

ˆ ∞
−∞

ˆ ∞
−∞

H̃p(x;σ)H̃q(y;σ)f(x, y)dxdy, (7.12)

with

H̃p(x;σ) =

√
2pp!
√
πσĤp(x;σ). (7.13)

In order to achieve translation invariance, we use central moments

ηpq =

ˆ ∞
−∞

ˆ ∞
−∞

H̃p(x− x0;σ)H̃q(y − y0;σ)f(x, y)dxdy, (7.14)

where x0 = m10/m00 and y0 = m01/m00 are computed by the geometric moments

mpq =

ˆ ∞
−∞

ˆ ∞
−∞

xpyqf(x, y)dxdy, (7.15)

In 2D space, there is only one parameter θ determining the rotation. Yang et al.
discovered an important rotation property of Hermite polynomials [36].
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Theorem 1. Let p, q be two non�negative integers. Let the coordinates be rotated
as (

x̂
ŷ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
(7.16)

Then the following equation holds

x̂pŷq =

p+q∑

r=0

k(r, p, q, θ)xp+q−ryr, (7.17)

where k(r, p, q, θ) is a coe�cient which is determined by p, q, and θ. Moreover the
product of Hermite polynomials can also be expressed as:

Hp(x̂)Hq(ŷ) =

p+q∑

r=1

k(r, p, q, θ)Hp+q−r(x)Hr(y). (7.18)

The proof of Theorem 1 can be found in Appendix of [36].
Assume an original image f(x, y) is rotated by angle θ. Here, we use fθ to denote

the rotated image. After rotation the original coordinates (x, y) are changed to (x̂, ŷ).
According to Eq.(7.12), non�coe�cient Gaussian�Hermite moments of fθ are therefore
computed by

η̃θpq =

ˆ ∞
−∞

ˆ ∞
−∞

H̃p(x̂;σ)H̃q(ŷ;σ)fθ(x̂, ŷ)dx̂dŷ. (7.19)

Rotation does not change image intensity function and the scaling of image, which
means {

fθ(x̂, ŷ) = f(x, y)

dx̂dŷ = det(R)dxdy
. (7.20)

Matrix R is the transform matrix in Eq.(7.16). Using Theorem 1 and Eq.(7.20) as
well, Eq.(7.19) is reduced into

η̃θpq =

ˆ ∞
−∞

ˆ ∞
−∞

Hp

(
x̂

σ

)
Hq

(
ŷ

σ

)
exp

(
−x

2 + y2

2σ2

)
f(x, y)dxdy

=

p+q∑

r=0

k(r, p, q, θ)η̃p+q−r,r.

(7.21)

On the other hand, geometric moments also have similar relations before and after
rotation

mθ
pq =

p+q∑

r=0

k(r, p, q, θ)mp+q−r,r. (7.22)

In case of geometric moments, any rotation invariant can be expressed as a combina-
tion of certain set of moments χ which is capable of eliminating the angle θ. According
to this fact, Eq.(7.21) and Eq.(7.22) altogether, we have an important conclusion re-
lated to the construction of rotation invariants from Gaussian�Hermite moments. We
summarize the conclusion as the following theorem.
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Theorem 2. If χ is a rotation invariant in geometric moments

χ
(
mθ
p1q1 ,m

θ
p2q2 , · · · ,m

θ
piqi

)
= χ (mp1q1 ,mp2q2 , · · · ,mpiqi) . (7.23)

then χ is also a rotation invariant in central non-coe�cient Gaussian�Hermite mo-
ments, i.e.

χ
(
ηθp1q1 , η

θ
p2q2 , · · · , η

θ
piqi

)
= χ

(
ηp1q1 , ηp2q2 , · · · , ηpiqi

)
. (7.24)

In Theorem 2 the usage of the central moments ηpq enables the constructed invariant
to possess translation invariance simultaneously. Theorem 2 means that we can use
the formation of 2D rotation invariants from geometric moments to build the invari-
ants from Gaussian�Hermite moments. The operation is very simple: just replacing
geometric moments by the corresponding non�coe�cient Gaussian�Hermite moments
in the expressions of geometric rotation invariants.

7.3.1.2 Complete Set of Rotation Invariants in 2D Case

We are interested in generating a complete set of rotation invariants from Gaussian�
Hermite moments in 2D case. This is straightforward because Flusser proposed a
method, how to compute a complete and independent set of rotation invariants from
complex moments [5]. Thanks to the above Theorems and a direct link between
geometric and complex moments [5] we just follow that way and propose a design of
a complete set of Gaussian�Hermite invariants. Firstly, we de�ne the variable dpq

dpq =

p∑

k=0

q∑

j=0

(
p
k

)(
q
j

)
(−1)q−jip+q−k−j ηk+j,p+q−k−j . (7.25)

Note that dpq is intentionally de�ned such that it resembles the complex moment.
Hence, dpq works as a bridge between Gaussian�Hermite moments and the expressions
of rotation invariants expressed by complex moments. We can also prove that dpq has
properties similar to complex moments:

dpq = (dqp)
∗

(7.26)

and

dθpq = ei(p−q)θdpq, (7.27)

where �*� denotes conjugation. Hence, we construct the rotation invariants according
to [5] as

Ψpq(p0, q0) ≡ dpqdp−qq0p0 , with p ≥ q, p0 − q0 = 1. (7.28)

The indices p0, q0 should be chosen as low as possible to obtain good numerical
stability. In the experiments in this paper we set p0 = 2, q0 = 1.
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(a) (b) (c) (d)

Figure 7.2: The images of F�16 �ghter of the size 350× 350 pixels used in the exper-
iment. (a) The original images. (b)-(d) transformed images.

