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Projection Operators and Moment
Invariants to Image Blurring

Jan Flusser, Senior Member, IEEE, Tomas Suk, Jiri Boldys, and Barbara Zitova

Abstract—In this paper we introduce a new theory of blur invariants. Blur invariants are image features which preserve their values if
the image is convolved by a point-spread function (PSF) of a certain class. We present the invariants to convolution with an arbitrary
N-fold symmetric PSF, both in Fourier and image domain. We introduce a notion of a primordial image as a canonical form of all
blur-equivalent images. It is defined in spectral domain by means of projection operators. We prove that the moments of the primordial
image are invariant to blur and we derive recursive formulae for their direct computation without actually constructing the primordial
image. We further prove they form a complete set of invariants and show how to extent their invariance also to translation, rotation and
scaling. We illustrate by simulated and real-data experiments their invariance and recognition power. Potential applications of this
method are wherever one wants to recognize objects on blurred images.

Index Terms—BIlurred image, N-fold rotation symmetry, projection operators, image moments, moment invariants, blur invariants, object

recognition

1 INTRODUCTION

AUTOMATIC object recognition, which is based on invari-
ant features, has become an established discipline in
image analysis. Among numerous descriptors used for this
purpose, moments and moment invariants play a very
important role and often serve as a reference state-of-the-art
method for performance evaluation (interested readers can
find a comprehensive survey of moment invariants in [1]).

1.1 Brief History of Moment Invariants

In the long history of moment invariants, one can identify a
few milestones that substantially influenced further devel-
opment. The first one was in 1962, when Hu [2] employed
the results of the theory of algebraic invariants, which was
thoroughly studied in 19th century by Hilbert [3], and
derived his seven famous invariants to rotation of 2D
objects. This was the date when moment invariants were
introduced to broader pattern recognition and image proc-
essing community. The second landmark dates in 1991
when Reiss [4] and Flusser and Suk [5] independently dis-
covered and corrected a mistake in so-called Fundamental
Theorem and derived first correct sets of moment invariants
to general affine transformation. The third turning point
was in 1996-98 when Flusser and Suk [6], [7] introduced a
new class of moment-based image descriptors which are
invariant to convolution of an image with an arbitrary cen-
trosymmetric kernel. They offered another theoretical view
on moment invariants and also opened the door to new
application areas. For the first time, moment invariants
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were able to handle not only geometric distortions of the
images as before but also blurring and filtering in intensity
domain.

1.2 Motivation to Blur Invariants

Assuming the image acquisition time is so short that the
blurring factors do not change during the image formation
and also assuming that the blurring is of the same kind for
all pixels and all colors/gray-levels, we can describe the
observed blurred image g(z, y) of a scene f(z,y) as a convo-
lution

g(z,y) = (f * h)(z,y), (€]

where the kernel h(z,y) stands for the point-spread function
(PSF) of the imaging system. The model (1) is a frequently
used compromise between universality and simplicity — it
is general enough to describe many practical situations such
as out-of-focus blur of a flat scene, motion blur of a flat scene
in case of translational motion, motion blur of a 3D scene
caused by camera rotation around z or y axis, and media
turbulence blur. At the same time, its simplicity allows rea-
sonable mathematical treatment.

In many cases we do not need to know the whole original
image the restoration of which may be ill-posed, time con-
suming or even impossible; we only need, for instance, to
localize or recognize some objects on it (typical examples
are matching of a blurred template against a database and a
feature-based registration of blurred frames, see Fig. 1). In
such situations, the knowledge of a certain incomplete but
robust representation of the image is sufficient. However,
such a representation should be independent of the imaging
system and should actually describe those features of the
original image, which are not affected by the degradations.
We are looking for a functional [ that is invariant to the deg-
radation (1), i.e.

I(f)=1(f*h) (2)
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(b)

Fig. 1. Blurred template (a) to be matched against a database (b). A typi-
cal situation where the convolution invariants can be employed.

must hold for any admissible h(z,y). Descriptors satisfying
the condition (2) are called blur invariants or convolution
invariants.

1.3 Current State of the Art

Although the PSF is supposed to be unknown, we still have
to accept certain assumptions about it to find invariants (for
an unconstrained PSF no non-trivial blur invariants exist').
In our fundamental paper [7] we supposed that the PSF is
brightness-preserving, i.e.

//h(w, y) dedy = 1,

which is a non-restrictive natural assumption, and that it is
centrosymmetric, which means h(z,y) = h(—z, —y). Under
these assumptions, we derived in [7] a system of blur invari-
ants which are recursive functions of standard (geometric)
moments.

These invariants, along with the centrosymmetry
assumption, have been adopted by numerous researchers.
They (as well as their equivalent counterparts in Fourier
domain) have become very popular image descriptors and
have found a number of applications, namely in matching
and registration of satellite and aerial images [7], [9], [10],
[11], [12], in medical imaging [13], [14], [15], in face recogni-
tion on out-of-focus photographs [6], in normalizing blurred
images into canonical forms [16], [17], in blurred digit and
character recognition [18], in robot control [19], in image
forgery detection [20], [21], in traffic sign recognition [22],
[23], in fish shape-based classification [24], in wood industry
[25], [26], in weed recognition [27], in cell recognition [28]
and in focus/defocus quantitative measurement [29]. In the
last few years yet another broad application area of blur
invariants has appeared. When performing multichannel
deconvolution and/or superresolution of still images or
video, registration of blurred low-resolution input frames is
always the necessary preprocessing step (see [30], [31] for a
state-of-the-art survey). Having registration methods which
are particularly suitable for blurred images is of great
demand and the blur invariants are one of the possible
solutions.

Several authors have further developed the theory of
blur invariants. Since image blurring is in practice often

1. An attempt to construct invariants to arbitrary PSF was published
in [8] but that method was designed in a discrete domain only. It does
not have a continuous-domain counterpart in principle. The assump-
tion of the PSF symmetry was replaced by the limitation of its support
size. However the paper [8] lacks a convincing analysis of the recogni-
tion power.

coupled with spatial transformations of the image, an effort
has been put into developing so-called combined invariants
that are invariant simultaneously to convolution and to cer-
tain transformations of spatial coordinates. Although a few
attempts to construct combined invariants from geometric
moments can be found already in [7], only the introduction
of complex moments into the blur invariants and a conse-
quent understanding of their behavior under geometric
transformations made this possible in a systematic way.
Combined invariants to convolution and to rotation were
introduced by Zitova and Flusser [32], who also reported
their successful usage in satellite image registration [33] and
in camera motion estimation [34]. Additional invariance to
scaling and/or to contrast changes can be achieved by an
obvious normalization (see [35]). The first attempt to find
the combined invariants both to convolution and affine
transform was published by Zhang et al. [17], who
employed an indirect approach using image normalization.
Later on, Suk derived combined affine invariants in explicit
forms [36]. Their use for aircraft silhouette recognition [37],
for sign language recognition [38], for the classification of
winged insect [39] and for robust digital watermarking [40]
was reported. A slightly different approach to the affine-
blur invariant matching was presented in [41], where the
combined invariants are constructed in Fourier domain.

The existence of imaging devices providing 3D data,
namely in medical imaging, stimulated generalization of
the blur invariants from 2D into higher dimensions. Boldys
et al. first extended blur invariants into n-D [42] and then,
for 3D case, they also added invariance to rotation [43].
Their latest paper [44] presents a general approach to con-
structing blur and affine invariants in arbitrary number of
dimensions. Candocia [45] analyzed in detail the impact of
discretization on the n-D blur invariants.

