GenEx

Software library for object detection
in genetical analysis evaluation

User manual

Jan Schier Bohumil Kovar
Michal Kunes

Institute of Information Theory and Automation of the AS CR

schier@utia.cas.cz

UTIA

Supported from the TA01010931 project
of the Technology Agency of the Czech Republic

Technologicka agentura
/] Ceské republiky

December 19. 2014

Contents

1

2

8

9

Acknowledgement

GenFEx library for evaluation of FISH microscopy images
Source of images

Library output

Architecture of the library

5.1 Default package Lo
5.2 Genex package
5.3 Genexlib package Lo L.

Library parameters

6.1 Parameter adjustment methods
6.2 File patterns and input files
6.3 Input checks for plugin

Definitions
Image input

DAPI Segmentation

10 Obtaining results

10.1 Export to CSV files
10.2 Getting results directly oo,

11 Basic processing loop

12 Data tagger

A Call graphs for important classes

List of Figures

Example of an input image
Main components of the GenEx plugin
Image processing pipeline
Plugin architecture oL
Setting parameterso oo o 0oL
ImageReader interface and its implementations
Data tagger —example
Call graph of the GenExPlugin_class

0 O Ui W N

11

11

12
12
15

15

16

16

10
11
12
13

Call graph of the GenExParam_class. 19

Call graph of the Dapiclass 20
Call graph of the DapiProcessor class. 21
Call graph of the SignalProcessor class 22
Collaboration graph of the GenexPipeline class 23

1 Acknowledgement

This work has been supported by the research project TA010100931 of the
Technology Agency of the Czech Republic.

2 GenFEx library for evaluation of FISH mi-
croscopy images

In this technical report, the GenFEz library for evaluation of FISH microscopy
images is described. The purpose of the library is to find and filter objects
in images from fluorescence microscope and to detect fluorescence signals
contained in these objects. In the GenEx project, it is used for diagnostics
of the Turner syndrome — chromosome aneuploidies in chromosome X, in
other words, to find the (roughly round) interphase nuclei and to count
the associated hybridization signals (see illustrative images in Figure 1; the
colour channels of the image are shown also as surface plots, to better reveal
the character of the hybridization signals).

The library is built on the top of the ImageJ environment (http://www.
imagej.org), which is widely used in bioimaging.

The library is characterized by the following features:

e separate processing channels for DAPI and for the fluorescence signals.
e no restrictions on the number of the signal channels
e output in the form of a CSV-file — ImageJ ResultTable export

The block diagram in Fig. 2 shows the high level functionality of the
library: it takes two or more sets of the input images — one for the DAPI-
stained images (“DAPI channel” in the following text), the others for the
images with fluorescence markers marking specific chromosomes (such as
the TxR, GFP, etc.) (“signal channel” in the following text) and performs
processing of the DAPI channel to find cell nuclei contained in the image.
The borders of the nuclei found in the DAPI channel, are used to select the
regions of interest for the hybridization signals (bright spots) in the other
channels, corresponding with the chromosomes of interest. As the output,
two sets of data are provided for each channel, that is, the mathematical
descriptors (see Set Measurements section of the ImageJ user guide) and the
contours of the objects.

The processing flow in each channel (DAPI, signal) is schematically de-
picted in Figure 3. The pipeline includes background subtraction, noise
suppression, image segmenation, particle analysis and object filter.

http://www.imagej.org
http://www.imagej.org
http://imagej.nih.gov/ij/docs/guide/146-30.html#toc-Subsection-30.7
http://imagej.nih.gov/ij/docs/guide/146.html

Composed RGB image, lense magnification 40x

150

100
%
%0
70
o0
0
40
20
20

o

DAPI channel TxR channel
Cell nuclei Hybridization signals

Figure 1: Example of an input image

parameters

Images
Object

DAPI
processing

Parameters
DAPL]4 of DAPI

s objects

—

DAPI
images
DAPI ROI
Images with Signal Signal Parameters
signals (TxR) processing filter of signals

Figure 2: Main components of the GenEx plugin

3 Source of images

The library takes two options for the source of input images: either an image
stack displayed in the ImageJ image window, or a set of files from a disk
directory.

4 Library output

The output of the library consists of two sorts of data for each channel: the
contours of the objects found in the image, and the results tables containg
parameters of these objects.