7.3.1.3 Invariance Veri�cation

In this section we test the proposed 2D invariants on both synthesized and real rota-
tions. Firstly, we verify rotation invariance of the invariants Eq.(7.28) under computer-
generated rotations. An image of �F�16� �ghter is used as the test image. We generate
7 random rotations and translations. Figure 7.2 shows the original image and 3 exam-
ples of the transformed versions. We compute 6 invariants in vector V for these test
images.

V =
[
Re(d4,3d1,2), Im(d5,3d

2
1,2), d6,7d7,6, Re(d8,7d1,2), d10,10, Im(d11,10d1,2)

]
.

(7.29)
The elements of V were selected in such a way that they contain invariants of various
orders. Since the rotation model is perfectly valid, the computed invariants are ex-
pected to keep exact invariance even for the invariants of high orders (up to order 21 in
this experiment). We set σ = 0.3. The values of the selected invariants are plotted in
Fig.(7.3). It should be noted that we plot the scaled values (throwing away the orders
of magnitude of the computed invariants) instead of their real values. For instance, V1
computed from the original image is equal to −1.8292× 105, while we plot −1.8292
instead. It enables to plot these 6 invariants in the same range of values. As can be
seen from Fig.(7.3), for each invariant the values computed from the di�erent images
are kept almost constant. Consequently, the plots appear to be straight lines. In order
to directly demonstrate the invariance, we use Mean Relative Error (MRE) to measure
the computational error of the i-th invariant in V. The MRE of the ith invariant is
de�ned as

MREi =
1

N

N∑

j=1

∣∣∣∣∣
V ji − Vi
Vi

∣∣∣∣∣× 100%, (7.30)

where Vi and V
j
i are the i-th invariants computed from the original image and the

j-th rotated version, respectively. N was the number of rotated versions. All MREs
(caused mainly by resampling errors) are below 2.0% (see the caption of Fig.(7.3)).
The second experiment works not only with real images of a large size but also with

real physical rotations. In this experiment we generate 8 images by scanning a hotel
notice card in various orientations. The scanner does not change the scale of the card
and it also produces almost the same illuminations of each scan. We segment the
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Figure 7.3: The values of the selected invariants computed from the F�16 images.
Index 1 indicates the original image. The MREs of the invariants over 7
transformed versions are respectively 0.02%, 0.09%, 0.26%, 0.15%, 1.55%
and 1.36%, respectively.

scanned images and put each into a square whose size is 1000 × 1000 pixels. Figure
7.4 displays the scanned images that we use in this experiment. We compute several
Gaussian�Hermite invariants for these images. These invariants are elements of vector
W

W =
[
Im(d5,4d1,2), d6,7d7,6, Re(d8,7d1,2), Re(d9,8d1,2), d10,10, d12,12

]
. (7.31)

We intentionally include di�erent invariants from those in the previous experiment.
This time we cannot calculate relative error because there is no �original� image. We
use the ratio between the standard deviation of each invariants σv and its average µv to
measure the error of each invariant. Figure 7.5 shows the values of the invariants. As
can be seen from the �gure, there are more visible changes in the values of invariants
than those in Fig.(7.3). However, the changes are acceptable since all the errors are
below 4.0%, which demonstrates the rotation invariance of the invariants and also
shows their capability of working with real images.

7.3.2 Rotation Invariants in 3D Case

7.3.2.1 Mathematical Preliminaries

To describe 3D rotation mathematically, several conventions can be used. Two most
widely applied conventions are Euler angle convention and Tait�Bryan angle convention
[30]. They di�er from each other in such a way that the Tait�Bryan convention always
uses three angles around x, y, z axes while Euler convention may use the same axis
twice. In other words, the Euler convention has one repeated axis in its de�nition while



2D and 3D Image Analysis by Gaussian�Hermite Moments 153

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.4: The scans of a notice card whose sizes are 1000× 1000 pixels.
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Figure 7.5: The values of the selected invariants computed from the scanned notice
cards. The errors of the invariants over 8 transformed versions are 2.56%,
3.70%, 1.97%, 2.22%, 1.60% and 2.85%, respectively.