Some authors extended the blur invariants to other
domains. Ojansivu and Heikkila [41], [46] and Tang et al. [47]
used equivalent blur-invariant properties of Fourier trans-
form phase for image registration and matching. Makaremi
and Ahmadi [48], [49] and Galighere and Swamy [50]
observed that the blur invariants retain their properties even
if wavelet or Radon transform is applied on the image. The
Radon domain was also used by Xiao et al. [51] in order to
transform 2D blur and rotation into 1D blur and a cyclic shift.

Several researchers attempted derivation of blur invari-
ants which are functions of orthogonal (OG) moments
rather than of the geometric moments. Legendre moments
[52], [53], [54], [55], Zernike moments [56], [57], [58], and
Chebyshev moments [59] were employed for this purpose.
Zuo et al. [60] even combined moment blur invariants and
SIFT features [61] into a single vector with weighted compo-
nents but without a convincing improvement. However, as
was proved by Kautsky and Flusser [62], moment invariants
in any two different polynomial bases are mutually depen-
dent and theoretically equivalent. He showed that, when
knowing invariants from geometric moments, one can eas-
ily derive blur invariants in arbitrary polynomial basis.

In all papers quoted above, the invariance property was
considered—exactly as in the original paper [7] — only to
centrosymmetric PSF’s. Few authors were apparently aware
of this limitation which decreases the discrimination
power (as is discussed later in this paper) and tried to
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construct invariants to more specific blurs. Flusser et al.
derived invariants to motion blur [63], to axially symmet-
ric blur in case of two axes [64], to circularly symmetric
blur [65], and to Gaussian blur [1]. Similar motion-blur
invariants were later proposed by Stern et al. [66]. Peng
and Jun used the motion blur invariants for weed recog-
nition from a camera moving quickly above the field [27]
and for classification of wood slices on a moving belt [25]
(these applications were later enhanced by Flusser et al.
[26], [67]). Zhong used the motion blur invariants for rec-
ognition of reflections on a waved water surface [68],
although the motion-blur model used there is question-
able. Some other authors [69], [70] used a least-square
moment matching of motion blurred and clear images
instead of an explicit usage of motion blur invariants
which might have some advantages in numeric computa-
tion.” Invariants to circularly symmetric blur equivalent
to [65] but expressed in terms of Fourier-Mellin moments
were proposed in [71]. Tianxu and Zhang [72] realized
without a deeper analysis that the complex moments, one
index of which is zero, are invariant to Gaussian blur.
Xiao et al. [51] seemingly derived invariants to Gaussian
blur and rotation but, since he did not employ the
parametric Gaussian form explicitly, he actually did not
narrow the class of centrosymmetric PSF’s. Gaussian
parametric shape was employed by Zhang et al. [73] who
proposed a blur-invariant similarity measure between
two images without deriving blur invariants explicitly.

1.4 Contribution of this Paper: N-fold Blur
Invariants

As one can see from the literature review above, blur invari-
ants have formed a well-established research area during
last 15 years with many application-oriented papers pub-
lished. However, there has been only a little development of
the theory since 1996, although the need for a progress on
this field is evident.

All methods reviewed in the previous section either
assume the knowledge of the parametric form of the blur-
ring function (such as motion or Gaussian blur), which is
too restrictive, or suppose centrosymmetric blur with
h(z,y) = h(—z, —y). This assumption is usually justified in
practice but it is too weak — a vast majority of real blurring
functions have a higher degree of symmetry. For instance
the PSF of out-of-focus blur is determined by the shape of
the aperture. As it is formed by the diaphragm blades (com-
mon cameras use to have from 5 to 11 straight or slightly
curved blades) it often takes a form similar to a polygon. If
the aperture is fully open, then the PSF approaches circular

symmetry h(z,y) = h(y/2? +4?). This case includes the
well-known ideal ”pillbox” out-of-focus model but it is not
limited to it — some objectives may exhibit circular PSF’s
which are far from being constant on a circle and rather
resemble a ring (see Fig. 2 for some real examples of out-of-
focus blur). Also the diffraction blur, if present, is given by
the aperture shape. For circular aperture it takes a well-

2. Moment matching is theoretically equivalent to the invariants
whenever the invariants exist but can also be applied in some cases
when the relation between blurred and clear image moments is known
but the blurring does not form a group.

Fig. 2. Top row: Examples of the real out-of-focus blur PSF at circular
aperture (left), at polygonal aperture formed by the diaphragm blades
(middle), and the ring-shaped PSF of a catadioptric objective (right).
Bottom row: images degraded by out-of-focus blur. The shape of the
respective PSF can be observed as an image of bright points in the out-
of-focus background (this effect is in photography called "bokeh”).

known form of Airy function, however for a polygonal
aperture the corresponding PSF is more complicated If the
blur invariants were designed specifically for a particular
symmetry of the blurring PSF, they should exhibit better
performance than the invariants to centrosymmetric blur.

In this paper, we present a new general theory of blur
invariants with respect to PSF’s having N-fold rotation sym-
metry, for N ranging from one to infinity. The main contri-
butions of the paper are the following.

e For any NN we present a specific system of blur invar-
iants. They are defined equivalently both in image
domain (based on complex moments) as well as in
frequency domain by means of projection operators.
We prove that these invariants form a complete set.
We introduce a notion of a primordial image as an
equivalence class of all images which differ from one
another by a convolution with an arbitrary N-fold
symmetric PSF.

e We analyze the nullspace and the discrimination
power of each set of the invariants. We demonstrate
how they depend on V.

e We demonstrate that the new blur invariants can
easily be made invariant also to translation, rotation,
and scaling.

e We show the original centrosymmetric blur invari-
ants [7] are just a special case of the new theory for
N =2.

Summarizing, the papers provides the readers with a
two-fold benefit. For theoreticians it gives an insight into
the construction and structure of blur invariants while to
practically oriented researchers it offers powerful features
for object recognition in explicit forms along with instruc-
tions on how to select a proper set for the given task.

3. The photographs in the bottom row of Fig. 2 were provided by
courtesy of Wikipedia (http://en.wikipedia.org/wiki/Bokeh)
and PALADIX (http://www.paladix.cz/clanky/bokeh.html).
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2 BLUR INVARIANTS FOR N-FOLD SYMMETRIC
PSF’s

In this section we first define basic terms needed along with
their important properties. Then we define N-fold blur
invariants and discuss their independence, completeness
and recognition power.

2.1 Preliminaries on Moments

Definition 1. By an image function (or image) we understand
any absolutely integrable real function f(x,y) defined on a
compact support* D C R x R and having a nonzero integral.

Definition 2. Let f(x,y) be an image function and p,q be two
non-negative integers. Then the functionals

o0 o0
myl) = / / zPy? f(z, y)dedy (69
—00 —00

and

G = / / (x+iy) (x — iy)" f(w.y)dedy, (@)

where i is imaginary unit, are called geometric moment and
complex moment of order p + g.

It follows from the definition that only the indices p > ¢ pro-
vide independent complex moments because c,, = c;, (the
asterisk denotes complex conjugate). Both geometric and
complex moments carry the same amount of information
about the image. To see this, we express each complex
moment in terms of geometric moments of the same order

as

q . .
Z (Z) (q) ()" myp gk 6

and vice versa

1 ~N- (P (e -
Mpq = Ir+449 Z Z (k) ( > (=" Crjprg-t—j  (6)
=0 j=0 J

Characterization of the image by means of complex (as well
as by geometric) moments is complete and unambiguous in
the following sense. The moments of all orders of any image
function exist and are finite. The image function can be
exactly reconstructed from the set of all its moments.”

