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Abstract The segmentation of CT images to produce a

computational model of anatomy is a time-consuming and

laborious process. Here we report a time saving semi-

automatic approach. The image-processing technique

known as ‘‘statistical region merging’’ (SRM) was used to

pre-segment the 54 original CT images of the ADELAIDE

data set into regions of related pixels. These regions were

amalgamated into organs and tissues by a program oper-

ated through a graphical user interface. This combination

of SRM and GUI was used to build a voxel computational

model of anatomy. The ‘‘new’’ version of ADELAIDE was

compared to the ‘‘old’’ version by simulating an abdominal

CT procedure on both models and comparing the Monte

Carlo calculated organ doses. Seventeen of the 21 SRM–

GUI segmented tissues received doses that were within

18 % of the doses received by the manually segmented

tissues. Hence the SRM–GUI segmentation technique can

produce a computational model that is not functionally

different from a manually segmented computational model.

The SRM–GUI segmentation technique is able to reduce

the time taken to construct a voxel tomographic model

from CT images.

Keywords Voxel model � Image segmentation �
Statistical region merging � CT dosimetry

Introduction

Medical image segmentation is the process of identifying

where the boundary of a tissue or organ lies, drawing it and

then labeling the pixels of that tissue with one common

greyscale value, different from the values assigned to the

other identified tissues. The task is undertaken in order to

construct realistic whole body models of human anatomy

which can be used (for example) to calculate absorbed dose

to organs and tissues from computed tomography (CT)

procedures. The manual segmentation process is very time

consuming both because of the time required to identify

and draw contours around all of the tissues in a single

tomographic image, and because of the large number

(300–600) of individual images that are required to span

the head to foot anatomy of an individual at (say) 3 mm

intervals. Consequently there have been efforts to speed the

process by semi-automating it.

The segmentation of CT images can be said to have

started in 1984 when Gibbs et al. [1], in order to determine

dose from dental radiography by computer Monte Carlo

simulation, imaged the head and trunk of a female cadaver

and segmented the pixels as air, lung, fat, muscle, bone or

tooth. No details of the segmentation are provided, however

it can be safely assumed that the 64� 64 image arrays were

processed manually. Veit et al. [2] were the first to describe

the segmentation of an entire body set of tomographic

images. However their description of the segmentation of
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BABY (142 slices) and CHILD (144 slices) was brief, and

consisted of stating that while skin and skeleton could be

segmented automatically, all other organs were segmented

manually and one slice at a time.

Zubal et al. [3] developed an in-house program to dis-

play CT images and permit medical staff to outline the

more than 3,000 contours required to characterise the organ

boundaries. Each organ outline was filled with a unique

integer index value using a region-of-interest colouring

routine.

Magnetic resonance images of anatomy are another

source of anatomical information and were used by Dim-

bylow [4] and Jones [5] to construct a computational model

modified to match the size of Reference Man—the model is

known as NORMAN. In this case, greyscale images were

segmented ‘‘semi-automatically’’ using thresholding. Where

this was not possible, anatomical texts were used for guid-

ance and tissue was manually drawn into the image. Where

necessary, for example with bone, images were edited by

hand and this proved to be a challenge.

The 54 slice torso model ADELAIDE was segmented

manually using the commercial software PaintShop Pro

and Image-Pro Plus slice by slice. Contours were hand

drawn and pixel values coloured in using the ‘‘flood-fill’’

facility and, where necessary, by hand pixel by pixel [6].

Xu et al. [7] used colour photographs of anatomy from

the physically sectioned cadaver of the Visible Human

Project to construct VIP-Man. The images had already

been segmented ‘‘mostly by manual procedures’’ but Xu

et al. segmented some other selected tissues by automatic

and manual image processing means based on colour. This

was possible as the images were colour photographs rather

than reconstructed medical images in a grey scale.

Zankl and Wittmann [8] used dedicated image pro-

cessing commercial hardware and software (called MI-

PRON) to segment ‘‘Golem’’ without manually drawing

organ boundaries. They avoided manual drawing by

developing a series of macros that used thresholding and

morphological operations (such as dilation, erosion, filling

etc.) into an algorithm. It is not clear from the otherwise

detailed description given, how much supervision was

required by the operator. Saito et al also used MIPRON (as

well as Visilog) to segment the 170 (or so) CT images of

the Japanese computational model known as ‘‘Otoko’’ [9].

They also used thresholding and morphological image-

processing techniques on a slice by slice basis.

Rather than using commercially available image pro-

cessing software, Nipper et al. [10] wrote their own image

processing code using IDL (Interactive Data Language)

which they have called CT_Contours. CT_Contours enabled

the drawing of contours by using image-processing tech-

niques such as: basic thresholding, pixel growing, voxel

growing, region growing and by manual segmentation. A

region of interest (a tissue to be segmented) could be created

in the transverse, coronal or sagittal planes. The results of

automatic segmentation were supervised so that errors could

be corrected by manual drawing.

