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The paper describes the calculation of the Krawtchouk Moments (KMs) from an image,
which is a computationally demanding task. We present two original methods that use
the outputs of cascaded digital filters in deriving KMs. The first approach uses the digital
filter outputs to form geometric moments (GMs) and the KMs are obtained via GMs. The
second method uses a direct relationship to obtain KMs from the digital filter outputs. This
is possible thanks to the formulation of Krawtchouk polynomials in terms of binomial func-
tions, which are equivalent to the digital filter outputs. In this study, the performance of
the proposed techniques is compared with other existing methods of KMs calculation.
The experimental study shows that the first and the second proposed techniques perform
57% and 87% faster than the recurrence method for a real image of a size 128� 128 pixels,
which performs a significant improvement.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Thanks to a rapid development of imaging technologies, sensors, and a growing number of application areas, computer
image analysis has become an established discipline. One of the major areas is designing of efficient image descriptors.
Among them, various kinds of moment functions have played an important role and have been widely used to extract image
features for object recognition [12,5,10,6,53,16,24], template matching [15], edge detection [22], robot vision [31], robust
watermarking [14,50,28] and data compression [1]. Moments are projections of the image onto a polynomial basis and often
perform an advantageous alternative to harmonic [30] and locally-supported [48] bases. Since moments have been applied
on images of complex scenes, we can observe an ongoing concern of the researchers for reducing the computation time with-
out any loss of accuracy.

The computational time is determined basically by three factors. The first one is what polynomial basis we used for
moment construction, the second one is the particular numerical algorithm, and the last one is the class of images we work
with (for instance, moments of binary images can be calculated much faster than that of general graylevel images).

At the beginning, the authors mostly worked with geometric moments (i.e. moments w.r.t. the basis xpyq) and several
frequently-cited papers used GMs to construct various invariants [23,10,11]. Hence, numerous methods for fast computation
of GMs have appeared (see [12], Chapter 7, for a general survey and [39] for a survey of binary image algorithms).

In order to reach better numerical stability of the moments, several authors proposed to use various orthogonal polyno-
mial bases and consequently continuous orthogonal moments. This idea comes from Teague [40] who proposed to employ
Zernike moments (ZMs) which are orthogonal inside a unit circle. Orthogonality on a circle is an advantageous property
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when one constructs rotation invariants. If this is not the main concern, then moments orthogonal on a square, such us
Legendre moments (LMs) [41], Tchebichef moments (TMs) [34], Gauss–Hermite moments (GHMs) [49], Gegenbauer
moments and Jacobi moments [12] are used more frequently because they do not require polar resampling of the image.
Orthogonal moments have found a wide range of applications in character recognition, face recognition, direction-of-arrival
estimation, and trademark segmentation and retrieval [38,8,9,25,13,37,21,17]. However, using these continuous moments
for discrete images brings certain problems in computation: they require coordinate transformation of the image into the
area of orthogonality and suitable discrete approximation of the integrals. Such an approximation usually violates the exact
orthogonality and results in the occurrence of errors when calculating the moments numerically.

To eliminate this kind of errors, discrete orthogonal moments appeared in the literature. Typically they are constructed in
1D domain and their extensions to higher dimensions is done by multiplication of respective 1D polynomials which results
in a discrete orthogonality on a hypercube. They are particularly suitable for digital images since they do not require coor-
dinate transformation and the discretization step in the moment computation. Discrete Tchebichef, Krawtchouk, dual Hahn
and Racah moments (TMs, KMs, HMs, and RMs) are typical representatives of this moment family
[34,33,36,51,35,43,52,57,56].

Yap et al. [51] proposed to use the Krawtchouk moments as image descriptors. Thanks to discrete orthogonality of the
KMs, their experimental results show that the KMs are better in terms of reconstruction error when compared with Zernike,
Legendre and Tchebichef moments. They derived KM invariants by using indirect method (IDM). In IDM, moment invariants
are obtained by using invariants of GMs. In [51], Krawtchouk polynomials are expressed in terms of monomials and KM
invariants are derived using a linear combination of GM invariants. Hence by using these moment invariants, perfect invari-
ance cannot be achieved for digital images since the derivation of these invariants are not based on Krawtchouk polynomials.
Venkataramana and Raj [44] derived scale and translation invariants of KMs using direct method (DM). They derived the
scale invariants by algebraically eliminating the scale factor contained in the scaled KMs. They proposed the modified
KMs which preserve the translation invariant property by assuming that discrete weighted Krawtchouk polynomials are
periodic with each period equal to the number of data points and these polynomials are shifted to the centroid. KMs have
been also used in invariant image watermarking by Zhang et al. [54].