We use complex moments in this paper instead of more
common geometric moments because the complex moments
reflect various symmetries of the image (and of the PSF’s) in
a transparent way. This is implied by their favorable behav-
ior under image rotation, as will be discussed below. The
use of complex moments is theoretically not necessary but
allows a simple and elegant mathematical treatment of the
problem. Thanks to the equivalence of all polynomial bases,
one could derive equivalent blur invariants in terms of

4. Assumption of the compact support could be omitted if we con-
sider functions of fast decay, so their moments would be well-defined
in R%. However, in practice the images are always of a finite extent.

5. More general moment problem is well known in statistics: can a
given sequence be a set of moments of some compactly-supported func-
tion? The answer is yes if the sequence is completely monotonic.

arbitrary moments [62]. However, in all other bases such
derivation would be much more laborious (the earlier invar-
iants to centrosymmetric blur [7] were derived as functions
of geometric moments which is practically impossible for a
general N-fold symmetry).

Lemma 1. Let [’ be a rotated version (around the origin) of f by
an angle a. Let us denote the complex moments of f" as c,,.
Then

= emir—ae e (7)

To prove this lemma, we express the image and its
moments in polar coordinates (r, ):

00 2w
0 0

Since rotation reduces in polar coordinates to a shift
f'(r,0) = f(r,0 + a), the rest of the proof is straightforward.
Eq. (7) says that under rotation the moment magnitude |c,,|
is preserved while the phase is shifted by (p — q)o (we recall
the clear analogue with the Fourier Shift Theorem).

Another useful property of complex moments is their
simple transformation if the image is convolved with
another image function.

Lemma 2. Let f(x,y) and h(z,y) be two arbitrary image func-
tions and let g(xz,y) = (f * h)(x,y). Then g(x,y) is also an
image function and it holds for its moments

P4
f§ :§ : LAY EARONC))
c;ffl) - (k> ( j> Cj Cp—kg—j
k=0 j=0

for any p and q.

This lemma can be easily proven just using the defini-
tions of complex moments and of 2D convolution. It holds
for geometric moments too in exactly the same form.

For derivation of blur invariants we will employ also the
connection between complex moments and Fourier trans-
form. This is however not as straightforward as in the case
of geometric moments. Let us use the traditional definition
of Fourier transform of f:

F(/)u,0) = Fu,0)
- / . / " flay) e gy

Since f € L, its Fourier transform always exists. After
expansion of the exponential function into a power series
we obtain the well-known formula

w vkmjk, 9)

which tells us that geometric moments of an image are Tay-
lor coefficients (up to a constant factor) of its Fourier trans-
form. We can find a similar meaning for complex moments,
too. Let us make a substitution U =u+ v,V =i(u —v).
Then

o0 00 -9 N Jj+k )
FU, V)= Zzﬂujvkcjk.

1K (10)
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2.2 The Space Sy

Now we define the N—fold rotation symmetry (N-FRS), which
is the central term of this paper. Function f is said to have
N-FRS if it is “rotation periodic”, i.e. if it repeats itself when
it rotates around the origin by «o; =2nj/N for all

j=1,...,N.In polar coordinates this means that
f(r,0) = f(r,0+ ;) j=1,...,N5S
Particularly, N =1 means no symmetry in a common

sense and N =2 denotes a the central symmetry
f(—=z,—y) = f(z,y). We use this definition not only for finite
N but also for N = co. Thus, in our terminology, a function
having circular symmetry f(r,0) = f(r) is said to have
00-FRS. Later in this paper, the assumption of N—fold rota-
tion symmetry will be imposed on the blurring PSF’s.

We denote a set of all functions with N—fold rotation
symmetry as Sy. For any N, the set Sy is closed under addi-
tion, multiplication and convolution. Considering point-
wise addition and convolution, Sy forms a (commutative)
ring.” Later on, we will employ particularly the closure
property of Sy with respect to convolution.

In this paper we do not deal explicitly with axial (reflec-
tion) symmetry but it is worth mentioning that axial and
rotational symmetries are related in the following way. If f
has N axes of symmetry then it belongs to Sy. On the other
hand, if f € Sy then it has either none or N symmetry axes.
Hence, axial symmetry cannot exist without rotation sym-
metry (such compound symmetry is called dihedral symme-
try) but the opposite case is possible.

The N-fold rotation symmetry implies vanishing of cer-
tain moments. This property allows the existence of blur
invariants.

Lemma 3. If f € Sy, N finite, and if (p — q)/ N is not an integer,
then ¢,q = 0.

Proof. Let us rotate f around the origin by « = 27/ N. Due to
its symmetry,

fi(r,0) =

f(r,0).
In particular, it must hold ¢, = ¢,, for any p and ¢. On

the other hand, as follows from eq. (7),

! — p2milp—q)/N |
Cpg =€ Cpg-

fr,0+a) =

Since (p—¢)/N is assumed not to be an integer, this
equation can be fulfilled only if ¢,, = 0. 0

Lemma 3a. If f € Sy and if p # g, then ¢,, = 0.

Proof. The proof is similar to that of Lemma 3 with « being
an arbitrary angle. We get

! oip—g)a _
Cpy =€ Cpg = Cpgs

which can be fulfilled only if ¢,, = 0. a

6. We can also define exact N—fold rotation symmetry where N is the
highest number with this property. However, such a definition is not
very useful because we lose the closure property of Sy.

7. Since the validity of this assertion is intuitive, we skip a formal
proof which requires some algebraic manipulations.

Note that these two lemmas do not hold the other way
round — an integer (p — ¢)/N (or p = ¢) does not necessarily
imply a non-zero c,,.

The space Sy is closed also with respect to Fourier trans-
form: If f € Sy then also F' € Sy (if it exists). This follows
immediately from the rotation property of Fourier trans-
form. However, note that F' is real-valued only for even N.

Interesting relations hold among the sets Sy for various
N. Assuming N can be factorized as

where N; = k" and k; are mutually different primes. Then

L
Sy =[)Sw.-
i=1

For Sy, we have a nested sequence of the sets

Particularly,

D}

Soo = | Sk-

k

Il
—

2.3 Projection Operators

In this section we introduce projection operators onto Sy.
These operators decompose any function into its N-fold
symmetric part and ”the rest”, similarly as in 1-D one can
decompose any function into an even and an odd parts.

Definition 3. Projection operator Py is for a finite N defined as

N

Z 7”9—&—0[,

7=1

(P]\f r, 9

where aj = 275/ N, and
2

(Puf)r) =52 [ 10

Operator Py rotates f repeatedly by 27/N and calculates
an average. The following properties are valid for any f and
N.

Py f € Sy (i.e. Py projects f onto Sy).
If f € Sy then Py f = f and vice versa.
Operator Py is linear:

Py(af +g) = aPnf + Png.

Operator Py is idempotent, i.e. Py(Pyf) = Py f.
Any function f can be expressed as f= Pxf+ fa,
where f4 is its N-fold antisymmetric part.8 Clearly,
Pyfa=0.

8. The word ”antisymmetric” here means ”anything but for N-fold
symmetry”, so f4 may include terms with other symmetries as well as
asymmetric terms.
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Proof.
I(f*h,) _ .7:(f x h) _ F-H
N T F(Pu(fxh) T Py(F-H)
N-F-H

SN F(r, 6+ ) H(r 6+ )

Since H € Sy, we have H(r,0+ ;) = H(r,0) for any
j=1,...,N.Consequently,

oL L U S ()
H-PyF PyF
a

The above theorem holds also for N = oo, the proof is
similar.