(\ { \ { \ { \ { \ (
N g g g z
e ol 22| |3 E g2 8| |58 2
S a0 © 9 n @ S S =9 ng
Q@—)bocﬁ—>5®—>:—)@,—4,—<—>p.ﬁa
g g & B 2, g 5 <@ 59 3
— e S B Z. = S 2 o &
3 = & AR @ T 2
M @® 0 &) o,
o3 <
\) . v . 7 . 7 . 7 \)

Figure 3: Image processing pipeline

5 Architecture of the library

The library consists of two main packages, genex and genexd.lib and
several specialized packages, such as genex.lib.segmentation. Figure 4
shows, on a schematic level, the relations between the main components
contained in the genex and genex.lib packages. The purpose of these
components is following:

5.1 Default package

e the GenExPlugin_ class provides the interface for using the plugin from
within the ImageJ environment. Note that the rest of the library, while
using the ImageJ classes, can be linked to any Java code. This class
is placed in the default package.

5.2 Genex package

The genex package contains the high/level classes which define the process-
ing flow:

e Either of the GenexPipeline and GenexIterator classes can be used
to call the image processing pipeline.

The GenexPipeline class provides more general solution, which can
be configured either to process all available images in one batch, or to
process them image-by-image.

The GenexIterator class provides an interface conformant to the Java
Tterator interface - the hasNext () method returns true if there is any
image to process, while the next () method provides the results for
single image.

e The DapiProcessor and SignalProcessor classes define the actual
image processing pipelines for DAPI channel and for the channels with
imagess of the hybridization signals.

5.3 Genex.lib package

The genex.1lib package contains class that are, in general, used to cope with
concrete problem, plus some helper classes. The important classes contained
in this package are the following:

e The Definitions class, GenExDefines. java, is where the constants and
definitions used in the code are put.

e [mage input, that is, the ImageReader. java interface, provides a uni-
fied interface for all image input methods, be it the stack of images on
the screen or image files.

Current implementations of this interface include
ScreenImgReader. java and FileImgReader. java.

The Segmentation class, Segmentation. java, takes the input image
and performs segmentation and, if enabled, watershed segmentation
(which is used to “disconnect” touching particles). The output of
segmenation is binary image.

The concrete segmentation method to use is selected using the
AbstractFactory mechanism (the implementatiom is contained in
genex.lib.thresholder). At this point, several threshold segmen-
tation methods are included: the Snell segmentation [] (con-
tained in genex.lib.thresholder) and the ImageJ segmentation
methods (contained in ij.process.AutoThresholder). However, it
is trivial to plug in any other method with the AbstractFactory mech-
anism.

Ezxtended regions (ExtRoi.java) is an encapsulation of the ImageJ
Roi class (ij.gui.Roi). This encapsulation supplies the standard
Roi class with important additional information, such as the links
between the nucleus and the fluorescence signals contained therein,
the name of the image where the object is located and the validity flag
for the object (only some of the objects found by the segmentation
and particle analysis routines are valid objects in the sense that they
represent cell nuclei or fluorescence signals).

Particle Analysys is part of the Channel.java class. Using the seg-
mentation output, it determines the particles contained in the image.
The output of the implementation in the GenFEz library is comple-
mented also with the data of the Fxtended regions class — the links
between the objects and the name of the image containing given par-
ticle.

Also, as part of paticle analysis, the particles are measured and the
Results table (ij.measure.ResultsTable) is filled with object param-
eters.

The purpose of the Object filter (ObjectFilter.java) is to classify
the objects to valid and invalid ones, based on selected criterion.

At this point, simple filter based on area and circularity of the particles
is used. The filter is connected to the code using AbstractFactory,
making addition of other methods fairly simple. An adapter method
for the WEKA data mining tool is in preparation.

http://imagej.nih.gov/ij/developer/api/ij/process/AutoThresholder.html
http://imagej.nih.gov/ij/developer/api/ij/gui/Roi.html
http://imagej.nih.gov/ij/developer/api/ij/measure/ResultsTable.html
http://www.cs.waikato.ac.nz/ml/weka/index.html

ImageJ interface
GenExPlugin_
(optional)

/ \

Processing flow definition: genex

GenEx pipeline GenEx iterator

™ L

DAPI processor
Signal processor
7 7 A N N~

Implementation library: genex.lib

[

Image Extended | |Particle Object

» : S tati ; :
Definitions input cgrnentation regions analysis | | filter

Figure 4: Plugin architecture

6 Library parameters

The library uses several parameters to define basic settings of the envi-
ronment. The parameters are stored using the java Preferences library
(java.util.prefs.Preferences), in the form of key—value pairs. The Pref-
erences library automatically cares for the proper approach to the parameter
storage.

