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Abstract—We present a content-based image retrieval method
which is particularly designed for noisy images. The images
are retrieved according to histogram similarity. To reach high
robustness to noise, the histograms are described by novel
features which are insensitive to convolution with a Gaussian
kernel, i.e. insensitive to a Gaussian additive noise in original
images. The advantage of the new method is demonstrated
experimentally on real data.

I. INTRODUCTION

Since the appearance of the first image databases in the
80’s, image retrieval has been a goal of intensive research.
Early methods did not search the image themselves but utilized
some kind of metadata and image annotation to retrieve the
desired images. As many large-scale databases do not contain
any annotation, content-based image retrieval (CBIR) methods
have became one of the most important challenges in computer
vision. By CBIR we understand methods that search a database
and look for images which are the ”most similar” (in a pre-
defined metric) to a given query image. CBIR methods do
not rely on text annotation and/or other metadata but analyze
the actual content of the images. Each image is described
by a set of features (often hierarchical or highly compressive
ones), which may reflect the image content characteristics the
user prefers – colors, textures, dominant object shapes, etc.
The between-image similarity is then measured by a proper
(pseudo)metric in the corresponding feature space.

CBIR is a subjective task because there is no ”objective”
similarity measure between the images. Hence, many CBIR
systems aim to retrieve images which are perceived as the most
similar to the query image for majority of users and the users
feel this similarity at the first sight without detailed exploration
of the image content. This requirement, along with a need
for a fast system response, has lead to a frequent utilization
of low-level lossy features based on image colors/graylevels.
A typical example is an intensity or color histogram. It is
well known that histogram similarity is a salient property
for human vision. Two images with similar histograms are
mostly perceived as similar even if their actual content may
be very different and, on the other hand, the images having
substantially different histograms are rarely ranked by the
observers as similar. Another attractive property of the his-
togram is that it does not depend on image translation, rotation
and scaling (normalized to image size), and depends only
slightly on elastic deformations. Thanks to this, one need not
care about image geometry and look for geometric invariants.
Simple preprocessing can also make the histogram insensitive
to linear variations to contrast and brightness of the image.
Hence, histogram established itself as a meaningful image

characteristic for CBIR [7], [9], [8].

Histogram is rarely used for CBIR directly as it is basically
for two reasons. The histogram is not only an inefficiently
large structure (in case of color images, the RGB histogram
is stored in a vector of 224 integers, which may be even
more than the memory requirement of the original image)
but also uselessly detailed. It is sufficient and computationally
efficient to capture only prominent features of the histogram
and suppress insignificant details. To do so, some authors
compressed the histogram from the full color range into few
bins [3], [4] while some others represent the histogram by its
coefficients in a proper functional basis. The advantage of the
latter approach is that the number of coefficients is a user-
defined parameter – we may control the trade-off between
high compression on one hand and accurate representation
on the other hand. It is very natural to get inspired by a
clear analogy between histogram of an image and probability
density function (pdf) of a random variable. In probability
theory, the pdf uses to be characterized by its moments, so
it is worth applying the same approach in histogram-based
CBIR [6], [10].

CBIR methods based on comparing histograms are sen-
sitive to noise in the images, regardless of the particular
histogram representation. Additive noise results in a histogram
smoothing, the degree of which is proportional to the amount
of noise. This immediately leads to drop of the retrieval
performance because different histograms tend to be more
and more similar to each other due to their smoothing. In
digital photography, the noise is unavoidable. When taking a
picture in low light, we use high ISO and/or long exposure.
Both amplifies the background noise, which is present in any
electronic system, such that the noise energy may be even
higher than that of the signal. Particularly compact cameras
and cell-phone cameras with small-size chips (i.e. devices
which produce vast majority of photographs on Flickr, on
other servers and on personal websites) suffer from this kind
of noise, along with an omnipresent thermal noise. In-built
noise reduction algorithms are able to suppress the noise only
slightly and perform on the expense of fine image details.