154 B. Yang et al.

the Tait�Bryan convention always describes the rotation with the di�erent axes. In
spite of this, there are �intrinsic� rotation and �extrinsic� rotation for both Euler angle
and Tait�Bryan angle conventions. Suppose that the reference coordinate system
is denoted as (x, y, z); correspondingly, the mobile coordinate system is denoted as
(X,Y, Z). �Intrinsic� rotation means that all rotations are performed along the moving
axes. For example, an �intrinsic� rotation described by Euler angles is carried out with
moving axes (Z − X ′ − Z ′′). Comparatively, �extrinsic� rotation is implemented by
rotating along the static axes (z − y − x). Both Euler angle and Tait�Bryan angle
conventions can be used to describe 3D rotation. For convenience, we use �extrinsic�
Tait�Bryan angle convention (z− y−x) in this Chapter. More speci�cally, we discuss
the rotation which rotates �rstly along z axis by angle α. The rotation matrix is,

Rz(α) =




cosα − sinα 0
sinα cosα 0

0 0 1


 . (7.32)

Consequently, a rotation along y axis by angle −β has the rotation matrix as follows,

Ry(−β) =




cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


 . (7.33)

Finally, a rotation along x axis by angle γ is formulated by,

Rx(γ) =




1 0 0
0 cos γ − sin γ
0 sin γ cos γ


 . (7.34)

So, such a 3D rotation can be directly represented by a matrix multiplication,

R = Rx(γ)Ry(−β)Rz(α). (7.35)

Any rotation in 3D space can be decomposed into three successive rotations as de�ned
by Eq.(7.35). In other words, the rotation (z−y−x) by (α,−β, γ) can accomplish an
arbitrary rotation in 3D space. So, we only discuss this speci�c case. The conclusion
is also valid for other rotation conventions.

7.3.2.2 Constructing Rotation Invariants

Theorem 1 o�ers an opportunity of studying the behavior of Hermite polynomials
under 3D rotation, because a 3D rotation is actually composed of three successive
rotations in 2D. We have proved that when 3D rotation occurs, Hermite polynomi-
als behave similarly to monomials. The following Theorem formulates this conclusion
more formally.

Theorem 3. Let p, q, and r be non-negative integers. Let the coordinates be ro-
tated as

(x̂ ŷ ẑ)
T

= R (x y z)
T
, (7.36)
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where T is a matrix transposition. Then

x̂pŷq ẑr =

L(p,q,r)∑

i=1

coni (p, q, r, α, β, γ)xpiyqizri , (7.37)

where L(p, q, r) is a certain number determined by p, q, r. The coni represents a
constant sequence speci�cally related to p, q, r, α, β and γ. The pi, qi, ri are integers
determined by p, q, r. Hermite polynomials are transformed in the same way, i.e. it
holds

Hp(x̂)Hq(ŷ)Hr(ẑ) =

L(p,q,r)∑

i=1

coni (p, q, r, α, β, γ)Hpi(x)Hqi(y)Hri(z). (7.38)

The proof of Theorem 3 can be found in Appendix A of [35]. It is easy to prove that
with the same standard deviations σx = σy = σz, a 3D Gaussian function is rotation
invariant. So, multiplying both sides of Eq.(7.38) by a 3D Gaussian function does not
violate the equality. Finally, we can draw the central conclusion that rotation invari-
ants of Gaussian-Hermite moments have the same constructing formations as those of
rotation invariants of geometric moments in 3D space, which is formally expressed in
the following Theorem.

Theorem 4. If χ is a rotation invariant in geometric moments

χ
(
mαβγ
p1q1r1 ,m

αβγ
p2q2r2 , · · · ,m

αβγ
piqiri

)
= χ (mp1q1r1 ,mp2q2r2 , · · · ,mpiqiri) (7.39)

then χ is also a rotation invariant in Gaussian�Hermite moments, i.e.

χ
(
ηαβγp1q1r1 , η

αβγ
p2q2r2 , · · · , η

αβγ
piqiri

)
= χ

(
ηp1q1r1 , ηp2q2r2 , · · · , ηpiqiri

)
, (7.40)

where ηpqr is a non-coe�cient central 3D Gaussian�Hermite moment

ηpqr =

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

H̃p(x− xc;σ)H̃q(y − yc;σ)H̃r(z − zc;σ)f(x, y, z)dxdydz.

(7.41)
The centroid of the image f(x, y, z) is calculated by xc = m100/m000, yc = m010/m000

and zc = m001/m000. The proof of Theorem 4 is given in Appendix B of [35].
Rotation invariant construction based on Gaussian�Hermite moments becomes con-

venient in 3D space as well. If we �nd a rotation invariant of geometric moments
and then replace the geometric moments by the corresponding Gaussian�Hermite mo-
ments, we obtain a rotation invariant from Gaussian�Hermite moments.
Recently, Suk and Flusser proposed and implemented an automatic method for

generating 3D rotation invariants from geometric moments. Their complete results
are summarized in [27]. A list of 1185 irreducible rotation invariants in 3D space is
available there. These invariants are built up from the moments of order 2 up to order
16. For example,