Nagaoka et al constructed models of a Japanese male

and female from MRI images. They wrote: ‘‘It is impos-

sible to divide the voxels in the original images into cor-

responding tissues or organs automatically with sufficient

accuracy using presently available image-processing tech-

nologies’’ [11]. Consequently, tissue and organ-identifica-

tion was performed manually on individual images by

medical staff operating software on personal computers.

There were more than 800 images for each model and the

task took longer than 3 years. While the identification of

tissue boundaries is necessarily somewhat subjective, the

work, when done by experts can be considered best

practice.

Kramer et al constructed their adult female computa-

tional model FAX from the torso of a 37 year-old, the legs

and feet of a 62 year-old and the scaled head and arms of

the male MAX model [12]. The 357 images were seg-

mented manually using Microsoft PAINT to colour each

organ and tissue of interest.

Lee et al. also used the University of Florida developed

in-house software CT_Contours to identify and contour

images on a slice by slice basis for five head and torso

paediatric models. The software allowed thresholding,

edge detection, dilation along with manual drawing and

modification [13]. For some tissues with insufficient con-

trast to make them distinguishable in the images, an

informed decision as to their shape location had to be

made, and these decisions were reviewed by an experi-

enced paediatric radiologist.

In the Chinese equivalent of the Visible Human Project,

colour photographic images of sectioned male and female

cadavers were manually segmented with Adobe Photoshop

software to produce the Chinese adult male voxel phantom

CNMAN [14] and the voxel-based Chinese reference

female phantom (VCRP-woman) [15] respectively. The

tissues in the images were identified visually and their

borders outlined and filled with a colour to aid their visu-

alisation. Red bone marrow in the male was distinguished

from yellow bone marrow using colour thresholding.

A voxel model of a Korean male cadaver was produced

similarly. The 33 year old leukemia victim was adjusted

from a height of 164 to 171 cm and is known as HDRK-

man [16]. Kim et al. found that the colour images were

better than grey-scale CT or MR images for segmentation

purposes because the color images made different tissues

that were not clearly visible with CT or MRI, distin-

guishable. Eleven tissues in the images used for HDRK-

man had already been segmented by Park et al. [17] who

used the ‘‘magnetic lasso’’ tool of Adobe Photoshop to
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semi-automatically draw the contours for these tissues

which were then coloured in. Kim et al. used the same

software and tool to ‘‘automatically’’ segment eight addi-

tional tissues. That is, by using this image-processing tool,

the region that surrounds a pixel manually selected by a

mouse click, and whose pixels are sufficiently close in

colour to the selected pixel, is automatically identified and

enclosed with a contour. The other organs were segmented

manually, again using the lasso tool in Adobe Photoshop

which Kim et al state: ‘‘significantly expedited the seg-

mentation process’’.

The art of image segmentation for the purpose of con-

structing a computational anatomical model of the whole

human body that can be used for radiation dosimetry, has

not progressed far over the 25 years it has been practiced. It

began as a time-consuming manual process and remains

today a largely manual process, albeit with varying degrees

of semi-automation. Using automated methods to reduce

the time required to produce a voxel model of anatomy

from many months to a few days or weeks remains an

elusive goal.

Our approach to automating the image segmentation

process is to use the technique of statistical region merging

(SRM) [18] to identify regions of adjoining pixels that

possibly belong to the same tissue [19]. The SRM tech-

nique has proved to be a great tool for producing efficient

and usable segmentations for analysis of natural scene

images (see also e.g. [20]). In medical applications, Celebi

et al. [21, 22] applied the technique for border detection in

dermoscopy images to help with skin cancer detection.

Bajger et al. [23] successfully applied the SRM technique

to mammograms for breast cancer detection. Lee et al. [19,

24, 25] applied SRM for segmenting CT images, while

Wong et al. [26] used SRM for prostate lesion segmenta-

tion in MRI images. The above shows that SRM-based

techniques can be successfully applied to a range of chal-

lenging tasks in medical image segmentation.

The segmentation of a tissue or organ is completed when

adjacent regions are selected by the user as belonging to the

one tissue and amalgamated. The first step of applying

SRM to medical images is achieved rapidly (in about 1 s)

by a computer algorithm. The second step is achieved by

using a graphical user interface (GUI) that we have

developed for the purpose. This article reports on the

usefulness of the combination of SRM and GUI in seg-

menting medical images for the purpose of constructing

voxel models of anatomy which can be used for dosimetry

purposes. It compares a voxel model of anatomy produced

by manual segmentation of CT images (that is, the ADE-

LAIDE model [6]), with a version of the voxel model

produced by using SRM and our GUI applied to the same

CT data set. The comparison is made by comparing the

number of voxels assigned to each tissue and the absorbed

dose to organs of the two voxel models when both are

subjected to the same Monte Carlo (MC) simulated CT

imaging procedure.