The Fourier-domain blur invariant Iy is a ratio of two
functions, that can be expressed by absolutely convergent
power series the coefficients of which are geometric
moments. As we have shown in Section 2.1, after the substi-
tution U=u+v,V =i(u—v) we obtain expressions in
terms of complex moments. Hence, we can express Iy as a
convergent power series

(d)

Fig. 3. Performance of the projection operators. (a) original image f, its -
projections (b) P f, (c) Pyf and (d) P f. F 0 > (_2m~)J+ ) o
In(U, V) === (U, V):Z ZTANQ, k)uv".
e Operator Py commutes with Fourier transform:
The coefficients Ayx(j,k) can be easily obtained from the

F(Pnf)= PyF. constraint
e Complex moments of a function f are either pre- .
served or zeroed by the projection operator Py. For a i i (=2mi)’t* 5k
finite NV it holds o L gk Cjk WY
g -
(j=k)/N is integer
céf;Nf) = C;J;) iff (p—q)/N isan integer, ! OSO tjie 2 .)j+k an
) —2m)" . ik
cl(){;“’f) =0 otherwise. (Z Z k! An(j, kyu'v
=0 k=0
— 00 00 Ntk
For N = oo we get _ (Z Z (—2712)]+ c<f)ujvk>
e ik :
AP = ), =0 k=0 I
C;J;m N—o for p+#q. The first factor is an expansion of PyF(U, V). Recalling the

relation between the complex moments of a function and
those of its projection derived in Section 2.3, we can see
why the summation goes over indices with an integer
value of (j—k)/N only — all other complex moments of

The last property follows from the properties of complex
moments of N-fold symmetric functions and will play an
important role later when the invariants will be constructed.

A visual example of the projection operators is shown in Py [ are zero, while the non-zero ones equal c%). Compar-

Fig. 3. ing the coefficients of the same powers we get, after some
manipulation,
2.4 Definition of N-fold Blur Invariants
Let us consider an image which was blurred according to (1) A B Cﬁ,{? A C%) 2 )
with an unknown PSF h(z,y) which has an N-fold rotation ~(p,q) = A Z (J> (k;) AN NP =ja=k).
symmetry. o _k "
Now we formulate the central theorem of this paper. ; k;ﬁ\iimger
Theorem 1. Let f be an arbitrary image function, then (12)

() = F )

= m Since Iy was proven to be invariant to blur, all coeffi-

cients Ay(p,q) must also be blur invariants. If we further

is an N-fold blur invariant, i.e. I](\J;) = I%*h) for any N-fold —assume that the blurring is brightness-preserving, i.e. c((]’é) =

symmetric h(zx,y). 1, then ¢y is also blur invariant and by excluding it from
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(12) we obtain the final form for moment invariants to
N-fold symmetric blur’

1 &N~ () (e .
KAV(p7q) :Cpq__z Z <) (k)KN(p_.]7q_k)C}k
€00 g R
0<jitk
(j—k)/N is integer

(13)

The assumption of overall brightness preservation is not
necessary for construction of blur invariants. However, it is
mostly fulfilled in real imaging systems and we also keep it
because of the consistency with [7].

There is another (seemingly different but actually equiv-
alent) instructive approach leading to the same result. It is
natural to express problems related to rotation symmetry
using the circular harmonics basis. Applied in the Fourier
domain, where convolution becomes multiplication, it leads
to the following conclusion. The linear space spanned by all
the harmonics can be divided into N independent subspa-
ces, where each of them stays invariant under convolution
with an N-fold symmetric kernel. Thus, it can be expected,
that an invariant to N-fold symmetric convolution should
be based on circular harmonics from one of these subspaces.
Looking for a relative invariant, it is then easy to find the
expressions identical with the invariants defined in Theo-
rem 1 by projection operator and with those defined by
moments (13).

Let us discuss some important properties of the blur
invariants Ky (p, q)-

o Complex wvalues. The invariants (13) are generally
complex. If we prefer working with real-valued
invariants, we should use their real and imaginary
parts separately. On the other hand, for any invari-
ant (13) Kx(p,q) = Kn(q,p)", so it is sufficient to con-
sider the cases p > ¢ only.

e  Zero-order invariant. For any N (finite or infinite) it
holds Ky(0,0) = ¢po. This is a “singular” invariant,
the invariance of which comes from the fact that the
PSF is assumed to have a unit integral and not, con-
trary to all other invariants, from its symmetry.

e  First-order invariants. For any N, invariant Ky(1, 0) =
c19 is non-trivial. However, since in practical applica-
tions ¢ uses to be employed for image normaliza-
tion to shift, Kx(1,0) becomes useless for image
recognition.

e  Non-symmetric PSF. Invariance property formally
holds also for N =1 (i.e. PSF without any symmetry)
but all invariants except K (0,0) = ¢y are identically
Zero.

e  Factorization of N. Let N be a product of L integers,
N = kiky - - - kr. Then the PSF has also k,-fold sym-
metry for any n =1,2,..., L. Thus, any K}, (p,q) is
also a blur invariant. However, using these invari-
ants together with Ky (p, q)’s is useless since they are
all dependent on Kn(p,q)’s. (Note that the

9. Thanks to the projection operators, the proof of invariance of Iy is
very elegant and overcomes the necessity of proving invariance of
Ky (p,q) directly. This is of course possible by induction but such proof
is long and tedious, see [7] for the case N = 2 and geometric moments.

dependence here does not mean equality, generally
K]\"(pv Q) 7£ Kkn (p7 q))

e N =o0. In the case of a circularly symmetric PSF,
Theorem 1 obtains much simpler form because the
summation goes over the indices j = k only. Hence,
provided that p > ¢, we get

q

L5 Ot ko

k=1

Koc(pa Q) = Cpg —

Circularly symmetric PSF's appear in imaging as
out-of-focus blur and diffraction blur on a circular
aperture, and describe also a long-term atmospheric
turbulence blur.

e  Relation to earlier work: N = 2. The invariants to cen-
trosymmetric blur introduced in [7] are nothing but
a particular case of Eq (13). The invariants in [7] have
formally exactly the same form as those in Eq (13)
with complex moments replaced by geometric
moments (this ”direct” substitution is possible only
for N =2). To see that both systems are actually
equivalent, one can substitute from (5).

2.5 The Null-Space and the Discrimination Power of
the Invariants

Unlike many geometric invariants, the invariants (13) do not
have a straightforward ”physical” interpretation. However,
understanding what image properties they reflect is impor-
tant for their practical application. Two mutually connected
key questions pertain to the null-space of the invariants (i.e.
to the set of images having, for a given N, all invariants
Kn(p, q) zero) and to their discrimination power.

First of all, note that certain invariants (13) are always
zero for any object and are of course completely useless for
recognition. For any N, p,q such that (p —¢)/N is integer
(except p = ¢ = 0) we get Kx(p,q) =0. A formal proof can
easily be done by induction, we present only the core idea
here.

If (p—q)/N is integer and the summation in (13) goes
over (j — k)/N integer only, then also ((p —j) — (¢ — k))/N
is always an integer. In other words, if (p — ¢)/N is integer,
then on the right-hand side of (13) we have only Ky’s of the
same property. Now we look what always happens with
the highest-order term. Since (p — ¢)/N is integer, then the
last term in the summation is Kx(0,0)c,, = coocp; Which
cancels with the ¢,, standing outside the sum. Knowing
that, is easy to prove by induction that all other terms are
zero because they contain the Ky of orders less than p + ¢
and of the same nature. The existence of only trivial invari-
ants for (p—¢)/N being integer is unavoidable. The
moment céfl') of the blurring PSF is non-zero and there is no
way how to eliminate it. This is for instance the reason why
for a centrosymmetric blur (N = 2) cannot exist valid invar-
iants of even orders. On the other hand, for (IV = o) the
only trivial invariants are K (p,p)’s (for p > 0), all others
are valid invariants.