Although the noise in digital photographs is an issue we
cannot neither avoid nor ignore, very little attention has been
paid to developing noise-resistant CBIR methods. The authors
of the papers on CBIR either skip this problem at all or rely on
denoising algorithms applied to all images before they enter the
database. Such solution is however not convenient or even not
realistic, because the denoising inevitably introduces artifacts
such as high-frequency cut-off, requires additional time and
mostly also needs a cooperation of the user in choosing proper

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.513

2972



parameters. In this paper, we present an original histogram-
based image retrieval method which is not only robust but
totally resistant (at least theoretically) to additive noise. The
core idea of the method is a proper representation of the
histogram by certain characteristics, which are not affected by
image noise. We stress that the paper is not aimed to judge in
which tasks and for what purposes a histogram-based CBIR is
appropriate. We rather show if it is appropriate, how it should
be implemented in case of noisy database and/or query images.

II. THE NOISE MODEL

As we already mentioned, we primarily consider the ther-
mal noise and electronic noise of consumer cameras. It is a
common belief that such noise n can be modelled as stationary
additive Gaussian white noise (AGWN) with zero mean and
standard deviation σ, and that the noise is not correlated with
the original image f .1 We adopt this assumption in this paper,
too. Hence, the noise histogram hn has a Gaussian form

hn(t) =
1

σ
√
2π

exp (− t2

2σ2
), (1)

where t is the index of the graylevel. The histogram hg of the
noisy image g = f + n is then a convolution of the original
histogram and the noise histogram

hg(t) = (hf ∗ hn)(t).

All histograms in this paper are normalized w.r.t. the image
size such that they have a unit integral.

III. HISTOGRAM REPRESENTATION RESISTANT TO NOISE

In this Section, we present a representation of image
histogram by descriptors which are not affected by AGWN.
These descriptors are based on the statistical moments of the
histogram, which is in probability theory a common approach
to characterization of pdf’s. Let h be a pdf of a random variable
X . Then the quantity

m(h)
p =

∫
xph(x)dx (2)

where p = 0, 1, 2, · · · , is called p-th order general moment
of X . Clearly m0 = 1 and m1 equals the mean value of
X . In general, the existence (i.e. finitness) of the moments
is not guaranteed, however if h is a (normalized) histogram,
its support is bounded and all mp’s exist and are finite. On
the other hand, any compactly-supported pdf can be exactly
reconstructed from the set of all its moments.In this sense the
moments provide a complete and non-redundant description of
a pdf/histogram.

Unfortunately, the moments of the histogram themselves
are affected by image noise. As the histogram of the noisy
image is a smoothed version of the original histogram, it holds
for its moments

m(g)
p =

p∑
k=0

(
p

k

)
m

(n)
k m

(f)
p−k. (3)

1There exist also other components of image noise which are not Gaussian,
namely Poisson-type photon shot noise and quantization noise. Shot noise
is usually supposed to be close to Gaussian while quantization noise is
disregarded.

This assertion can be easily proven just using the definitions
of moments and of convolution. Since the noise is supposed to
be zero-mean Gaussian, hn has a form of (1) and its moments
are

m(n)
p = σp(p− 1)!! (4)

for any even p. The symbol k!! means a double factorial, k!! =
1 · 3 · 5 · · · k for odd k, and by definition (−1)!! = 0!! = 1.

For any odd p the moment m
(n)
p = 0 due to the symmetry of

Gaussian distribution. Hence, (3) obtains the form

m(g)
p =

[p/2]∑
k=0

(
p

2k

)
σ2k(2k − 1)!! ·m(f)

p−2k. (5)

We can see that the moment of the noisy image histogram
equals the moment of the clear image histogram plus some
additional terms consisting of the moments of hf of lower
orders multiplied by a certain power of σ. For the first few
moments we have

m
(g)
1 = m

(f)
1 ,

m
(g)
2 = m

(f)
2 + σ2,

m
(g)
3 = m

(f)
3 + 3σ2m

(f)
1 ,

m
(g)
4 = m

(f)
4 + 6σ2m

(f)
2 + 3σ4,

m
(g)
5 = m

(f)
5 + 10σ2m

(f)
3 + 15σ4m

(f)
1 .