When considering numerical properties and implementation issues, the motivation for introducing OG moments
becomes particularly apparent. Orthogonal polynomials can be evaluated by recurrent relations which yields in fast and
numerically stable calculation. From this point of view it is not generally recommended to evaluate OG polynomials by
expanding them into standard powers. Such approach would inevitably lead to a loss of precision due to possible overflow
and/or underflow. Even if these expansions are commonly presented in literature, they should serve for illustration and/or
theoretical considerations rather than for numerical calculations. Many algorithms have been developed for fast computa-
tion of moment functions such as GMs, ZMs, LMs, TMs and exact Zernike moments (EZMs). Hatamian [18] used cascaded all-
pole filters to compute GMs consecutively. Honarvar and Paramesran [19] used a set of lower output values of digital filters
to formulate the GMs. They derived the new formulation of GMs based on the Stirling numbers. Honarvar et al. [4] proposed
another algorithm based on a reduced 2D digital filter structure for fast implementation of GMs. Kotoulas and Andreadis [26]
applied an accumulator grid to compute ZMs in a real-time domain. Zhou et al. [55] proposed two new algorithms for effi-
cient computation of LMs. Wang and Wang [46] presented parallel recursive computation of the inverse LMs for signal and
image reconstruction. The same authors proposed a recursive method for computation of Tchebichef moments and their
inverse transform using Clenshaw’s formula [45]. Lim et al. [29] used cascaded digital filters to compute EZMs. Chang
et al. [7] showed a hardware structure to implement TMs via GMs. Honarvar et al. [20] proposed a fast recursive computation
of TM and its inverse transform based on Z-transform. Raj and Venkataramana [35] proposed a fast computation algorithm of
inverse KM transform using Clenshaw’s recurrence formula.

In this paper, we concentrate on numerical calculation of Krawtchouk moments since they already approved advanta-
geous properties for image analysis. We propose two novel algorithms to derive the KMs by means of cascade digital filters
with a suitable impulse response. In the first algorithm, the KMs are obtained from the GMs via digital filter outputs. In the
second method, the Krawtchouk polynomials are modified to be used directly with the same digital filter outputs. The
desired image is considered as an input of the proposed digital filter structure and the filter outputs are converted to
KMs using linear combinations. Experimental results on real images demonstrates that this structure is faster than the tra-
ditional algorithms which have used the direct and recursive computation of KMs.

This paper is organized as follows. Section 2 presents the definition of Krawtchouk polynomials and moments. A brief
review of GMs implementation using digital filter outputs is given in Section 3. Section 4 shows the proposed methods to
compute KMs via cascaded digital filters. Section 5 validates the theoretical frameworks presented in the previous sections
through experimental study. Concluding remarks are given in Section 6.
2. Krawtchouk polynomials and moments

In this section, we recall Krawtchouk polynomials and their expansion in terms of monomials. These polynomials were
introduced by Soviet Ukrainian mathematician Mikhail P. Krawtchouk (sometimes spelled Kravchuk) in 1929 [27] and later
generalized into a form of Meixner polynomials [32]. Krawtchouk polynomials were introduced into image processing area
by Yap et al. [51].
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2.1. Krawtchouk polynomials

The nth degree classical Krawtchouk polynomial is defined as
Knðx; p;NÞ ¼
XN

k¼0

ak;n;pxk¼2F1 �n;�x;�N;
1
p

� �
; ð1Þ
where x;n ¼ 0;1;2; . . . ;N, N > 0; p 2 ð0;1Þ is a localization parameter and 2F1ð�Þ is the generalized hypergeometric function
2F1ða; b; c; zÞ ¼
X1
k¼0

ðaÞkðbÞk
ðcÞk

zk

k!
; ð2Þ
and ðxÞk is the Pochhammer symbol given by
ðxÞk ¼ xðxþ 1Þðxþ 2Þ � � � ðxþ k� 1Þ; k P 1 and ðxÞ0 ¼ 1: ð3Þ
The normalized and weighted Krawtchouk polynomials, Knðx; p;NÞ are defined as [51]
Knðx; p;NÞ ¼ Knðx; p;NÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðx; p;NÞ
qðn; p;NÞ

s
; ð4Þ
where the weight function, wð�Þ and the square norm, qð�Þ are given as
wðx; p;NÞ ¼
N

x

� �
pxð1� pÞN�x

; ð5Þ
and
qðn; p;NÞ ¼ p� 1
p

� �n n!