The parameters employed in the GenFEx library are used to describe
which color channels are used in the essay (at this point, DAPI, RED and
GREEN are used), what are the file patterns for these channels, the location
of the image directory and of the directory for the CSV' result files. The
parameters are summarized in Table 1.

6.1 Parameter adjustment methods

The GenExParams_ plugin provides simple GUI for input of parameters. The
relation between the plugin, parameter storage and the GenEx library is
schematically shown in Figure 5. This GUI can be used to set the channel
usage flags for DAPI, GREEN, RED, the file patterns and the image and

results directories. The IS_.PLUGIN and SAVE_BY _IMAGE parameters are
only set in the code.

!Comma-separated values format

http://docs.oracle.com/javase/8/docs/api/java/util/prefs/package-summary.html

Parameter Parameters GenEx
input GUI .
storage library
GenExParam_

Figure 5: Setting parameters

Other option is to set the parameters directly using the
java.util.prefs.Preferences API.

6.2 File patterns and input files

The file patterns are used in the case of separate image files for each channel,
to identify the files corresponding to the particular channel. Example: with
iXXX-dapi.tiff filenames, where XXX is the number of image, the string
“dapi” can be used to identify the DAPI channel.

In the case when the images comes in the form of RGB files, only one
common pattern is used in all channels, and this pattern may be empty.

The RGB_INPUT is used only in the GenExParams_ plugin, the Genex
library uses autodetection of the file contents (the file patterns must be set
properly, though).

6.3 Input checks for plugin

In the case that the IS_.PLUGIN parameter is set, the parameters entered
by user in the GenExParams_ plugin are checked for the following:

e the file patterns for illegal characters (regular expressions are not al-
lowed, for simple usage).

e if RGB_INPUT is not set, the file patterns must be non-empty.
e the input directory must be non-empty and must contain images.

e if RGB_INPUT is not set, the number of images contained in the
directory must be the same for each channel.

7 Definitions

The GenExdefines class is used to introduce important definitions and con-
stants, used throughout the code. These include:

ChannelNames is an enumerated type used to define the name of each
channel and the transformation of this name to a string. This type
should be extended if more signal channels are needed:

] Key ‘ Value ‘ Comment

DAPI boolean | is the channel used? (always true)
DAPI_PATTERN String the pattern used to select
the DAPI image files

GREEN, RED boolean | is the channel used?
GREEN_PATTERN | String the pattern used to select
RED_PATTERN image files of the given channel
IS_PLUGIN boolean | set if the library is run as ImageJ

plugin (switches on some
correctness checks on parameter
input)

RGB_INPUT boolean | the input images are stored in
RGB files (used only in the
parameter input plugin)
SAVE_BY_IMAGE | boolean | if true, the data for each image
are saved immediately after this
image is processed. If false, the
images are processed in batch and
data is saved after the batch is
processed.

LAST_INPUT_DIR | String the directory, where the input
images are stored

CSV_DIR String the directory, where the files with
results are stored

Table 1: Parameters used by the GenEx library

public static enum ChannelNames {
DAPI("DAPI"),
RED("RED"),
GREEN ("GREEN") ,
UNSPECIFIED("");

}

signals is used to define which ChannelNames are reserved for signals:

ChannelNames[] signals = {ChannelNames.RED,
ChannelNames.GREEN};

Note that which signal is actually used depends on the setting of the

corresponding RED and GREEN parameters (see Section 6).

Filters is an enumerated type used to identify the denoising filters:

public static enum Filters {

10

FILT_MEDIAN, FILT_GAUSSIAN, FILT_DESPECKLE, FILT_NONE

objectMeasurements is an integer constants which defines the parame-
ters evaluated for particles in the image:

public static int objectMeasurements =
ParticleAnalyzer.SLICE +
ParticleAnalyzer.AREA +
ParticleAnalyzer.CIRCULARITY +
ParticleAnalyzer .PERIMETER +
ParticleAnalyzer .MEAN +
ParticleAnalyzer.CIRCULARITY +
ParticleAnalyzer .RECT +
ParticleAnalyzer.CENTER_OF_MASS +
ParticleAnalyzer.SHAPE_DESCRIPTORS +
ParticleAnalyzer.LABELS;

8 Image input

Image input methods are defined by the ImageReder interface, which
is implemented by two classes, ImgScreenReader and ImgFileRedaer.
ImgScreenReader is used to read images from a stack already opened in
ImageJ and displayed on computer screen, while imgFileReader is used to
read images directly from disk files. The relation between these classes is
shown by the UML graph in Figure 6.