The number of valid (i.e. non-trivial) invariants up to the
given order r increases as N increases, reaching its maxi-
mum for all N > r (see Table 1). This is in accordance with
our intuitive expectation — the more we know about the
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TABLE 1
The Number of Non-Trivial N-Fold Blur Invariants
Up to the Order r
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PSF (i.e. the less “degrees of freedom” the PSF has), the
more invariants are available. The structure of invariant
matrix K;; = Ky (i — 1,7 — 1) is shown in Fig. 4a. There are
always zero-stripes on the main diagonal regardless of N
and also on all minor diagonals for (p — ¢)/N being an inte-
ger. As one can see, the invariant matrix of the image is
complementary to the moment matrix of the PSF in terms of
zero and non-zero elements (see Fig. 4b). The discrimination
power of the set of the invariants up to the given order thus
increases as N increases. This is also a property we could
expect—the discrimination power goes always against the
invariance and here the “maximum invariance” is provided
by N = 2.

What is the null-space of the non-trivial blur invariants?
Let us denote Zy the joint null-space of all (non-trivial)
invariants Ky(p,q), p=>g¢, p>0. For any N it holds
Sy C Zy. This is clear because any N-fold symmetric func-
tion f can be considered as a blurring PSF acting on a delta-
function, which always lies in Zy. Hence, also f € Zy. On
the other hand, if f € Zy, we can reconstruct its moments.
The reconstruction is ambiguous—the moments with an
integer value of (p — ¢)/N may be chosen arbitrary'® while
the moments with a non-integer (p — ¢)/N are zero. Thus,
the reconstructed function is always from Sy. Summarizing,
we proved an important equivalence

Sy =2Zy.

This is one of the intrinsic limitations of discriminative
power of the invariants. Any invariant to convolution with
an N-fold symmetric PSF cannot distinguish different
N-fold symmetric objects because it gives zero responses on
all such images.

Let us conclude this section by a remark concerning the
proper choice of N. It is the only user defined parameter of
the method and its correct estimation might be a tricky
problem. Ideally, it should be deduced from the physical
model of the blurring source or from other prior informa-
tion. In fact, we assume that in most situations NV is given
by the aperture shape and is known. If this is not the case,
we may try to estimate IV directly from the blurred image
by analyzing its spectral patterns or the response to an ideal
bright point or a spot of a known shape, if available. If none
of the above is applicable and we overestimate /N in order
to have more invariants available then we lose the invari-
ance property of some (or even all) of them. On the other
hand, some users might rather underestimate it to be on a

10. Provided they satisfy complete monotonicity constraint.

!

(@) (b)

Fig. 4. The structure (a) of the invariant matrix and (b) of the PSF
moment matrix. The gray elements are zero for any f and h. The white
elements stand for non-trivial invariants in (a) and non-zero moments of
the PSF in (b). Note the complementarity of both matrices (except the
(0,0) element).

safe side (they might choose for instance N = 2 instead of
correct N = 16). This would always lead to the loss of dis-
criminability (note that 7 2 Z16) and sometimes could also
violate the invariance, depending on the actual and chosen
N. Obviously, the worst combination occurs if the true and
estimated fold numbers are small coprime integers such as
2 and 3 or 3 and 4. If h is not exactly N-fold symmetric, then
the more the ratio H/PyH differs from a constant 1, the
more violated the invariance of the Ky’s.

2.6 Completeness of the Invariants

A crucial question concerns the general discrimination
power—what are the “equivalence classes” of images hav-
ing the same values of all invariants? We may ask an equiv-
alent question about the reconstruction possibility.
Knowing, for a given N, all invariants Ky (p, ¢) (or, equiva-
lently, Ix), what image can we reconstruct? What are the
degrees of freedom of this reconstruction? The previous
section gave us the answer for the case of Kx(p,q) =0, but
how is it in a general case? Apparently, any shape descrip-
tor invariant to a certain group of transformations cannot,
in principle, distinguish objects that differ from one another
only by transformations from this group. Complete descrip-
tors are able to distinguish all other cases, incomplete
descriptors do not have this ability. Below we demonstrate
the completeness of the blur invariants.

The frequency domain provides us with a good
insight. Iy is a ratio of two Fourier transforms which may
be interpreted as a deconvolution. Having an image f, we
seemingly “deconvolve” it by the kernel Pyf. This
”deconvolution” exactly eliminates the symmetric part of
f (more precisely, it transfers Py f to §-function) and acts
on the antisymmetric part:

F(fa)
PyF

1o T _ PxF+F(fa)
N

— = =1+Vy.
F(Pynf) PyF N

=1+
Hence, Iy can be viewed as a Fourier transform of a primor-
dial image (although such an image may not exist in a com-
mon sense) and then Ky(p,q) are its complex moments. In
other words, this is a kind of normalization. We seemingly
calculate a blind deconvolution with an N-fold symmetric
kernel which is chosen in such a way that it eliminates the

N-fold symmetric component of the image. Hence, the pri-
mordial image, which plays the role of a canonical form of
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f, is the “maximally deconvolved” antisymmetric part.
Moments of the primordial image are obviously invariants
to N-fold convolution and the trick is that we are able to cal-
culate these moments directly using (13) without actually
performing the deconvolution. Now we can again see why
those Ky(p,q) where (p —¢)/N is integer must be trivial.
Note that the primordial image depends only on the anti-
symmetric part of the image. Hence, Ky(p,¢) can be also
viewed as a measure of antisymmetry of f. This corre-
sponds to our intuitive expectation that the antisymmetric
part can be modified by a symmetric convolution kernel
only such that certain significant features are always pre-
served while the symmetric part may be changed to any
other symmetric function.

Taking this into consideration, we can understand the
limitation of the recognition power: two images having the
same primordial image cannot be distinguished. This con-
clusion is incorporated into the following theorem, which at
the same time says that in all other cases the images are dis-
tinguishable, i.e. the blur invariants are complete.

Theorem 2. Let f and g be arbitrary image functions and N be an
integer or N = oc. Then

KN(pvq)(f) :KJ\'(I)»Q)(L]) p7q:0717

if and only if there exist functions hy and hy from Sy such that

fxhy =g hs.

Proof. The backward implication follows directly from the
invariance property. To prove the forward implication,
let us realize that if all invariants equal then If\p = Ié?
which means

and, consequently,

f* Pyg=gx Py

Since both Py f and Pyg are from Sy regardless of f and
g, the proof is completed. ]

Note that the completeness is guaranteed only if an infi-
nite set of invariants for all p,q is used. In practice we
always work with a finite (sometimes very small) subset, so
the actual discriminability is influenced by this factor.

2.7 Combined Invariants

In practice, image blurring is often coupled with spatial
transformations of the image. To handle these situations,
having combined invariants that are invariant simultaneously
to convolution and to certain transformations of spatial
coordinates is of great demand.

Shift invariance is achieved easily by using central
moments and scale invariance is provided by normalizing
each invariant Ky (p,q) by cé%+q>/ "1 which is equivalent to
the use of normalized complex moments in (13) (note that
the invariance to convolution is not violated by normaliza-
tion because c itself is a convolution invariant for any N).

Achieving rotation invariance is harder but still can be
accomplished in an elegant way. Note that the N-fold sym-
metry of the blurring PSF is not violated by an image rota-
tion (applied either before or after the blurring), so it makes
sense to look for combined invariants. When investigating
the behavior of the invariants Ky(p,q) under rotation, we
observe that they change in the same way as the complex
moments themselves, i.e.