To obtain noise-resistant descriptors, we have to eliminate
the parameter σ. This can be done such that the second-
order moment is employed to eliminate σ in certain algebraic
expressions which contain other moments. In particular, if we
define the histogram descriptors (features) as

Ip =

[p/2]∑
k=0

(2k − 1)!! ·
(

p

2k

)
mp−2k(−m2)

k. (6)

then for any integer p ≥ 0, the descriptor Ip is fully indepen-
dent of the image noise regardless of the noise variance. In
other words, the Ip value of an arbitrary noisy instance is the
same as that of the original, and can be calculated without any
denoising or estimating the noise variance (the formal proof
of this assertion can be accomplished via induction over p but
we skip it due to the limited space).

We use Ip values as histogram features for CBIR. Along
with their resistance to noise, they provide ”almost complete”
representation of the histogram. Having a full sequence of
Ip, p = 1, 2, ..., (remember that always I0 = 1) we can
recover from (6) all moments of the original histogram except

m
(f)
2 . This has a profound reason – since Ip is insensitive to

noise, we cannot in principle recover the noise parameter σ,

which influences m
(g)
2 . Hence, we could recover the shape of

the image histogram while its variance is a free parameter.
This also corresponds to the fact that for any image I2 = 0
while all other Ip’s are valid. In other words, the full sequence
of Ip’s provides as much information about the image as
its histogram itself with one degree of freedom allowing to
incorporate an arbitrary unknown Gaussian smoothing of the
histogram. In practice, we of course use only a finite set of
these features, the number of which is determined by the user
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depending on the similarity of the images in the database –
the more similar images are to be discriminated, the more
histogram features we need. For databases with dissimilar
images, only few (typically between 6 and 10) features are
sufficient for histogram characterization, which provides an
excellent compression ratio.

The intuitive meaning of the Ip’s can also be understood
as follows. The joint null-space of all Ip’s is formed by all
Gaussians, so the Ip’s define the ”distance” between the given
histogram and the nearest Gaussian distribution. Equivalently,
the Ip’s actually measure the non-Gaussian component of the
histogram.

It is worth mentioning that all above equations remain valid
if we use central moments of the histogram instead of the
general ones. In that way we achieve the invariance of the
method to the overall brightness of the images without any
histogram normalization.

IV. EXPERIMENTS

A. Invariance on simulated AWGN

In the first experiment we demonstrated the invariance
property of Ip (6) on pictures with simulated noise. We use
testing database of 1000 pictures randomly gathered from
Flickr2. Average size of the picture is 1.3Mpx and all pictures
were converted to grayscale levels.

For each sample picture in the database, we created its
noisy version by adding a zero-mean gaussian white noise
of various variance. It should be noted that even though the
original grayscale image values range from 0 to 255, we do
not cut off the values of noisy image so they can range from
negative values to values higher than 255.

For each picture and each signal-to-noise ratio (SNR), we
extracted two histograms - hf of the original image and hg of
its noisy version. To show that the invariants Ip give the same
results for both clear and noisy picture versions, we calculated
the ratio

r =
I
(f)
p

I
(g)
p

, (7)

where we have applied invariant function (6) on histogram
of the original image f divided by the invariant applied on
histogram of the noisy image g. In Fig. 1 we show the
distribution of ratio r for invariants of orders p = 3, 6, 10 and
10 different SNRs from the range 5 to 32. It can be clearly seen
that majority of the ratios almost equal 1. It is also obvious
that the variance of the distribution of r increases as the SNR
decreases. The fact that the ratio is not precisely 1 for all
cases is because the randomly generated noise is not always
exactly Gaussian. Distributions of all three chosen invariant
orders are quite similar. However, the higher is the order of
the invariant function, the more significant is the influence of
numerical errors. This can be observed as a higher variance of
distributions in higher-order boxplots. This is an experimental
verification that Ip is invariant under additive Gaussian noise.

2In all our experiments we use original photographs without any postprocess
modifications. Pictures are from the same set that authors of [5] have used.