I1 = µ200 + µ020 + µ002, (7.42)

I2 = µ2
200 + µ2

020 + µ2
002 + 2µ2

110 + 2µ2
101 + 2µ2

011, (7.43)
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I3 = µ3
200 + 3µ200µ

2
110 + 3µ200µ

2
101 + 3µ2

110µ020

+ 3µ2
101µ002 + µ3

020 + 3µ020µ
2
011 + 3µ2

011µ002

+ µ3
002 + 6µ110µ101µ011,

(7.44)

I4 = µ2
300 + µ2

030 + µ2
003 + 3µ2

210 + 3µ2
201

+ 3µ2
120 + 3µ2

102 + 3µ2
021 + 3µ2

012 + 6µ2
111,

(7.45)

I5 = µ2
300 + 2µ300µ120 + 2µ300µ102 + 2µ210µ030

+ 2µ201µ003 + µ2
030 + 2µ030µ012 + 2µ021µ003

+ µ2
003 + µ2

210 + 2µ210µ012 + µ2
201 + 2µ201µ021

+ µ2
120 + 2µ120µ102 + µ2

102 + µ2
021 + µ2

012

(7.46)

are the �rst �ve rotation invariants. According to Theorem 4, we replace every ge-
ometric moment by the corresponding Gaussian�Hermite moment in these invariants
and then we obtain rotation invariants of Gaussian�Hermite moments. For example,
the �rst rotation invariant from Gaussian�Hermite moments is

Φ1 = η200 + η020 + η002. (7.47)

It is possible to use all invariants presented in [27] to build the invariants of Gaussian�
Hermite moments. Following this way, we can easily obtain totally 1185 rotation
invariants of orthogonal Gaussian�Hermite moments.

7.3.2.3 Invariance Veri�cation

As in the 2D case, we verify rotation invariance in 3D space via both synthesized
and real images. A shape showing a dog is selected from Princeton Shape Benchmark
(PSB) [22]. We rasterized this mesh model and inscribed it into 200×200×200 volume,
which is illustrated as the original image in Fig.(7.6a). This original image only had
two values to its voxels: 1 for the object voxels and 0 for those of the background. Ten
random rotations of the original image are generated (see Fig.(7.6b)) and Gaussian�
Hermite invariants Φ4, Φ43, Φ243, Φ584, Φ841 and Φ1012 are calculated for original
image and all its rotated versions. These invariants are respectively constructed from
the moments of di�erent orders (from order 3 to 8). So they represent the invariants
of di�erent orders. The parameter σ = 0.3 is set for invariant computation.
The results are illustrated in Fig.(7.7), from which we can observe that each selected

invariant almost has unchanged values. The corresponding plotting looks like a line.
Moreover, MREs (replacing Vi by Φi in Eq.(7.30)) are also quite tiny and they are far
below 1.0% absolutely. So, rotation invariance is well con�rmed.
We carry out a similar experiment with the real images � real 3D object and its real

rotations in the space. We use a teddy bear and scan it by means of Kinect device,
then we repeat this process �ve times with di�erent orientations of the teddy bear in
the space. Hence, we obtain six 3D scans di�ering from each other by rotation and
also slightly by scale, quality of details and perhaps by some random errors. Figure 7.8
illustrates two samples of the scanned bear. The generating of the scanned image is
as follows. Firstly, it needs scan the bear from several views and Kinect software then
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(a) Original image (b) Rotated image

Figure 7.6: The �Dog� from Princeton Shape Benchmark (PSB).
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Figure 7.7: The values of six selected invariants of the �Dog�. Index 1 indicates the
original image. The errors of the invariants over ten rotations are 0.15%,
0.10%, 0.21%, 0.14%, 0.28%, and 0.18% respectively.
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(a) The �rst scan (b) The second scan

Figure 7.8: Two scans of a teddy bear.

produces a triangulated surface of the object automatically. Secondly, we convert
each teddy bear �gure into 3D volumetric representation of the size approximately
150× 150× 150 voxels. We calculate the �rst 21 invariants Φ1 to Φ21 of each scan,
with the choice of σ = 0.3. For measuring the stability of the invariance, we also
use |σv/µv|% of each invariant. In Fig.(7.9) we show 6 randomly selected invariants
computed from the di�erent scans. Note that we plot the scaled values of the invariants
again for display reason. As can be seen from this �gure, the values of the invariants
have only slight variances; For invariants Φ8 and Φ21 their variances are relatively
greater. The plots look like fold lines. The errors show the details information about
the variances. However, the errors are in reasonably low degree (below 5.0%). So, they
all con�rm the desirable invariance of the proposed invariants in a real environment.