Ky(p.q) = """ Ky(p,q). (14)
Hence, the simplest way is to take the magnitudes | Ky (p, q)|
which provide combined invariants but create only an
incomplete system. A more sophisticated method of creat-
ing a complete set of combined invariants is based on phase
cancellation by multiplication of proper invariants. It is
very similar to the construction of pure rotation invariants
from the complex moments [74] (including selection of the
independent set and symmetry problems) where we just
replace the moments by the invariants.

3 IMPLEMENTATION AND PRACTICAL ISSUES

In this section we answer several questions that could be
raised by anyone who is thinking about the implementation
of the convolution invariants.

e  How many invariants shall we use in practice? There is
no general answer and it is not true that the more the
better. The noise sensitivity, complexity and other
numerical problems increase with an increasing
order (this is a well-known property of moments
which we do not investigate here; the noise sensitiv-
ity of convolution invariants for NV = 2 was studied
in [7] and it is the same for other N). On the other
hand, low-order invariants often do not provide suf-
ficient discriminability. The ”optimal” number of
invariants always depends on the data and should
be found by a feature selection procedure which
optimizes the separability (measured for instance by
Mahalanobis distance) of a particular training set/
database.

o  Shall we preferably use Fourier-domain or moment-based
invariants? Although theoretically equivalent, they
may behave differently. In most applications the
invariants are typically required for relatively small
images or templates and a few of them are sufficient.
In such a case moment-based invariants are the pre-
ferred choice. If the image in question is large (sev-
eral hundreds or thousands of pixels in one
dimension) then Fourier domain might be better
because the moment values may overflow. On the
other hand, when constructing Iy, we possibly
divide by very small numbers which requires certain
care. High frequencies of Iy are sensitive to noise so
it is better to suppress them by a low-pass filter.

Another reason why we prefer constructing com-
bined invariants from moments in the image space is
that we usually need only a few invariants and it is
not necessary to calculate all of them.

e  What shall we do if the images to be compared are blurred
with PSF’s having different number of folds (say Ny and
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N3)? To ensure invariance to both and the best possi-
ble discriminability, we choose N as the greatest
common divisor of Ny and N,. If N; and N, are
coprime, the task is not correctly solvable. In such a
case we choose either N; or N, depending on which
blur is more severe.

e How to avoid over/underflow of moment values? 1f the
image size is large, we may face overflow (if a pixel
means 1 on a coordinate axes) or underflow (if the
whole image is mapped into (0,1) x (0,1) domain).
A prevention of this is using orthogonal polynomials
and OG moments instead of the power basis and
complex moments. The range of values of OG poly-
nomials uses to be small so the OG moments are
kept within a reasonable interval. Kautsky and
Flusser [62] shows that there is no need to re-built
the theory of convolution invariants when changing
the basis; the formulas for convolution invariants in
any polynomial basis can be obtained from (13) by
simple matrix operations.

o How to eliminate different dynamic range of different
invariants? If the dynamic range of the invariants is
significantly different, then in terms of Euclidean
metric the ones with high range are preferred which
is not desirable. One way to suppress this is using
OG moments as described above. Another (simpler)
possibility is the value normalization into the same
range or to the same standard deviation or, equiva-
lently, using weighted Euclidean norm. All these sol-
utions might be misleading when the different range
actually reflects a different significance which is
hard to recognize in advance. Since the scale-normal-
ized versions of the invariants have much less range,
scale normalization is often a good choice even if the
images are not spatially scaled.

e  How to handle the boundary effect? For discrete images
of a finite support and non-zero background, the
boundary effect limits the usability of the invariants.
The convolution model is violated, the boundary
stripes are affected also by pixels laying in the scene
outside the visual field and the convolution invari-
ants are no longer truly invariant. The influence of
the boundary effect on template matching was stud-
ied thoroughly in [7] for N =2 and in [1] also for
motion blur. Since it is the same for any N, we do
not repeat experiments of this kind here. It was
shown that boundary effect cannot be removed but
if the blur size is less than 15% of the template size
most templates are still recognized correctly.

o What is the complexity of (13)? The complexity of eval-
uation of (13) is given solely by the complexity of
moment calculation, other operations consume neg-
ligible time. For the review of fast algorithms for
moment computation we refer to [1], Chapter 7, and
to [75]. As soon as the moment values are calculated,
we implement (13) directly from the definition
because Matlab (as well as many other languages)
supports recursive operations. It is of course possible
to derive, by backward substitution, non-recursive
definition of the Ky(p, ¢)’s but it does not lead to any
measurable speed-up.

— A Im(K,(3,0))
| o Im(,4,0)
—o— Re(K,(3,2))
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Fig. 5. The ratio between the invariants of the blurred image and of the
original. Blur mask of N = 2 (elongated rectangle in this case). K5 is a
perfect invariant while K3 and K, vary significantly. The size of the origi-
nal was cca 1,000 x 1,000 pixels.

4 EXPERIMENTS

In this section we demonstrate the performance and limita-
tions of the convolution invariants. We focus on the experi-
ments showing the specific behavior of the invariants
Kn(p, q) for various N.

4.1 Basic Experiment on Simulated Data

The aim of the first experiment was to illustrate the behavior
of the invariants (13) in situations, where the convolution
model and the assumption of the symmetry of the PSF are
perfectly valid. The only source of errors could be image
sampling (note that the theory was derived in a continuous
domain only) and finite precision of the calculations, so the
properties of the invariants can be precisely analyzed.

We took 1,000 images (common photographs), blurred
them by convolution with masks of various sizes, coeffi-
cients, and symmetries (we used N =2,3,4,6,8 and
N = 00). We prevented the boundary effect by zero-pad-
ding and calculated the invariants (13) up to the order 10
for every blurred image. The relative error of each individ-
ual invariant was about (107°) as one expects from the the-
ory. Then we compared the values that according to the
theory need not match—for instance K,(p, ¢) of the original
with Ky(p,q) of its blurred version but with the PSF’s of
N = 2. Here the relative errors ranged up to 100% depend-
ing on the size of the blur. This clearly shows the necessity
of choosing a correct N namely in case of a heavy blur or,
equivalently, the necessity of having special invariants for
each N. See Fig. 5 for an illustration of this experiment.

4.2 Leaf Recognition

Automatic recognition of leafs has been studied thoroughly
in the last decade. Many methods and several publicly
available leaf databases have appeared, some of them
implemented in a very user-friendly form in mobile devices
(for instance the Leafsnap [76] running on Apple i-phones
and i-pads). Several leaf recognition algorithms use
moments and moment invariants to rotation and scale as
features for the leaf description [77], [78], [79], [80]. Our
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Fig. 6. The leaves used in the experiment—one sample per each spe-
cies. Top row: Aesculus hippocastanum (leaflet of palmately compound
leaf), Ailanthus altissima (leaflet of pinnately compound leaf), Betula
papyrifera, Chaenomeles japonica, Cornus alba. Middle row: Cotoneas-
ter integerrimus, Deutzia scabra, Fagus sylvatica, Fraxinus excelsior
(leaflet of pinnately compound leaf). Bottom row: Gymnocladus dioicus
(leaflet of pinnately compound leaf), Juglans regia (leaflet of pinnately
compound leaf), Lonicera involucrata, Prunus laurocerasus and Staphy-
lea pinnata (leaflet of pinnately compound leaf).

group maintains the largest leaf database of Central Euro-
pean wood species called MEW which contains the leafs of
all domestic and most of the imported trees and shrubs
growing in the Czech Republic (altogether 9,745 leaf items,
representing 151 species) along with a web-based recogni-
tion system [81]. The classification algorithm used there [82]
is based on moments and Fourier descriptors.