9 DAPI Segmentation

DAPI segmentation is performed in the Segmentation class, using
an AbstractFactory mechanism to switch between the segmentation
methods - currently either the thresholding methods contained in
ij.process.Autothresholder or the Snell segmentation method.

This mechanism is illustrated by the following code snippet:

AbstractThresholderFactory thresholderFactory = new
SnellThresholderFactory();
Thresholder thresholder = thresholderFactory.createThresholder();
int[] thr = thresholder.getThreshold(img) ;
ImageProcessor ip = img.getProcessor();
for (int image=0; image<img.getStackSize(); image++) {
ip.threshold(thr[image]);
}

Note the array used for the thresholds: for greater flexibility, ImageJ Im-
ageStack mechanism (ij.ImageStack) is used throughout the code. This al-

11

http://imagej.nih.gov/ij/developer/api/ij/process/AutoThresholder.html
http://imagej.nih.gov/ij/developer/api/ij/ImageStack.html

genex.lib.ImageReader

+ getDAPI()

+ getSignal()

+ getSetName()
+ isRGB()

+ getDAPI()

+ getSignal()

[N

genex.lib FilelmgReader genex.lib.ScreenimgReader

~ prefs

~ saveBylmage

~ isPlugin + ScreenlmgReader()
+ getDAPI()

+ getDAPI /

+ ggtDAPlg + getSignal()

+ getSignal() + getSetName()

+ getSignal() : IseTI(D;EI(D)l()

+ getSetName() N g Sional

+ isRGB() getSignal()

Figure 6: ImageReader interface and its implementations

lows to use the same code no matter whether a single image or the complete
stack should be processed in one turn.

With the code above, an individual threshold is applied to each image.
With only one image in the stack, the threshold array thr will contain only
one element.

10 Obtaining results

10.1 Export to CSV files

The results are internally stored in the ImageJ ResultsTable class. At the
end of processing, or after processing single file (depends on the setting of
the processByImage variable in the GenExPlugin_ class), they saved into
a CSV file, located in a directory set in the CSV_DIR key (see Section 6,
library parameters). If this key does not exist, the file is saved into the image
directory.

The format of the file is shown in the example in Table 2. Con-
crete parameters included in the file depend on the setting of the
objectMeasurements variable in the GenExDefines class (see Section 7).

12

Additional keys The following keys are added to those used by default
in ImageJ:

Label unique label of the particle
Image filename of the image containing the particle
Valid particle validity as determined by the object filter

Expert particle validity as set by expert with the tagger GUI. This key will
be used to train the WEKA classifier and in comparative evaluation
of the library.

The following keys are used for signals:
Nucleus index of nucleus containing given signal

Color color of given signal (RED|GREEN). The data for signals in all chan-
nels are stored in one common table. channels

13

4!

Label Area Mean Perim. Circ. AR Round Solidity Image \ Valid \ Expert
1 10001-0001-0059 | 1834 77.234 160.610 0.893 1.080 0.926 0.967 0la true | true
2 10001-0002-0092 | 2570 119.447 188.752 0.906 1.139 0.878 0.974 Ola true | true
3 10001-0003-0144 | 2587 52.545 190.652 0.894 1.133 0.882 0.972 0la true | true
4 10001-0004-0153 | 3522 54.973 221.380 0.903 1.041 0.961 0.971 Ola true | true
5 10001-0005-0246 | 2384 77.049 181.581 0.909 1.105 0.905 0.972 0la true | true

Note: not all data is included

Table 2: Example of the result table

Filename format of the CSV file The filename of the CSV file is con-
structed using the filename of first (fnFirst) and last (fnLast) image in
the directory as fnFirst-fnLast-dapi.csv (or -signal, correspondingly).
In the case that only one image is processed, the filename is simplified to
filename-dapi.csv.