ð�NÞn
: ð6Þ
The normalized and weighted Krawtchouk polynomials have the following three-term recurrence relation:
pðn� NÞKnþ1ðx; p;NÞ ¼ A p N � 2nð Þ þ n� x½ �Knðx; p;NÞ � Bnð1� pÞKn�1ðx; p;NÞ; ð7Þ
where
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞðnþ 1Þ

pðN � nÞ

s
;

B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ2ðnþ 1Þn

p2ðN � nÞðN � nþ 1Þ

s
;

with
K0ðx; p;NÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðx; p;NÞ

p
;

K1ðx; p;NÞ ¼ 1� 1
Np

x
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wðx; p;NÞ
p

:

The weighted Krawtchouk polynomials up to the degree three for p ¼ 0:5 and p ¼ 0:2 are shown in Fig. 1(a) and (b),
respectively. The graphs illustrate the role of the localization parameter p which enables to shift the polynomials to the
region of interest.

2.2. Krawtchouk moments

The 2D Krawtchouk moment of order ðnþmÞ of a discrete image intensity function f ðx; yÞ with a support of N �M pixels
is defined as [51]
Q nm ¼
XN�1

x¼0

XM�1

y¼0

Knðx; p1;N � 1ÞKmðy; p2;M � 1Þf ðx; yÞ: ð8Þ
The orthogonality property leads to the following inverse moment transform
f ðx; yÞ ¼
XN�1

n¼0

XM�1

m¼0

QnmKnðx; p1;N � 1ÞKmðy; p2;M � 1Þ: ð9Þ
If only the moments of order up to ðNmax;MmaxÞ are computed, then the reconstructed image in (9) can be approximated
by
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Fig. 1. Weighted Krawtchouk polynomials up to the degree three for N ¼ 100: (a) p ¼ 0:5 and (b) p ¼ 0:2.
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~f ðx; yÞ ¼
XNmax

n¼0

XMmax

m¼0

Q nmKnðx; p1;N � 1ÞKmðy; p2;M � 1Þ: ð10Þ
The Krawtchouk moments in (8) can be expressed in terms of GMs as [51]
Qnm ¼ qðn;p1;NÞqðm;p2;MÞ½ ��
1
2
Xn

i¼0

Xm

j¼0

ai;n;p1
aj;m;p2

mij; ð11Þ
where mij are the geometric moments that can be obtained from
mij ¼
XN�1

x¼0

XM�1

y¼0

xiyjf ðx; yÞ; ð12Þ
and fak;n;pg are coefficient determined by (1).
3. Computation of the GMs via cascaded digital filters

Hatamian [18] proposed an all-pole filter based structure to compute GMs up to the 16th order. Fig. 2 shows a single pole
digital filter with transfer function 1=ðz� 1Þ, which is equivalent to an accumulator with unity feedback. This accumulator



Fig. 2. Single-pole filter structure as an accumulator in feed-forward path.
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has a delay in the feed-forward path. The cascaded digital filter outputs correspond to the transfer function 1=ðz� 1Þpþ1, as
can be shown in the following form
ypðN þ pþ 1Þ ¼
XN�1

x¼0

f ðxÞ
xþ pþ 1

p;

� �
; ð13Þ
where p is the GMs order and N is the length of 1D signal, f ðxÞ. Notice that, the input image should be reversed. As shown in
Fig. 4(a), the digital filter outputs are sampled at point N þ pþ 1.

The relationship between GMs and the all-pole digital filter outputs for a 2D image is expressed as
mp;q ¼
Xp

r¼0

Cp;r

Xq

s¼0

Cq;syr;s; ð14Þ
where yr is the rth digital filter output and Cp;r is a matrix of coefficients directly obtained from the impulse response of the
all-pole digital filters as given in [3]:
Cpr ¼
0; p < r;

ð�1Þp; r ¼ 0;
rCp�1;r�1 � ðr þ 1ÞCp�1;r; otherwise:

8><
>: ð15Þ
To overcome the problem caused by the delay elements in the feed-forward path, Wong and Siu [47] moved the delay
element to the feedback path of the filter, as shown in Fig. 3. The transfer function is given as
HpðzÞ ¼
1