B. Invariance on real pictures

In the second experiment we demonstrate the invariance
of (6) on photographs captured by a compact camera SONY
Cyber-shot. This is much more challenging situation namely
because of the value cut-offs and the presence of non-Gaussian
noise components, which violate the normality of the noise
distribution.

We captured 20 different scenes under various light condi-
tions. The light was always low to get a noticeable noise and
by light changes we controlled (at least roughly) the noise
variance. We toke each scene 20-times and then we estimated
the clear image by time-averaging, since under low light it
was impossible to obtain the clear image directly (see Fig. 2
for an example). To extract the noise itself, we subtracted the
estimated clear image from the noisy version which helps us
to estimate the SNR of the captured scenes. We realized that
in this experiment the SNR ranges from 25 to 14.

As in the previous experiment, we evaluated the ratio (7) of
invariant functions on histograms of noisy and clear pictures.
To show the invariance property, the ratio r should be near to 1.
Unlike the simulated noise, the real camera noise is subject to
cut-off and the histogram support is bounded by values 0-255.
This causes the input data for (6) does not meet the required
theoretical assumptions perfectly. Anyway, the results of the
invariants are quite satisfactory as we can see in Fig. 3. The
median of the ratios equals almost 1 for all chosen invariant
orders p = 3, . . . , 10 and also the majority of invariant ratios
are very close to 1. For a comparison and to show that this
property is far from being obvious, we calculated the same
ratios also for the histogram moments themselves. As one can
see in Fig. 3, their behavior is dramatically different and they
do not exhibit any invariance to noise.

C. Image Retrieval

Content-based image retrieval is a challenging task where
the user selects a query image to retrieve a list of ”similar”
images (the similarity measure is pre-defined by the user,
here we measure the similarity by image histograms) from
a large database of pictures. Natural requirement is to avoid
mismatches where CBIR method returns images that are not
related to the query image. For human perception, two images
with the same content seems similar even though one of them
is affected by noise. On the other hand, CBIR methods based
on comparing image histograms are sensitive to noise that
modifies the histogram (see Fig. 5) and therefore standard
methods may produce many mismatches. If the database
system contains pictures of a similar histogram and either the
input query image or the database images are affected by noise,
then the danger of mismatches is high.

The aim of this experiment is to show practical application
of the proposed invariants (6) to CBIR. In this experiment
the database contained clear images (or at least images with
invisible noise) while the query image was always a noisy
version of one database image. To make the task challenging,
we intentionally included pictures of similar histograms into
the database. We randomly gathered 71842 photographs from
Flickr and clustered them into 314 clusters based on histogram
similarity. Thanks to this, we always limited the search to
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the respective cluster only, which avoids numerous useless
comparisons and speeds-up the test without decreasing its
significance. It should be noted that each cluster may contain
visually similar as well as very different images, see Fig. 4 for
an example.

We performed 31400 queries where the query image was
always a noisy version of some database image. We created
query images of five SNR levels (5, 10, 15, 20 and 25). For
each SNR we generated 20 different instances of the noise. The
histograms of query images were heavily smoothed due to the
noise (see Fig. 5). We compared four retrieval methods, all
of them based on the histograms. In the first method we used
the invariants I3, ..., I10 as in the previous experiments. The
second method uses plain histogram moments m1, ...,m10.
Since Ip and mp grows rapidly as the order p increases, we
normalized both Ip’s and mp’s to keep them in a comparable
range. In the third method we used the complete histograms
(256 bins) as feature vectors and matched them by measuring
their �2 distance. In the last method, we denoised the query
images first (we applied a wavelet-based denoising [1]) and
then applied full histogram matching as before.