The aim of this experiment is twofold. First, we demon-
strate the invariance and recognition power of the new blur
invariants in situations when the blur model is exactly a
convolution, NV is known and we recognize blurred versions
of the leaves from the training set. In this experiment the
fact that the objects are leaves is not essential; the invariants
behave in the same way for any object set.

The second experiment is more related to real leaf recog-
nition. It is aimed to recognize the generic species from the
blurred image of a leaf, which is not a member of the train-
ing set. Since here the degradation between the query image
and the training template(s) includes not only the blur but
namely the variations of the shape, color, size, etc., the task
is much more challenging.

We selected 15 species (classes) of the MEW database.
We intentionally chose the species with very similar leaves
to make the recognition difficult even for humans. In the
first experiment the training set consisted of only one leaf
per class (see Fig. 6). We blurred each of these leaves ten

Pdo0,

0‘000
TRERAE

Fig. 7. Examples of the blurred leaves.

times by a simulated out-of-focus blur of various size, so we
obtained 150 blurred leaves to be recognized (see Fig. 7 for
some examples). First we tried to recognize the blurred
leaves by plain moments c¢;; and c», which are not invariant
to blur. The space of these two features is depicted in Fig. 8.
The clusters that correspond to the species are spread, over-
lap one another and cannot be separated (with two excep-
tions). The classification has failed completely, which
illustrates the necessity of using blur invariants. Then the
classification was done by means of the invariants Ky (p, q)
and the situation changed significantly. We achieved 100%
success rate already for almost any couple of the invariants.
The clusters are so compact that they look like single points
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Fig. 8. The feature space of two non-invariant moments ¢;; and cs. Leg-
end: £— Aesculus hippocastanum, v— Ailanthus altissima, >— Betula pap-
yrifera, <— Cornus alba, /— Cotoneaster integerrimus, v— Deutzia
scabra, O— Euonymus europaea, o— Fagus sylvatica, *— Fraxinus excel-
sior, +— Gymnocladus dioicus, x— Chaenomeles japonica, O— Juglans
regia, — Lonicera involucrata, <=— Prunus laurocerasus, +— Staphylea
pinnata.
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Fig. 9. The feature space of real parts of the invariant ReK,(3,0) and
ReK(4,0). Each cluster is formed by ten blurred images and one train-
ing image of the leaf. Legend: &— Aesculus hippocastanum, «— Ailanthus
altissima, >— Betula papyrifera, <— Cornus alba, /— Cotoneaster integer-
rimus, V- Deutzia scabra, {— Euonymus europaea, t— Fagus sylvatica,
*— Fraxinus excelsior, +— Gymnocladus dioicus, x— Chaenomeles japon-
ica, O— Juglans regia, — Lonicera involucrata, <— Prunus laurocerasus,
+— Staphylea pinnata.

and are easy to separate (see Fig. 9 for an example). In this
experiment the success rate almost did not depend on the
particular invariants and, for N > 4, on the choice of N.

In the second experiment we used the same 15 classes
but now each class was represented by 20 training leaves.
Then we created an independent test set consisting of 10
leaves per class, each of them degraded by an out-of-focus
blur. Each test leaf was classified by a minimum-distance
rule in the space of the invariants Ky (p,q) up to the order
16. The success rate was about 70% for any N > 8. Since in
this case theoretically the true PSF fold number is infinity,
the Kn(p, ¢)’s should be invariant for any choice of N. How-
ever, as we explained in Section 2, the lower N the less rec-
ognition power—if K»(p, q) were used, the success rate was
only about 50%.

The success rate of course depends on the number of clas-
ses and the size of the training set. For bigger training sets
and/or for classes which are more distinguishable, the suc-
cess rate is between 80 and 90 percent. The achieved success
rate 71 percent is surprisingly high. The moments were not
specifically designed to tolerate the intra-class variations of
the leaves of the same species and emphasize the differences
between the species but apparently they exhibit this ability
while providing invariance to blurring. As a concluding test,
we classified the leaves by the system [81], which uses mainly
Fourier descriptors as the features. The recognition rate was
only 23 percent because this system was not designed to be
robust to the image blurring. This illustrates one possible
application of the blur invariants—they can be incorporated
into existing recognition systems even if they use different
principles in order to achieve robustness to low-pass filtering.

4.3 Matching of Blurred Templates

This experiment was performed on real data under chal-
lenging conditions where reaching a good matching score is
difficult. We intentionally choose the scenario with a heavy
blur and the scenes with many self-similar parts in order to

Fig. 10. The 7-fold PSF captured as the image of a LED diode.

make differences between the performance of various fea-
tures apparent. We used the camera Nikon D5100 with
seven diaphragm blades and adjusted the aperture such
that the blades form a clear 7-fold symmetric PSF (see
Fig. 10 for the image of a bright point). We took a pair of
images, one sharp and the other one out of focus, of the size
2,048 x 2,048 pixels (see Fig. 11; note the PSF shape which is
apparent on the blurred image).

We selected randomly 230 circular templates of the
radius 200 pixels in the blurred image. Each template was
matched against the sharp image by a full search over the
whole scene, without using any prior information about its
position. The matching criterion was the minimum distance
in the space of blur invariants. We used the invariants K>
and K7 up to the sixth order. Since we know the ground
truth, we can measure the matching error (i.e. the Euclidean
distance between the correct and matched location). First,
we compared the invariants by the absolute number of
accurate matches. The match is considered accurate if the
error is less than 10 pixels (we choose this threshold because
multichannel processing algorithms such as [83] which, are
in practice applied after the matching, are able to compen-
sate for such registration errors). The invariants K, yielded
47 correct matches while K7 yielded 64 correct matches. We
used for comparison also plain moments, which is a well
known matching technique, which lead to only 45 correct
matches. The absolute number of correct matches might
seem to be low even in the case of K7 but one should keep
in mind that the task was intentionally difficult and the
impact of the boundary effect (which is given by the ratio
between template and blur sizes) is extraordinary high.

Since the evaluation by the number of correct matches
does not take into account the errors of other trials, we eval-
uated the results also in a different way using all trials.
Assuming the errors in horizontal and vertical directions
are independent and identically normally distributed, then
the Euclidean errors in 2D have Rayleigh distribution. This
distribution has a single parameter o which defines both

(b)

Fig. 11. Sharp test image (left) and out-of-focus image of the same
scene (right). The 7-fold PSF shape is apparent on the blurred image.
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mean and variance and can be easily estimated from the
data. Now the matching methods can be objectively com-
pared by respective o—the lower its value, the better the
method. The o-value for K, was 268 while for K7 only 145,
which again illustrates the superiority of K7 invariants in
this case.

We repeated this experiment with other images and
another camera having circular aperture. Although particu-
lar values vary, the main trend was always the same—the
invariants which correspond to the actual PSF shape per-
form better than the others.

4.4 Registration of Blurred Images

Image registration in general is a process of overlaying two
or more images of the same scene. It is one of the most
important and most frequently discussed topics of image
processing in the literature (see [84] for a survey). In many
applications, blurred frames are thrown away and not proc-
essed. This is why the traditional methods do not consider
image blur, cannot handle it properly and usually fail when
registering blurred images. However, there are situations
where the images are inevitable blurred by camera shake,
wrong focus, atmospheric turbulence, sensor imperfection,
low resolution and other factors. A typical example is taking
pictures from a hand by a cell-phone or a compact camera.
In last few years new application areas have appeared,
which inherently require registration of blurred low-resolu-
tion images—multichannel blind deconvolution [30] and/
or superresolution [31] of still images or video frames.
Hence, a development of special methods for registering
blurred images is highly desirable.