1� z�1

� �pþ1

: ð16Þ
In this case, the relationship between the digital filter outputs and the input signal is
ypðN � 1Þ ¼
XN�1

x¼0

f ðxÞ
xþ p

p

� �
: ð17Þ
As shown in Fig. 4(b), the outputs are sampled at the same point N � 1. However, for a 2D image, the GMs are obtained
from the digital filter outputs and a different matrix coefficient is used, as shown below:
mp;q ¼
Xp

r¼0

Dp;r

Xq

s¼0

Dq;syr;s; ð18Þ
where the coefficients of Dp;r are obtained from the following recurrence formula shown in [2].
Dpr ¼
0; p > 0; r ¼ 0;
1; p ¼ 0; r ¼ 0;
rðDp�1;r�1 � Dp�1;rÞ; otherwise:

8><
>: ð19Þ
Fig. 3. Single-pole single-zero filter structure as an accumulator in feed-back path.



Fig. 4. 1D cascaded digital filter structure for generating desired outputs up to pth order based on three sampled outputs using different time intervals. (a)
Hatamian’s approach using the sampled outputs at the increasing time intervals, N þ pþ 1. Each block is similar to the filter shown in Fig. 2, (b) Wong and
Siu’s approach using the sampled outputs at the same time interval, N � 1. Each block is similar to the filter shown in Fig. 3 and (c) proposed approach using
the sampled outputs at the decreasing time intervals, N � p� 1. Each block is similar to the filter shown in Fig. 3.
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4. Computation of the KMs via cascaded digital filters

In this section, we first show that a cascaded feed-back digital filter outputs can be sampled at the earlier time intervals.
In the second subsection, we define a weighted geometric moments based on the weight function of Krawtchouk polynomi-
als to represent the KMs with respect to them. Third subsection shows how the KMs can be computed efficiently in terms of
the cascaded digital filter outputs. Finally, a matrix representation of 2D KMs expresses the direct calculation of these
moments based on the filter outputs.

4.1. Feed-back accumulator outputs with earlier sampled time intervals

The transfer function of a cascaded filter, HpðzÞ ¼ 1=ð1� z�1Þpþ1 can be created by a series of p cascaded accumulators.
Such a filter as shown in Fig. 4(c), given an input f ðxÞ, produces a sampled output at earlier points of N � p� 1 as
ypðN � p� 1Þ ¼
XN�1

x¼0

f ðxÞ
x

p

� �
: ð20Þ
As shown in Fig. 4(c), this formulation makes it possible for the digital filter outputs to be sampled at earlier points,
N � 1;N � 2;N � 3; . . . ;N � p� 1. Meanwhile, this set of output values starts to decrease after p=2 moment orders. In this
case, the GMs are obtained from the digital filter outputs, yr , as follows:
mp ¼
Xp

r¼0

Ep;ryr; ð21Þ
where the coefficients of Ep;r are calculated from the following recurrence formula:
Epr ¼
0; p < r;

1; r ¼ 0;
rEp�1;r�1 þ ðr þ 1ÞEp�1;r ; otherwise:

8><
>: ð22Þ
A 2D accumulator grid is shown in Fig. 5 and consists of one row and ðpþ 1Þ columns based on single-pole single-zero
filters. The filter output for an input image, f ðx; yÞ with size N �M is given by the following expression:
yp;qðN � p� 1;M � q� 1Þ ¼
XN�1

i¼0

XM�1

j¼0

i

p

� �
j

q

� �
f ði; jÞ: ð23Þ
4.2. Computation of KMs using GMs via digital filters

Since a weighted function, wðx; p;NÞ is used to obtain the KMs, hence the GMs need to be weighted by the same function.
We can define the GMs of a 2D weighted image ~f ðx; yÞ using the discrete approximation as
mpq ¼
XN�1

x¼0

XM�1

y¼0

xpyq~f ðx; yÞ; ð24Þ
where ~f ðx; yÞ ¼ f ðx; yÞWðx; yÞ and Wðx; yÞ is defined as



Fig. 5. A 2D digital filter structure for generating desired outputs up to third order. Each block in the array is a single-pole single-zero filter similar to the
filter in Fig. 3.
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Wðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðx; p1;N � 1Þwðy; p2;M � 1Þ

p
: ð25Þ
By using (21), the GMs can be expressed as a set of linear combination of digital filter outputs:
mpq ¼
Xp