Since we know the ground truth, we can evaluate the
correct retrieval rate. Fig. 6 shows the success rate of the four
methods as a function of the SNR. The results of the first three
methods confirmed our theoretical expectation. The invariant-
based retrieval yields the best results, complete histogram is
the worst choice and the performance of plain moments is
somewhere in between. The differences between the methods
increases as the SNR decreases. At the same time, the success
rate of each method also increases with an increasing SNR.
However, this drop-off is much more severe in case of the
complete histogram than in case of the invariants. The fact that
the plain moments perform better than a complete histogram
might look a bit surprising at the first sight. The explanation is
that we used only 10 low-order moments that describe global
characteristics of the histogram which are less influenced by
the noise than the complete histogram itself. The result of the
fourth method – denoising followed by histogram matching –
is worse than we originally expected. We assumed the method
should perform comparably to the invariants but actually it
is much worse and it is even worse than the plain moments.
The reason is that the denoising decreases the noise level in the
image but does not restore the original histogram well. Another
drawback of this approach is that it requires a significant extra
time to perform the denoising. We tried to replace the wavelet
denoising by BM3D algorithm [2], which is one of the best
ranked existing denoising methods and re-run the experiment.
However, the BM3D algorithm is so slow (10 minutes for one
query image with 20 instances of noise) that we run it on a
small subset only with the conclusion that the success rate is
comparable to that of wavelet denoising. Hence, an interesting
conclusion is that denoising followed by histogram matching
is absolutely not suitable in terms of both success rate and
speed, regardless of the particular denoising algorithm.

V. CONCLUSION

Histogram of a noisy image, both visual appearance and
common numerical characteristics, use to be significantly
affected by additive noise in the image. Provided the noise

TABLE I. IMAGE DATABASE SUMMARY

Number of databases: 314
Total number of pictures: 71842

Number of queries: 31400
Average pictures count per DB: 229

is Gaussian, we proposed novel histogram descriptors which
are invariant w.r.t. noise. We proved that along with the
theoretical invariance the descriptors are sufficiently robust on
real images corrupted by thermal, electronic, and shot noise.
As demonstrated experimentally, the proposed descriptors can
be used as the features in CBIR if the database and/or query
images are heavily noisy and standard descriptors fail. We
verified that this approach is more efficient in terms of retrieval
rate and speed than image denoising followed by histogram
matching.

Although this paper has dealt with graylevel images only,
the method can be applied to color images as well. In such
a case we have to work with three single histograms or
with 3D histograms. In the latter case, we can employ a
3D analogy to Eq. (6). Such modification is computationally
more expensive and brings certain problems introduced by
histogram sparsity but, assuming that the noise instances in
individual color bands are mutually uncorrelated, performs
rather straightforward generalization of the graylevel case.
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a)

b)

c)

Fig. 1. The boxplots show the distribution of 1000 ratios of invariants
calculated on original images and their noisy versions. The boxplots from
top to bottom show the results for invariant orders 3, 6 and 10 respectively.
The central mark shows the median, thick bar depicts 50% of the data between
25th and 75th percentiles. Outliers outside this range are marked as dots.

a)

b)

Fig. 2. A crop of the scene photographed in low light. Originally captured
noisy image (a) and the noise-free image constructed by averaging 20 noisy
frames of the same scene (b).

a)

b)

Fig. 3. a) The boxplots show the ratio (7) of invariants calculated on
histograms of real clear and noisy images. Central mark is the median of
the distribution. Thick bar depicts 50% of the data between 25th and 75th

percentiles. Outliers outside this range are marked as dots. b) The boxplots
show the same ratio where plain moments mp were used instead of invariants
Ip. The invariance is heavily violated.
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a)

b)

c)

Fig. 4. Sample images from the test database. Pictures were clustered accord-
ing to their histogram similarity. When considering histograms simplified into
four bins, all pictures within one cluster have the same simplified histogram. In
a) and b) there are previews of pictures from two clusters with corresponding
histograms in c) (on the left is a histogram for cluster a) and on the right
for cluster b)). Some clusters contain pictures that have the same histogram
but look differently (e.g. cluster a)), some clusters contains pictures that even
look very similarly (e.g. cluster b)).

Fig. 5. Example of the query image affected by noise (SNR=5) (right) and
the clear version of the image in the database (left). In the bottom there are
histograms of the images. It can be seen that the noise causes significant
modification of the histogram.

Fig. 6. Image retrieval experiment results. The graph shows percentages of
correct matches for 6280 queries for each SNR (total is 31400 queries in 314
databases). The method based on invariants outperforms the moments and the
complete histogram matching of original and denoised images.
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