7.4 Image Reconstruction from Gaussian�Hermite

Moments

Image reconstruction is in fact an inverse moment transform and illustrates the dis-
crimination power of the (complete or partial) set of moments. An obvious advantage
of orthogonal moments is their e�ciency in image reconstruction. This e�ciency is
brought by the orthogonality of their basis functions. Generally, it is easy to reconstruct
an image from its orthogonal moments. For orthogonal basis functions ψpq(x, y), im-
age reconstruction from the orthogonal moments Mpq is computed as

f(x, y) =

Nmax∑

p=0

Nmax∑

q=0

Mpqψpq(x, y) (7.48)
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Figure 7.9: The values of six selected invariants of the teddy bear. The errors of the
invariants over six rotations are 2.21%, 1.92%, 3.80%, 2.22%, 2.55%, and
4.90% respectively.
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(an analogous relation holds in any dimension). This reconstruction is �optimal� be-
cause it minimizes the mean square error when using only a �nite set of moments. On
the other hand, image reconstruction from geometric moments cannot be performed
directly in the spatial domain. It is carried out in the Fourier domain using the fact
that geometric moments form Taylor coe�cients of the Fourier transform F (u, v)

F (u, v) =

∞∑

p=0

∞∑

q=0

(−2πi)p+q

p!q!
upvqmpq. (7.49)

Reconstruction of f(x, y) is then achieved via inverse Fourier transform [7]. In this
Section, we �rst recall 2D image reconstruction using Gaussian�Hermite moments as
it was originally presented in [34, 33] and then we extend the reconstruction also to a
3D case.

7.4.1 Image Reconstruction in 2D Case

7.4.1.1 Parameter Selection

Image reconstruction from Gaussian�Hermite moments in 2D space is described by

Î(i, j) =

Nmax∑

p=0

Nmax∑

q=0

ηpqĤp(i,K;σ)Ĥq(j,K;σ). (7.50)

There is a scale parameter σ in the basis functions of Gaussian�Hermite moments
which in�uences the quality of the reconstruction. Given the same moments for image
reconstruction, greater σ produces a larger reconstructed area but a relatively poor
accuracy while less σ results in a smaller reconstructed area, however with better
accuracy. We demonstrate this via reconstructing an image �baboon� whose size is
128 × 128 pixels (see Fig.(7.10a)). The reconstructed images from the same set
of moments are given in Fig.(7.10b) and Fig.(7.10c). Apparently, the reconstructed
images are quite di�erent if we use di�erent σ.

(a) (b) (c) (d)

Figure 7.10: Images reconstructed from Gaussian�Hermite moments. (a) The original
gray�level image �baboon� of size 128×128 pixels. (b) The reconstructed
image from the moments of orders (0, 0) up to (49, 49) with σ = 0.30. (c)
The reconstructed image from the same moments as (b) with σ = 0.1189.
(d) The reconstructed image (c) followed by the normalization.
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Therefore, σ should be selected carefully. We should make a compromise, which
balances the size of the reconstruction area and the accuracy. The role of the σ is to
suppress the boundary part of the image which is prone to reconstruction errors.

It is di�cult or even impossible to �nd any "theoretically optimal" σ. It is a func-
tion of the image size K × K and of the order Nmax of the moments used in the
reconstruction. We solved this experimentally for the complete reconstruction, i.e.
Nmax = K − 1. Provided that σ is a power function of Nmax, we discovered an
empirical relation

σ = 0.9×N−0.52max . (7.51)

In the sequel, we use this choice of σ. For example, Fig.(7.10c) is calculated with
such σ and we can observe that the reconstruction is relatively good, particularly in
comparison with Fig. 7.10(b) where higher σ was used.

There are some defects appearing as horizontal and vertical textures around the
border of image in Fig.(7.10c). We suggest a normalization operation to get rid of
these textures. The normalization operation is described mathematically by

Ĩ(i, j) =
Î(i, j)

∑Nmax

p=0

∑Nmax

q=0 µpqĤp(i,K;σN )Ĥq(j,K;σN )
, (7.52)

where

µpq =

K−1∑

i=0

K−1∑

j=0

Ĥp(i,K;σN )Ĥq(j,K;σN ). (7.53)

Î(i, j) and Ĩ(i, j) denote respectively the reconstructed image from Eq.(7.50) and
the �nal reconstructed image after normalization operation. Figure 7.10d shows the
e�ect of normalization operation. Compared with Fig.(7.10c), the textures around the
border have disappeared.

7.4.1.2 Reconstruction of a Binary Image

An example of reconstructing a binary image is given in this section. A binary image
showing a scorpion serves as the test image. This image has a size 96 × 96 pixels.
We compare the reconstruction power of Gaussian�Hermite moments with the most
popular other moments such as exact Legendre [11], discrete Tchebichef [20] and
Krawtchouk [37] moments. The measure of the reconstruction quality is the number
of di�erent pixels between the original image and the reconstructed image:

e =

K−1∑

i=0

K−1∑

j=0

∣∣∣I(i, j)− T (Î(i, j))
∣∣∣ , (7.54)

where T (z) is the threshold operator:

T (z) =

{
1 z ≥ 0.5

0 z < 0.5
(7.55)
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Figure 7.11: Binary image reconstruction of the image �scorpion� whose size is 96×96
pixels. From left to right, the maximum moment indices are (6, 6),
(12, 12), (27, 27), (42, 42), (57, 57), (72, 72), and (90, 90). From the
top to bottom, each row shows the reconstructions from exact Legen-
dre, discrete Tchebichef, Krawtchouk and Gaussian�Hermite moments,
respectively.