r¼0

Xq

s¼0

EprEqsyr;s; ð26Þ
where
yr;s ¼
XN�1

x¼0

XM�1

y¼0

~f ðx; yÞ
x

p

� �
y

q

� �
: ð27Þ
Note that (27) is the weighted version of (20) in 2D form. We now show a relationship between the Krawtchouk polyno-
mials and monomials. First, by expanding the Pochhammer symbol in terms of binomial coefficients, we obtain:
ð�xÞk ¼ ð�1Þkk!
x

k

� �
: ð28Þ
With the above identity and the definition of hypergeometric function in (2), the orthogonal Krawtchouk polynomial in (1)
can also be written as
Knðx; p; NÞ ¼
Xn

k¼0

ð�nÞk
ð�NÞk

�1
p

� �k x

k

� �
: ð29Þ
Eq. (29) can be expressed in terms of monomial, x as
Knðx; p; NÞ ¼
Xn

k¼0

Ckðn;p;NÞ
Xk

i¼0

sðk; iÞxi; ð30Þ
where
Ckðn;p;NÞ ¼
ð�nÞk

k!ð�NÞk
�1

p

� �k

;

and sðk; iÞ are the Stirling numbers of the first kind [42], which satisfies
x

k

� �
¼ 1

k!

Xk

i¼0

sðk; iÞxi: ð31Þ
The polynomial expansion in (30) is useful in expressing the KMs in terms of GMs. Using (8) and (30), the KMs of an image
can be expressed in terms of weighted GMs as follows:
Q nm ¼ AnAm

Xn

k¼0

Ckðn; p1;N � 1Þ
Xm

i¼0

Clðm; p2;M � 1Þ
Xk

i¼0

Xm

j¼0

sðk; iÞsðl; jÞmij; ð32Þ
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where
An ¼ qðn; p;N � 1Þ½ ��
1
2:
Using (26), the KMs of order ðn;mÞ, can be obtained
Qnm ¼ AnAm

Xn

k¼0

Ckðn; p1;N � 1Þ
Xm

i¼0

Clðm;p2;M � 1Þ �
Xk

i¼0

Xm

j¼0

sðk; iÞsðl; jÞ
Xi

r¼0

Xj

s¼0

Ei;rEj;syr;sðN � r � 1;M � s� 1Þ: ð33Þ
Fig. 6 shows the generating process of the KMs computation using filter outputs via GMs in block diagram form.

4.3. Direct computation of KMs via digital filters

In this subsection, a direct relationship between KMs and digital filter outputs is derived. Then, by using the 2D KMs def-
inition in (8), the weighted and normalized functions in (4) and the binomial form of the Krawtchouk polynomials in (29), we
obtain the following expression:
Q nm ¼ AnAm

Xn

k¼0

k!Ckðn; p1;N � 1Þ
x

k

� �Xm

l¼0

l!Clðm;p2;M � 1Þ
y

l

� �XN�1

x¼0

XM�1

y¼0

~f ðx; yÞ; ð34Þ
or
Q nm ¼ AnAm

Xn

k¼0

k!Ckðn; p1;N � 1Þ
Xm

l¼0

l!Clðm;p2;M � 1Þ
XN�1

x¼0

XM�1

y¼0

~f ðx; yÞ
x

k

� �
y

l

� �
: ð35Þ
The last double summations of Eq. (35) are equivalent to the digital filter outputs which are described in (27). Therefore,
the 2D KMs can be acquired from cascaded digital filter outputs using the following formula:
Qnm ¼ AnAm

Xn

k¼0

Xm

l¼0

k!l!Ckðn; p1;N � 1ÞClðm;p2;M � 1Þyk;lðN � k� 1;M � 1� lÞ: ð36Þ
All the aforementioned stages are shown in block diagram form in Fig. 7.

4.4. Matrix representation of the proposed direct method

In matrix form, the generated KMs in (36) can be defined as a matrix Q,
Q ¼ ðAnAmÞW1YWT
2; ð37Þ
where ð�ÞT denotes the transpose of the matrix and
Q ¼ Qnmf gn;m¼N�1
n;m¼0 ; ð38Þ

Wi ¼
ðn�mþ 1Þm
pm

i ð1� NÞm

� �n;m¼N�1

n;m¼0

; i ¼ 1;2:

Y ¼ ynmf gn;m¼N�1
n;m¼0 :
Y is a 2D matrix with the elements of filter outputs. For a 4� 4 image, the matrix representation of KMs in terms of filter
outputs can be expressed as
Q 00 Q01 Q 02 Q03