Our goal is to determine whether a voxel model of

anatomy that is produced in a short time by the method

above, can be used to calculate tissue and organ doses from

a CT procedure, that are comparable to those achieved

when a manually segmented voxel model is used.

Methods

Pre-segmentation using statistical region merging

SRM segmentation is a bottom-up process of combining

image pixels into bigger regions based on the following

criterion. The two regions R1 and R2 are merged into a

single region if the difference between average intensities

across these regions does not exceed the value

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð2=rÞ
2Q

1

#R1

þ 1

#R2

� �

s

;

where g ¼ 256, the number of grey level values, #R is the

number of pixels in the region R, r is a very small number

inversely proportional to the square of number of pixels in

the image I, for example, r ¼ 1

6ð#IÞ2, and Q is a parameter

whose value has to be set by the user for an image at hand.

Note that Q value is the only parameter which needs to be

determined by the user. In practice, it is not difficult to

choose values of Q which result in satisfactory segmenta-

tions for a large range of images.

The Q value quantifies statistical complexity of the

image. Thus, the value of Q is responsible for the coarse-

ness of the segmentation. In this study, a low Q value often

results in under-segmentation, that is, not enough regions

are identifed to distinguish different organs sufficiently. A

high Q value, on the other hand, often results in over-

segmentation, that is, too many regions are identified

within one tissue. In the latter case, amalgamating the

regions becomes necessary. Bajger et al. [23] showed that

in some applications it may be possible to develop an

analytical criterion for an estimation of Q value resulting in

the required coarseness of the segmentation.

It is worth pointing out that our choice of SRM over

other well-known and widely used segmentation methods

such as the Mean-Shift [27] or the Normalized Cut [28]

was motivated by the computational efficiency of the SRM

algorithm and its successful previous applications to

medical image analysis, as mentioned above. Our GUI

framework can readily work with any pre-segmented

images regardless of the method used to produce the

segmentation.
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Description of the graphical user interface

We use the SRM technique to pre-segment the pixels of CT

images into regions. The GUI is then used to amalgamate

regions into the shapes of organs or tissues. The GUI uses

medical (CT)images and their corresponding SRM pre-

segmented images as input and saves images of tissue

shapes segmented by the user from the pre-segmented

images. Thus the GUI is not used for image processing, as

the SRM technique processes the CT images to pre-seg-

ment them. An external program generates a set of SRM

pre-segmented images from each CT image. For the pres-

ent work, for example, we generated 64 different SRM

images from each CT image, but chose to use only the

values Q ¼ 8; 16; 32; 64; 128; 256 and 512.

The GUI displays a pre-defined number (a default of six)

of consecutive CT images on the screen at one time. SRM

pre-segmented images with regions identified by different

colours are overlaid on the original greyscale CT images.

The GUI allows the user to adjust the transparency so that

amalgamated SRM regions can be compared to the tissues

they represent. The GUI user works with one tissue at a

time from those available in a drop down list. The tissue

names and number of tissues may be adjusted by the user

and are independent of the SRM pre-segmentation. After

selecting a tissue the user selects the first and last slice of

the stack of consecutive slices to work on. The GUI then

displays a predefined number (default six) of images of the

first slice at different Q values—again overlaid on the

original CT greyscale images so that the correspondence

between SRM regions and tissue boundaries can be viewed

by changing the transparency. The user chooses the Q

value most appropriate for segmenting the tissue and that

image may be magnified for convenience. Having images

with a range of Q values is useful as it is common for

different Q values to be used for different tissues and even

for the same tissue in a different slice.

The user clicks on SRM regions to select (or deselect)

them for amalgamation into a single region. Selection

colours the region yellow so that the amalgamated shape is

seen (see Fig. 1). When satisfied with the shape, the user

proceeds to the next slice. The GUI is not primarily an

image processor but has some image processing capabili-

ties which are useful in cases where the tissue shape cannot

be adequately composed of the available SRM regions. The

available image processing methods in the GUI that may be

applied to the SRM images to adjust the segmented shape

include adding or removing pixels, boundary smoothing,

morphological dilation and erosion, filling in holes and

labeling of all remaining unlabeled pixels. Regions and

pixels that have already been assigned to a tissue are

indicated by a blue overlay (see Fig. 1) and are prevented

from being reassigned to a subsequent tissue (except if the

user specifically chooses to). In this way it is clear which

regions of the image remain to be segmented.

The GUI is written in the Java programming language so

is portable between computers. Since the GUI operates on

pre-segmented regions rather than on a pixel level, the

segmentation is much faster than pixel-level segmentation.