The reconstructed images are displayed in Fig.(7.11) with the corresponding recon-
struction errors recorded in Table 7.1. As can be seen from Fig.(7.11), Gaussian�
Hermite moments produce better reconstruction than the other moments on the whole.
This can be demonstrated visually by the separated claws, however some methods cre-
ate the claws which are connected to be a mass. For each maximum order of the
reconstruction, the reconstruction error corresponding to Gaussian�Hermite moments
is almost the lowest one among all tested methods. This indicates the best performance
in image representation ability of Gaussian�Hermite moments when the reconstruction
of a binary image is required.

7.4.1.3 Reconstruction of a Gray�Level Image

A gray�level image �Lena� whose size is 100 × 100 is used as the test image for
reconstruction. As a measure of the reconstruction quality, we adopt Peak Signal-to-
Noise Ratio (PSNR). The PSNR value is de�ned by

PSNR = 10log10

2552

MSE
, (7.56)
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Table 7.1: Reconstruction error of the image �scorpion�.

Order n 6 12 27 42 57 72 90
Exact Legendre e 1058 727 377 176 78 23 7
Discrete Tchebichef e 1057 727 358 159 55 9 0
Krawtchouk e 1366 1012 191 63 20 1 0
Gaussian�Hermite e 1109 711 215 62 11 0 0

with MSE denoting the Mean Square Error of the reconstructed image with respect
to the original image:

MSE =
1

K2

K−1∑

i=0

K−1∑

j=0

(
I(i, j)− Î(i, j)

)2
. (7.57)

Several selected reconstructed images are shown in Fig.(7.12). The more detailed
information about the PSNR is depicted in Fig.(7.13). As can be seen in Fig.(7.12),
Gaussian�Hermite moments produce the best reconstruction among these four meth-
ods. The detailed information, such as the area around Lena's eyes, are clearly dis-
played in the reconstruction from Gaussian�Hermite moments. Exact Legendre and
discrete Tchebichef however give corrupted reconstruction around the eyes. This is
con�rmed by the reconstruction with the maximum orders equal to 14 and 41 respec-
tively. The plot of PSNR also shows that Gaussian�Hermite moments yield the highest
PSNR at most orders and very close to the highest at the other orders. It should be
however noted that the di�erences in PSNR are not big.

7.4.2 Image Reconstruction in 3D Case

Image reconstruction in 3D case is straightforward with Gaussian�Hermite moments.
The only di�erence is that both the image and the basis functions are three-dimensional.
Assuming that f(x, y, z) is a volumetric image, its Gaussian�Hermite moments are

computed by Eq.(7.7). Image reconstruction therefore has the form

Î(i, j, k) =

Nmax∑

p=0

Nmax∑

q=0

Nmax∑

r=0

ηpqrĤp(i,K;σN )Ĥq(j,K;σN )Ĥr(k,K;σN ). (7.58)

When reconstructing image with Eq.(7.58), σ selection should also be executed by
Eq.(7.51). Equation 7.52 on the other hand should be updated to

Ĩ(i, j, k) =
Î(i, j, k)

∑Nmax

p=0

∑Nmax

q=0

∑Nmax

r=0 µpqrĤp(i,K;σN )Ĥq(j,K;σN )Ĥr(k,K;σN )
,

(7.59)
where

µpqr =

K−1∑

i=0

K−1∑

j=0

K−1∑

k=0

Ĥp(i,K;σN )Ĥq(j,K;σN )Ĥr(k,K;σN ). (7.60)
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Figure 7.12: Image reconstruction of the gray-level image �Lena� of size 100 × 100
pixels. From left to right, the maximum indices of the moments are
(14, 14), (41, 41), (68, 68) and (95, 95). From top to the bottom, the
exact Legendre, discrete Tchebichef, Krawtchouk and Gaussian�Hermite
moments were used.
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Figure 7.13: Comparative study of reconstruction error of exact Legendre, discrete
Tchebichef, Krawtchouk and Gaussian�Hermite moments of the image
�Lena�.

However, since moment computation from volumetric images is time�consuming, the
reconstruction becomes even more tendentiously longer, especially for large images.
So, we conduct 3D image reconstruction only with small images in general.
For comparison purpose, we also consider image reconstruction from geometric

moments in 3D case. We adopt the algorithm based on Fourier transform. In 3D
space, we are able to realize image reconstruct by the following formula

F (u, v, w) =

∞∑

p=0

∞∑

q=0

∞∑

r=0

(−2πi)p+q+r

p!q!r!