Q10 Q 11 Q12 Q 13

Q20 Q 21 Q22 Q 23

Q30 Q 31 Q32 Q 33

0
BBB@

1
CCCA¼ðAnAmÞ

1 0 0 0
1 1

p1ð1�NÞ 0 0

1 2
p1ð1�NÞ

1
p2

1
ð1�NÞð2�NÞ 0

1 3
p1ð1�NÞ

6
p2

1
ð1�NÞð2�NÞ

6
p3

1
ð1�NÞð2�NÞð3�NÞ

0
BBBBB@

1
CCCCCA

y00 y01 y02 y03

y10 y11 y12 y13

y20 y21 y22 y23

y30 y31 y32 y33

0
BBB@

1
CCCA

1 1 1 1
0 1

p2ð1�NÞ
2

p2ð1�NÞ
3

p2ð1�NÞ

0 0 1
p2

2
ð1�NÞð2�NÞ

6
p2

2
ð1�NÞð2�NÞ

0 0 0 6
p3

2
ð1�NÞð2�NÞð3�NÞ

0
BBBBB@

1
CCCCCA:

ð39Þ
Fig. 6. Block Diagram for generating KMs via GMs.



Fig. 7. Block diagram for direct generating of the KMs via filter outputs.
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If p1 ¼ p2 ¼ 1
2, the KMs of the second order can be reduced to the following equations:
Q 02 ¼
ffiffiffi
3
p

y00 �
4
3

y01 þ
4
3

y02

� �
; ð40Þ

Q 20 ¼
ffiffiffi
3
p
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4
3

y10 þ
4
3

y20

� �
;

Q 11 ¼ 3 y00 �
2
3

y01 �
2
3

y10 þ
4
9

y11

� �
:

5. Experimental results

We have conducted various numerical experiments in order to prove the validity, accuracy and the efficiency of the pro-
posed methods. The detailed description of these numerical experiments is presented in this section. The performance of the
proposed methods is evaluated and compared with the existing methods for computing KMs. This section is divided into two
subsections.

In the first subsection, the accuracy of the proposed methods is proved by computing of the KMs using recursive algo-
rithm. Its efficiency is discussed with respect to the computational time of the KMs in the second subsection. CPU elapsed
times are used to show the efficiency of the proposed methods where these elapsed times are computed and compared using
both the proposed methods (filter method via GMs and filter direct method) and the existing conventional methods (KMs via
GMs and recursive methods) in the same computing environment.

5.1. Accuracy of the proposed methods

In order to analyze the effect of Eqs. (8), (33) and (36) in computing of KMs, ten random orders of KMs were computed for
two gray-scale real images of a resolutions of 128� 128 (‘Bridge’) and 256� 256 (‘Man’). These images are benchmark
images which are commonly used in the image processing field and are shown in Fig. 8.

The first experiment verifies the accuracy of the derived KMs. Table 1 displays the exact values of KMs derived by recur-
sive method and those calculated by the proposed digital filter via GMs and the proposed digital filter direct method for
128� 128 image. In this experiment, we compute the KM values for p ¼ 0:1;0:5;0:9, respectively. It is clear from the
Fig. 8. Gray-scale images. (a) Bridge ð128� 128Þ and (b) Man ð256� 256Þ.
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Table that the KMs derived from the both methods are very close to the exact values but still the direct method is slightly
more accurate than the filter vie GMs. It is because Eq. (33) requires the computation of coefficients Ck; Ei;r and the Stirling
numbers, while Eq. (36) only requires the computation of coefficients Ck.

In the second experiment, we repeated the previous setup but used the image of ‘Man’ of a size of 256� 256 pixels.
Table 2 displays the KM values derived from (8) and compares them with the KM values derived from (33) and (33) for
p ¼ 0:1;0:5;0:9. We can see that the conclusion is basically the same as in the first experiment. Hence, we can summarize
that both our proposed algorithms do not noticeably affect the values of KMs even if the parameter p changes.

5.2. Computational time

In moment calculation, the time is a critical issue because in general the calculation of moments is time expensive and
fast algorithms may help a lot. Their importance is even more apparent if we are aware that a typical application of moments
is in object recognition where a close-to-realtime performance is desirable. We tested the time complexity of the proposed
methods (Eqs. (33) and (36)) and compared it to two reference algorithms: the indirect method (Eqs. (11) and (12)) and the
recursive algorithm (Eqs. (7) and (8)). The experiments were performed on a PC equipped with 3.0 GHz CPU and 2 GB RAM.