10.2 Getting results directly

The results can be obtained directly from the code of GenEx library, using
the GenExPipeline class. It contains the runPipeline method in several
variants, which returns an object of the Results class:

public Results runPipeline(int objectMeasures)

This is a composed object, containing all data obtained from the images:

public class Results {

public FISHdata getDapi();

public FISHdata getSignal();

public Results(FISHdata dapi, FISHdata signal) {
this.dapi = dapi;
this.signal = signal;

}

}

where the FISHData class contains the results table and the ROIs of the
objects:

public class FISHdata {

public FISHdata(ResultsTable results, ArrayList<ExtRoi> rois) {
this.results = results;
this.rois = rois;

}
public ResultsTable getResultsTable();

public ArrayList<ExtRoi> getRois();
}

The data can be accessed using the getter methods of these classes,
combined with the access methods of ij.measure.ResultsTable class.

11 Basic processing loop

In this section, we describe the processing code of the library at the highest
level. It is fairly simple:

boolean processByImage = false;
Results results = null;

15

http://imagej.nih.gov/ij/developer/api/ij/measure/ResultsTable.html

GenexPipeline pipeline = new GenexPipeline(channels);
if (pipeline.readImages()>0) {

results = pipeline.runPipeline(GenExDefines.objectMeasurements) ;
Iy

// process results

In the first line, the processing pipeline is instantiated. Then, if a non-
zero number of images is read from the pipeline, the processing method
runPipeline is called. This code is used for batch processing of images.

For processing of individual images, a while-loop is used instead of the
if-condition:

boolean processByImage = true;
GenexPipeline pipeline = new GenexPipeline(channels);
while (pipeline.readImages()>0) {
Results results =
pipeline.runPipeline(GenExDefines.objectMeasurements) ;
// process results

3

12 Data tagger

To be able to collect input from expert and to compare it with the library
performance, a graphical data tagger has been designed. It is contained
in the genex.lib.RoiLabeler class. The tagger displays the microscope
image with the contours of detected nuclei and signals overlaid. It allows to
enable/disable these contours using a menu-driven interface. The results of
tagging are stored in the “Expert” column of the result table. An illustrative
screenshot is given in Figure 7.

A Call graphs for important classes

In this appendix, the call- and collaboration graphs for several important
classes of the library are shown. Full details are given in the API description.
References

[Snell2011] Violet Snell, William Christmas, and Josef Kittler. Segmenta-
tion and shape classification of nuclei in DAPI images. In The 22nd
British Machine Vision Conference, pages 1-9, Dundee, 2011.