( u
K

)p ( v
K

)q (w
K

)r
mpqr. (7.61)

Subsequently, an inverse Fourier transform will generate the reconstructed image. Dis-
crete Tchebichef and Krawtchouk moments are also extended to 3D space and applied
to image reconstruction for comparison. We give an example of 3D image reconstruc-
tion. A mesh model showing a spider is selected from the PSB. We transform the mesh
model into voxels and inscribe it into 100× 100× 100 volume, see Fig.(7.14a). This
volumetric image is binary and has only two values in its voxels: 0 for the background
and 1 for the object.
We reconstruct this image with the di�erent maximum orders (see �gures from

Fig.(7.14b) to (k)). In order to specify the quality of the reconstructed images, the
number of di�erent voxels between the original image and the reconstructed image is
taken as the error measure. As can be seen from Fig.(7.14), the reconstructed images
have ever�increasing quality with the maximum order increasing. We can observe
Fig.(7.14c), (7.14f) and (7.14i) that only the body and the head of the spider are re-
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constructed with lower orders. With the maximum order increasing, Gaussian�Hermite
and Krawtchouk moments reconstruct vividly the legs; however, discrete Tchebichef
moments fail to reconstruct these parts. When the maximum order reaches to 84,
Gaussian�Hermite moments can completely reconstruct the original image (with error
0), which exhibits the best performance in comparison with Krawtchouk moments
(with error only 17) and discrete Tchebichef moments (with error 98). The maximum
achievable order of geometric moment is 84 for the image �Spider�. The computation
of moments whose order is greater than 84 will result in numerical over�ow. However,
even if we use the moments up to the maximum achievable order, the reconstruction
is still of a poor, insu�cient quality (see Fig.(7.14b)). As a result, this experiment
shows that in the 3D case, Gaussian�Hermite moments have better image representa-
tion ability than geometric moments and some orthogonal moments such as discrete
Tchebichef and Krawtchouk moments.

7.5 Application of Gaussian�Hermite Invariants in

Image Registration

In this Section, we demonstrate the application of Gaussian�Hermite invariants (GHIs)
in template matching as well as in image registration. The experiment is carried out
on an aerial image in Fig.(7.15a) which was downloaded from [21]. We rotated this
image by 30◦ clockwise and then shifted it horizontally and vertically by 30 and 40
pixels, respectively. The rotated image served as our reference image. We detected
100 most prominent corners, road junctions and other signi�cant points which we took
as the control point candidates (CPC). Around each CPC we took a circular template
of a diameter 51 pixels, see Fig.(7.16).

To simulate real image degradations, we blurred the original image by a simulated
atmospheric turbulence blur and then a Gaussian white noise was added. We created
two instances with mild and heavy noise, see Fig.(7.15b) and (7.15c). These images
played the role of sensed images (i.e. images to be registered).

Our goal is to locate these 100 templates in two degraded sensed images. The
template matching is carried out by two methods: Geometric invariants (GEIs) and
GHIs. The feature vector is composed of 18 invariants up to the order 5. According
to [5], the feature vector corresponding to GEIs is

Vg =
[
c11, c21c12, Re(c20c

2
12), Im(c20c

2
12), Re(c30c

3
12), Im(c30c

3
12), c22,

Re(c31c
2
12), Im(c31c

2
12), Re(c40c

4
12), Im(c40c

4
12), c32c23, Re(c32c12),

Im(c32c12), Re(c41c
3
12), Im(c41c

3
12), Re(c50c

5
12), Im(c50c

5
12)
]
,

(7.62)
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(a) Original image (b) Order 84 error 8561

(c) Order 26 error 1333 (d) Order 46 error 1003 (e) Order 84 error 98

(f) Order 26 error 955 (g) Order 46 error 435 (h) Order 84 error 17

(i) Order 26 error 1054 (j) Order 46 error 370 (k) Order 84 error 0

Figure 7.14: The reconstruction of a volumetric image by di�erent kinds of moments.
(a) The original image whose size is 100 × 100 × 100 voxels; the re-
constructed images by (b) geometric moments of orders (0, 0, 0) up to
(84, 84, 84), (c) (d) and (e) by discrete Tchebichef moments, (f) (g) and
(h) by Krawtchouk moments. (i) (j) and (k) by Gaussian�Hermite mo-
ments.
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(a) (b) (c)

Figure 7.15: The images used in the experiment. (a) The original aerial image. (b)
The degraded image with mild noise. (c) The degraded image with heavy
noise.

Figure 7.16: The reference image of the size 800× 800 pixels, which is created by 30◦

clockwise rotation of Fig.(7.15a) and then shifted 30 pixels along x axis
direction and 40 pixels along y axis direction. We selected 100 templates,
four of them are displayed as examples.
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Table 7.2: The number of detected templates with the matching error less than thresh-
old E.