In this experiment, four gray-scale standard benchmark images of different sizes were used as test images. The images are
‘Boat’, ‘Cameraman’, ‘Peppers’ and ‘Lena’ with resolutions of 64� 64;128� 128;256� 256 and 512� 512 pixels, respec-
tively. They are shown in Fig. 9.

In all images we set p1 ¼ p2 ¼ 0:5 and computed KMs using the aforementioned algorithms. Table 3 contains the compu-
tation time up to the indices ð60;60Þ for the ‘‘Boat’’ image. The results show that both our proposed methods perform by far
better than the two traditional algorithms. Moreover, the method, which uses the filter output directly, significantly outper-
forms all others including the filter method via GMs. As an example, for zero order KM, the direct digital filter method is
about 109 times faster than the recursive method and for 60th order of KMs for the same image, it is 28 times faster than
the recursive method.

We repeated this experiment for the other three images. The maximum index of the evaluated KMs was always equal to
the size of the image. The results are summarized in Table 4 for the ‘‘Cameraman’’, in Fig. 10 for the ‘‘Peppers’’, and in Fig. 11
Table 1
Comparison of the computed values of the KMs using recursive, digital filter via GMs and digital filter direct methods for image shown in Fig. 8(a).

p1 ¼ p2 ¼ 0:1 p1 ¼ p2 ¼ 0:5 p1 ¼ p2 ¼ 0:9

Orders Recursive
method Eqs.
(7) and (8)

Proposed
method Eq.
(33)

Proposed
method Eq.
(36)

Recursive
method Eqs.
(7) and (8)

Proposed
method Eq.
(33)

Proposed
method Eq.
(36)

Recursive
method Eqs.
(7) and (8)

Proposed
method Eq.
(33)

Proposed
method Eq.
(36)

Q0;0 11.3148 11.3150 11.3141 9.8762 9.8766 9.8759 5.1329 5.1331 5.1325
Q9;50 �0.6951 �0.6947 �0.6953 0.0120 0.0122 0.1217 0.6478 0.6479 0.6473
Q31;95 0.1204 0.1209 0.1201 �0.0971 �0.0968 �0.0969 0.3807 0.3803 0.3808
Q4;54 0.6712 0.6720 0.6717 1.1741 1.1745 1.1743 1.2374 1.2375 1.2371
Q63;110 �0.0548 �0.0535 �0.0541 0.0350 0.0353 0.0348 0.1752 0.1750 0.1755
Q20;86 0.4140 0.4141 0.4144 0.0723 0.0725 0.0721 0.4279 0.4276 0.4281
Q106;35 �0.2232 �0.2230 �0.2236 0.0202 0.0206 0.0202 0.1853 0.1858 0.1856
Q97;44 �0.1389 �0.1382 �0.1392 �0.1022 �0.1025 �0.1020 0.3666 0.3669 0.3662
Q127;14 0.0260 0.0263 0.0258 0.0127 0.0125 0.0129 �0.0148 �0.0150 �0.0144
Q127;127 0.0027 0.0025 0.0029 �0.0190 �0.0192 �0.0188 �0.0211 �0.0209 �0.0215

Table 2
Comparison of the computed values of the KMs using recursive, digital filter via GMs and digital filter direct methods for image shown in Fig. 8(b).

p1 ¼ p2 ¼ 0:1 p1 ¼ p2 ¼ 0:5 p1 ¼ p2 ¼ 0:9

Orders Recursive
method Eqs.
(7) and (8)

Proposed
method Eq.
(33)

Proposed
method Eq.
(36)

Recursive
method Eqs.
(7) and (8)

Proposed
method Eq.
(33)

Proposed
method Eq.
(36)

Recursive
method Eqs.
(7) and (8)

Proposed
method Eq.
(33)

Proposed
method Eq.
(36)