16

wjadro

Ulozit wysledky

Cancel

Figure 7: Data tagger — example

17

|eubis

_ de1e6-depybuuigpuuey) qi xauab

_ aweNj19sI196-auljedidxauss) xausb

_ s|eubig)eb auljadidxauan) xausb _

_ deyeb-auljedidxauss) xauab _

abew|
asodwoo’s|nsoalydels qi-xausb

uns” uibn|gx3uan

[eubis
196°s))nsay Indyno-qi| xeusb

_ 1deqjeb-synsay Indjno-qi|-xauab

106°Japeayabew

yibue

sebew)
peal’1ossao0id|eubls xauab

Al|_ auljediduns-auljedidxeuss) xoush

yoe)gIeb jpuueyd qi| xausb

sebew)
peal Jossaooidideq-xauab

sabew

|dva1eb-1epeayabew) gl xausb

pealauljadigxauss) xausb

Call graph of the GenExPlugin_ class

Figure 8

18

JaASDIeb o
Jgebew) sweled- g xausb

/

JIASOIes o] <
Jgebew sweled gl xeusb

JIQASD08Ies SN
IN9Indu| swelsed q)|'xausb

wspeda|i41e6-o|
[puuey) swesed- gl xausb

ulsyeds|i4jes o
|puuey sweled-qi| xausb

1sruiaiebop|
Jgebew swesed- gl xausb

uisyeds|i41es s|iin
In9nduj swe.ed-q)|"xauab

[puueyDIeb O
jpuuey) swelted-qi|-xausb

sbe|4asneuueyDIas s|iN
IN9Indu| swesed q)|'xauab

sweledieb uiepy
In9INdu) sweled-q)| xausb

A|_ unI” sweleqdx3juan

Jigyeb-op|
Jgebew sweled gl xeusb

Jigoses siin
IN9Indu swesed-q)|'xausb

pasnias o]
|puueyD sweled-qi| xausb

Jigies o
Jgebew sweled gl xausb

Call graph of the GenExParam_ class

Figure 9

19

104196°10431x 3" Xousb

aweN}es
106 1apeayabew|joelsqy xausb

_ de|yjeb6-depbuuigpuuey) xaush

_ 181onN3eb 1deq xausb

jo4uodxa’|iin xausb sloypodxa’|yn xauab _||

LE___._E_E%BO.xmcmm_

/

_ so|o1edozAleue jpuuey) xausb ainsesw’1deq-xousb Buisseooidquni’ideq - xausb

_ Bwiuigies jouueyn xasush T|_ |lpUgazueulq Ideq-xausb _

JleUSHUI'Ideq xeush

_ Aysusjujezijeuuiou” jpuuey) xeush _

_ Buissaooidaid jpuuey) xauab _

_ |dvQ1eb-1epeayabew|oel}sqy xousb

Call graph of the Dapi class

Figure 10

20

_ depyyeb-depyBuuysipuuey) ql| xeuab

_ sloy}e6°ejepHS| 4 Indino-qi| xausb

s)nseyanes [N ql| xauab

104196°104)X3 Q| Xauab T|_ 1041odxa° N ql| xeush siogpodxa’ 1N qi|xaush

synsayab'1deq-qi|'xausab

dqeLs)insay

6 Indyno"qyy 6
JODBIEPHSI Indino"qixeus 19jonN3eb’1deq qi| xeusb

o)y Je)|1 JoYY qI| xeush

o|oNNB}|1401e810° AI0joR 410}
Joelisqy 18y ql” xauab

_ Buisse201duny i0sseooidideq xeush

sojolued

szAjeue jouLEYD q| XaUsB ainsesw'ideq'ql|'xeuab

Bwijuigies'jeuuey) qi| xausb _

aslousp’jeuUByD ‘| Xaush

Aysuayy|
9z|[euLou’jpuUBYD ql| Xauab

Buissaooidaidjpuuey) qil'xausb

Call graph of the DapiProcessor class

Figure 11

21

104186°1041x3 ql|"xaueh _A|_ 104uodxe°|lN"

_ deyeb-depBumyspuuey) gl xausb _

_ s104)96°e)epH S|4 Indino-qi| xauab r

<

sloypodxa’ [N ql xeusb

a|qe| s)nsay
106"e}epHS| 4 Indino"q1| xauab

HUIPPE 1041X3 qI| Xauab

s}nseyanes |l qllXeuab

EITERIERCT

|euBisay|i4ereai0"A10joe io)|14
1oRASqQY IS} qI| XoUSh

Buissaooid
unJ'J0SS001d[eublS xauab

sBigainsesw sie}geubis gl xausb

Call graph of the SignalProcessor class

Figure 12

22

< [uueyy
615°q)'xeush >1srheuy

sjeubis~ J0ss3201db61S~

(roybisyeb ~
()synsayieb +
()Buissesoidqun +
()seBewjpeas +
()seBewjpeas +
()seBewjpeas +
()lossaooidleubis +

105$9201deubig xausb

()sweNiosieb +
()sieubisyob +

auledigxaus9 xaush

sjpuUByI~ J10ss9201dIdEp~

()Bumso) +
Q@34103dSNN +

soweN
[uuBYD"SaUYSaX3usD) ql| Xauab

(oueli4106 ~
()oweN3ogIob ~
()Buissesoidqun +
()seBewjpeas +
()seBewjpeas +

()synsayeb +
(re1onN3eb +
(Jaunsesw +
()deg +
()deq +
()deg +

_ mmamim?am ~
1dVa ANNOYOXOVE SNIavy +

(rdeq +

Jossaooidideq xaush

de@ qi|"xausb

sjoud~

()

saouasejeld

(ubuspioeigieb +

oweN|auueyD)eb #
“aj0W g pue
()osiouap +
()Bumsueyoyeb +
()BumsueyDeb +

()eBewpyes +
(rpuueyd +

Sull

[ouueyD qixaush

synsa \ mE:w/

ajqeLsynsay snjdebew|

lass

line ¢

ipe

Collaboration graph of the GenexP

Figure 13

23

	Acknowledgement
	GenEx library for evaluation of FISH microscopy images
	Source of images
	Library output
	Architecture of the library
	Default package
	Genex package
	Genex.lib package

	Library parameters
	Parameter adjustment methods
	File patterns and input files
	Input checks for plugin

	Definitions
	Image input
	DAPI Segmentation
	Obtaining results
	Export to CSV files
	Getting results directly

	Basic processing loop
	Data tagger
	Call graphs for important classes