Mild noise Heavy noise
E 2.0 4.0 6.0 8.0 2.0 4.0 6.0 8.0
GEI 65 76 78 78 62 70 72 73
GHI 95 97 99 100 91 93 93 94

where cpq is a complex moment of the image. The one from GHIs has a similar form

Vh =
[
d11, d21d12, Re(d20d

2
12), Im(d20d

2
12), Re(d30d

3
12), Im(d30d

3
12), d22,

Re(d31d
2
12), Im(d31d

2
12), Re(d40d

4
12), Im(d40d

4
12), d32d23, Re(d32d12),

Im(d32d12), Re(d41d
3
12), Im(d41d

3
12), Re(d50d

5
12), Im(d50d

5
12)
]
.

(7.63)
During the matching the feature of a template is compared with those of the windows
centered in each pixel in the degraded image. The smallest Euclidean distance in
the feature space determines the matching result. Since we know the ground-truth
transformation parameters, it is easy to compute the ground-truth position of each
template in the degraded images. The matching error Ei of the i-th template is
calculated as the distance between the center of the ground truth and that of the
detected template in the degraded image. Table 7.2 shows the number of the templates
the error of which was less than a given threshold E. This number is a success measure
on a given level of tolerance.
The data in Table 7.2 show that the GHIs produce better matching results than the

GEIs. For the image with mild degradation, GHIs can recognize 97 templates with
E < 4.0; comparatively, GEIs just recognize 76 templates within the same error. All
the templates matched by GHIs have errors below 8.0. This number is much greater
than that of GEIs. In case of heavy noise, both invariants produce less satisfactory
matchings. Anyway, also here GHIs outperform GEIs on all tolerance levels.
Now the centers of the corresponding templates can be used as control points (CPs)

for image registration. We need to estimate the transformation parameters and then
resample the image.
Although we know that there is actually no between-image scaling, we still assume a

more general similarity transformation because in practice we would not know whether
or not a scaling is present. Such a transformation has four parameters, so theoretically
two CP pairs are su�cient to �nd them. Since we have 100 CP pairs, we apply
standard least-square �t. We de�ne the directional errors exi and eyi for the i-th
template as

(
exi
eyi

)
=

(
a −b
b a

)(
xi
yi

)
+

(
g
h

)
−
(
ui
vi

)
, (7.64)

where a, b, g and h are the parameters to be derived and (xi, yi) and (ui, vi) are the
coordinates of the corresponding CPs in the sensed and reference images, respectively.
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The relationship between a and b on one hand and the scaling s and rotation angle α
is a = s cosα and b = s sinα.
We minimize a sum of error squares (N = 100 in our case)

λ =

N∑

i=1

(ex2i + ey2i ), (7.65)

which is done by setting partial derivatives of λ to zero

∂λ

∂a
= 0,

∂λ

∂b
= 0,

∂λ

∂g
= 0,

∂λ

∂h
= 0. (7.66)

Eq.(7.66) leads to a linear system of equations which directly provides the unknown
parameters




∑N
i=1(x2i + y2i ) 0

∑N
i=1 xi

∑N
i=1 yi

0
∑N
i=1(x2i + y2i ) −

∑N
i=1 yi

∑N
i=1 xi∑N

i=1 xi −
∑N
i=1 yi N 0∑N

i=1 yi
∑N
i=1 xi 0 N


×




a
b
g
h




=




∑N
i=1(xiui + yivi)∑N
i=1(xivi − yiui)∑N

i=1 ui∑N
i=1 vi


 . (7.67)

When registering the image in Fig.(7.15b) by means of GHIs, the above algorithm
yields the parameters a = 0.8660, b = 0.5001, g = 30.3304, and h = 39.7996, which
means the estimated angle of rotation is 30.006◦, the scaling is 1.00003 and translation
is 30.3 pixels in x axis and 39.8 pixels in y axis. These values are almost equal to
the ground truth. When we repeat the same for the GEIs, we obtain a = 0.6873,
b = 0.3669, g = 31.7804, and h = 31.9471, which yield the rotation angle 28.09◦ and
the scaling 0.7791. All these values are quite far from the ground truth.
This experiment illustrates that the GHIs, thanks to their stability, yield better

template matching results than the traditional GEIs and hence provide more accurate
estimation of registration parameters.

7.6 Conclusion

The orthogonal Gaussian�Hermite moments are introduced in this chapter. We show
how to derive rotation invariants from this kind of moments in both 2D and 3D spaces.
The proposed method enables us to use geometric invariants to generate Gaussian�
Hermite invariants. Since geometric invariants have been systematically studied, we
are able to obtain Gaussian�Hermite invariants as many as the existing geometric
invariants. Moreover, we can also take advantage of the better numerical stability of
the orthogonal moments in the generated invariants.
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The better image representation ability is also demonstrated in comparison with
exact Legendre algorithm, discrete Tchebichef and Krawtchouk moments. The ex-
perimental results show that Gaussian�Hermite moments outperform these popular
moments in image reconstruction. Besides, the reconstruction can also be extended
to 3D case.

The application in image registration was presented to show the potential usage of
Gaussian�Hermite moments and their invariants. It indicates that Gaussian�Hermite
moments and their invariants are useful tools in image processing and pattern recog-
nition and may replace the other moments used so far in many applications.
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