Q0;0 9.5407 9.5402 9.5409 5.9698 5.9693 5.9694 13.3342 13.3343 13.3347
Q15;8 �0.7600 �0.7603 �0.7606 �1.3402 �1.3406 �1.3401 1.1947 1.1942 1.1948
Q34;158 0.2211 0.2208 0.2212 0.0538 0.0541 0.0532 0.1983 0.1980 0.1983
Q127;127 0.4715 0.4716 0.4718 �0.0198 �0.0199 �0.0194 0.1725 0.1724 0.1727
Q96;25 �0.6975 �0.6972 �0.6977 �0.0621 �0.0626 �0.0619 0.8048 0.8042 0.8049
Q142;230 �0.0260 �0.0258 �0.0262 0.0027 0.0021 0.0029 0.0684 0.0682 0.0685
Q185;31 �0.0890 �0.0888 �0.0889 0.0235 0.0231 0.0238 0.4821 0.4819 0.4823
Q225;255 �0.0063 �0.0061 �0.0064 0.0105 0.0108 0.0102 �0.0109 �0.0110 �0.0107
Q240;100 0.0067 0.0062 0.0064 �0.0589 �0.0582 �0.0589 �0.0111 �0.0116 �0.0113
Q255;255 �0.00037 �0.00034 �0.00038 0.0106 0.0108 0.0105 0.00071 0.00071 0.00070



Fig. 9. Set of gray-scale images to compute the KMs using four different algorithms: (a) Boat ð64� 64Þ, (b) Cameraman ð128� 128Þ, (c) Peppers ð256� 256Þ
and (d) Lena ð512� 512Þ.

Table 3
Elapsed CPU times in milliseconds: computation of KMs for gray-scale ‘Boat’ image of size 64� 64 shown in Fig. 9(a) using different methods.

Order Expansion in terms of GMs using
Eq. (32)

Recurrence method using
Eq. (7)

Digital filter method via GMs using
Eq. (33)

Digital filter method directly using
Eq. (36)

0 150.8 78.0 3.4 0.71
5 187.2 176.4 7.9 1.08

10 270.4 250.4 15.6 1.96
15 473.2 374.4 37.5 2.76
20 577.2 452.7 51.9 3.28
25 728.0 535.6 62.8 3.95
30 987.1 660.3 81.7 4.74
35 1210.0 717.6 102.3 5.83
40 1354.5 790.9 194.5 8.65
45 1839.5 1686.3 287.5 10.37
50 2356.1 1976.8 401.4 24.93
55 2604.6 2133.5 596.3 59.24
60 2826.7 2356.7 719.6 82.75
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for the ‘‘Lena’’ image. In all these cases the results are consistent with the first experiment, regardless of the image size. Com-
putation of the KMs using direct digital filter is significantly faster than the other methods. Computation by means of digital
filtering via GMs is the second fastest one, still much faster than two reference methods.
6. Conclusion

The contribution of this paper lies in the efficient filter implementation of calculation of discrete Krawtchouk moments,
which are important for image analysis. We have formulated the Krawtchouk polynomials in terms of only one combination



Table 4
Elapsed CPU times in seconds: computation of KMs for gray-scale ‘Cameraman’ image of size 128� 128 shown in Fig. 9(b) using different methods.

Order Expansion in terms of GMs using
Eq. (32)

Recurrence method using
Eq. (7)

Digital filter method via GMs using
Eq. (33)

Digital filter method directly using
Eq. (36)

0 0.3767 0.1820 0.0079 0.00185
10 0.9874 0.7956 0.0198 0.00487
20 1.5666 1.4300 0.0736 0.00601
30 2.9812 2.1008 0.1051 0.00988
40 3.3498 2.8340 0.2765 0.01963
50 4.0987 3.5152 0.6129 0.05395
60 5.0827 4.1340 0.9972 0.20038
70 5.8766 4.7996 1.4725 0.36920
80 7.3478 5.3248 1.8973 0.49971
90 8.0865 6.1360 2.2549 0.66129

100 9.1591 6.9620 2.8723 0.78236
110 11.4554 7.4568 3.0145 0.97635
120 14.7125 7.9821 3.3984 1.00255
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Fig. 10. Elapsed CPU times in seconds: full set of KMs for gray-scale ‘Pepper’ image of size 256� 256 shown in Fig. 9(c) using different methods.
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Fig. 11. Elapsed CPU times in seconds: full set of KMs for gray-scale ‘Lena’ image of size 512� 512 shown in Fig. 9(d) using different methods.
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form to be used with filter outputs to generate KMs. We have proposed two fast algorithms, based on the cascaded filters, for
computation of KMs of real gray-scale images. We have proved experimentally that both proposed methods yield almost
accurate KM values with negligible errors. In terms of speed, which was our main concern, we proved that the both proposed
methods perform significantly faster than the reference standard methods and that the direct digital filtering is faster than
the digital filtering via GMs. At the same time we have proven that both new methods are suitable for large grayscale images.
This is the main conclusion of the paper.
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