Registration methods for blurred images can be, as well
as the general-purpose registration methods, divided into
two groups—global and landmark-based ones. Global
methods do not search for particular landmarks in the
images but rather try to estimate the between-image trans-
formation directly. Most blur-invariant global methods
were motivated by traditional phase correlation [85], where
the blur-insensitivity was achieved by modifications of the
cross-power spectrum [41], [46], [47], [86]. Global methods
are fast and easy to implement, but their limiting require-
ments—simple between-frame distortion (most of them
allow only translation and/or rotation), the need for a large
overlap of the images and the assumption of the uniform
blur—might be a drawback in more complicated situations.

Since their first appearance in 1996, invariants to a cen-
trosymmetric blur (N = 2) have been several times success-
fully used as the features in landmark-based registration of
remotely sensed [7], [10], [11], [12], [33], [87], medical [13],
[14], [15], indoor [88] and outdoor [49], [55], [57] scenes. As
we demonstrate, introducing new invariants to N-FRS blur
with higher discrimination power broadens their registra-
tion capability.

In this experiment we register out-of-focus images that
are shifted and rotated with respect to one another. Both
blur and rotation are real and were intentionally introduced
by the camera setting. We first studied the PSF of the camera
and found it to be circularly symmetric (at least in the first-
order approximation, see Fig. 12). Hence, we employed the
invariants K. (p,q) or, more precisely, their rotation-

Fig. 12. The PSF of the camera used in the bookcase experiment.

invariant magnitudes. To show the differences in recogni-
tion power, we repeated the same experiment using
Ks(p, g). Since the images do not have a complete overlap,
we apply the invariants locally as described below.

First, control point candidates (CPC’s) are detected
both in the reference and the sensed images. Significant
corners and other corner-like dominant points are consid-
ered as the candidates. To detect them, a method devel-
oped particularly for blurred images [89] is employed.
We detected 15 most prominent CPC’s in each frame. To
establish the correspondence between the CPC’s, we cal-
culated the blur invariants up to the order r over a circu-
lar neighborhood of radius 14 pixels of each CPC. The
CPC’s are matched in the space of the invariants by mini-
mum-distance rule and two pairs of the most similar
CPC’s are found. This is the most complicated part which
is influenced by the blur. Having found these two pairs,
the rest of the procedure is obvious. We estimate the
translation, rotation and scale parameters, transform one
set of the CPC’s over the other one and match the rest of
the CPC’s in the image domain. The invariants may serve
as a consistency check.!" After establishing the correspon-
dence between all CPC’s (those CPC’s having no close-
enough counterpart are rejected), we calculate the final
affine mapping parameters via least-square fit and resam-
ple and overlay the sensed image over the reference one.

First we set r = 5. Since in that case both K, and K,
exhibit enough discrimination power, a correct match was
found in each case as can be verified visually in Fig. 13 (note
that the two initial matching pairs found by K., and K, are
different but both correct). The same situation occurs for
r > 5. Now let us repeat the experiment with setting » = 4.
The invariants K, found a correct match again while K,
failed (check Fig. 14). The reason is that K, provide better
discrimination because they are designed particularly for
circularly symmetric blurs. If we restrict to low order invari-
ants r = 3 only, both methods fail—the similarity of differ-
ent CPC’s is too high to be distinguished by so few features.

We finally registered (using K., and r =4) and sub-
tracted the images (see Fig. 15 for the difference image).
There are slight misregistration artifacts but in this experi-
ment we do not want to measure the overall registration
accuracy. We are only interested in the validity of the CPC
matching step. If the matching by invariants failed, it would

11. Additional refinement step may be inserted here. For every pixel
from a small neighborhood of the CP, its invariant vector is calculated.
The point having the minimum distance to the invariant vector of the
CP counterpart is set as the refined position of the CP. By an interpola-
tion in the distance matrix, we can even achieve subpixel accuracy.
Since this refinement has usually only slight impact on the transforma-
tion parameters, we did not apply it in this experiment.
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Fig. 13. The bookcase, r = 5. Small circles shows the detected CPC'’s.
The two initial matching pairs are denoted by “1” and “2”. Correct match
found by K, (top) and K, (bottom).

result in heavy artifacts in the difference image, which is not
the case here. Hence, all CPC’s were matched correctly,
even if their initial positions might be detected with slight
erTOTS.

The above described registration algorithm has, in addi-
tion to r and N the choice of which we already discussed,
another user-defined parameter—the radius R of the neigh-
borhood the invariants are calculated from. Its choice is
influenced by the type of the scene and by the extent of the
blur. There is no explicit relationship between R and other
parameters, just heuristic conclusions based on our experi-
ments can be made. Generally, the higher R the better dis-
criminability and the higher computing complexity. In a
“normal” clear image, R around 10 should be sufficient. If
the image contains periodic structures and thus many simi-
lar CPC’s, higher R is required. In a blurred image there

% ‘
199 R lako ¥ i
e

Fig. 14. The bookcase, r = 4. Small circles shows the detected CPC’s
(they are the same as in Fig. 13). The two initial matching pairs are
denoted by “1” and “2”. Correct match found by K. (top), incorrect
match by K, (bottom).

Fig. 15. The difference of two registered bookcase images using K, and
r = 4. The slight misregistration artifacts are cased mainly by the fact
that the actual transformation between the images includes also per-
spective projection and possibly also by an inaccurate CPC localization.
The CPC matching itself was error-free.

is an additional constraint—to keep the boundary effect
insignificant, R should be chosen such that the size of the
blur does not exceed 10-15% of the size of the R-neighbor-
hood. The order of the used invariants r and the radius R
are ”inversely proportional”. Increasing one of them
allows to decrease (up to some limit) the other one and
vice versa. For the given image, the upper bound of R is
set up by the homogeneity constraint—the blurring PSF
can be different for different neighborhoods but should
not vary within each of them.

5 CONCLUSION

In this paper we revised and substantially generalized the
theory of blur invariants. We presented the invariants to
convolution with an arbitrary N-fold symmetric PSF, both
in Fourier and image domain. We introduced the notion of
a primordial image as a canonical form of blurred images.
This construct is defined in spectral domain by means of
projection operators. We proved that the moments of the
primordial image are invariant to blur and we derived
recursive formulae for their direct computation without
actually constructing the primordial image. We further
proved they form a complete set of invariants. We also
showed how to easily extent their invariance also to rota-
tion. We discussed the properties of the proposed invariants
and the implementation issues. We illustrated by experi-
ments the recognition power of the new invariants and
showed how it depends on IN. We envisage the application
of the new theory in tasks and systems where one has to rec-
ognize and/or register blurred images.

We can see future challenges on this field namely in con-
structing combined invariants to N-fold symmetric blur
and affine transform, because we can meet affine-deformed
images in practice often. Unlike translation, rotation and
scaling, the affine transform does not preserve N-fold sym-
metries (except N = 2), so the extension is not straightfor-
ward even if both affine and blur invariants are known.
Another direction is to look for invariants w.r.t. specific
types of blur (Gaussian, motion, vibration, etc.). Knowing
the parametric expressions of the PSF, we should be able to
derive more invariants than under a general assumption of
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certain symmetry. Considering extensions to signals of
other dimensions than two, probably only 3D case is mean-
ingful because 1D is irrelevant (except N = 2) and higher
dimensions are extremely complicated and of limited appli-
cability. Even in 3D the set of possible symmetries of the
PSF is much more rich than in 2D and a straightforward
extension of the 2D theory is impossible.
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