To segment a tissue shape, the user typically amalgamates

a limited number of SRM regions. For large organs, such as

liver or spleen, the number of regions may be two to four.

The organ boundaries achieved by using the GUI to

amalgamate pre-segmented SRM regions are not as smooth

as those achieved by manually drawing the boundaries

(even after applying smoothing), however the process is

much faster.

Fig. 1 GUI screenshots: a slice 52 displayed for six Q values and

showing skin, sub-cutaneous fat and liver in blue, indicating that

those pixels are protected from being reassigned to another tissue;

b slice 52 with Q value 128 selected for amalgamating regions of

bone (and enlarged to facilitate the process). Amalgamated regions

are shown in yellow. At left are displayed the two adjacent slices
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Experiment

Data set

The original clinical CT data from which ADELAIDE was

constructed were 54 images (at 1 cm intervals) of the torso

at 451� 451 pixels, that were acquired in 1996 before the

DICOM image standard had been adopted [6]. For the

original manual segmentation, these images were resized to

128� 126 pixels because of the limited memory available

in desktop computers of the time. The 29 cm diameter field

of view truncated some superficial anatomy in the superior

16 and inferior 13 slices (see Fig. 2 for an example). For

these slices, this missing anatomy (skin, sub-cutaneous fat

and muscle at the shoulders and hips) was at the time,

added by hand for the manually segmented ADELAIDE.

This addition had the effect of extending the lateral

dimension of the manually segmented ADELAIDE from

128 to 140 pixels (in the worst case).

Voxel model produced by GUI

In order to compare the GUI segmentation with manual

segmentation, the SRM algorithm needs to work with the

original ADELAIDE CT images (albeit resized to 128�
126 pixels), so was applied to the truncated images

described above. This was deemed to be acceptable as: a)

this was the clinical data available to us, and b) comparing

calculated organ doses to an SRM segmented model built

from truncated images, to organ doses calculated to a

manually segmented ADELAIDE for entire anatomy,

would be a more searching test of the ability of the SRM–

GUI technique to deliver accurate segmentation.

The SRM technique is in theory able to segment thin

structures such as the skin, provided that the skin’s image is

present and uncorrupted in the image. However it would

produce a great many very small regions which would be

time-consuming to amalgamate. So for this work, the

external boundary of the manually segmented ADELAIDE

was used to form the skin (of one pixel thickness) of the

SRM–GUI version.

Differences between manual Adelaide and SRM–GUI

Adelaide

Cortical bone and its overlying one pixel thick bone surface

were segmented separately in the manually segmented

ADELAIDE but bone surface and bone were not distin-

guishable in the SRM–GUI version. So to compare the two

versions of ADELAIDE, bone and bone surface are com-

bined in Table 1 and the doses averaged using the formula:

Fig. 2 Image 84 showing truncation of the lateral parts of the hips

due to the restricted field of view a an original CT data, b original

manual segmentation, c the SRM–GUI segmented image
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½ðPb � DÞ þ ðPbs � DÞ�=ðPb þ PbsÞ

where D stands for the dose, Pb indicates number of bone

pixels, and Pbs is the number of bone surface pixels.

The SRM–GUI segmentation of ADELAIDE includes the

ascending, transverse, descending, sigmoid colon and rectum

as one tissue (colon, including the contents), whereas in

manually segmented ADELAIDE colon did not include the

upper large intestine. At the time ADELAIDE was segmented

manually, ICRP60 included the upper large intestine as a

remainder tissue. Furthermore, upper large intestine was not

distinguished from small intestine in manual ADELAIDE. So

to compare the two versions of ADELAIDE, small and large

intestine are combined and doses averaged in Table 1. Gas

within the bowel was segmented in both versions. In GUI-

SRM segmented ADELAIDE, soft tissue that was not muscle

or sub-cutaneous fat was segmented separately. However in

manual ADELAIDE, such soft tissue was assigned to fat or

muscle. Again for comparison purposes, muscle and soft tis-

sue are combined and doses averaged in Table 1.

Monte Carlo simulation

A user code that interfaces with the Monte Carlo code

EGSnrc [29] was used to simulate a CT examination of the

abdomen (from the top of the liver to top of the pelvis).

EGSnrc was used with low energy photon options

Table 1 Organ doses to the

manually segmented and SRM–

GUI segmented versions of the

ADELAIDE voxel model, with

uncertainties in brackets

Organ/tissue Organ dose (nGy cm2)

for manual seg.

Organ dose (nGy cm2)

for SRM–GUI seg.

Percentage

difference

(GUI/manual)

Bone 4.56 (�0.06 %) 9.34 (�0.04 %)

Bone surface 21.61 (�0.06 %) na

Combined bone and bone surface 10.74 9.34 (�0.04 %) -13

Heart 1.80 (�0.13 %) 2.06 (�0.18 %) 14

Spinal cord 1.60 (�0.78 %) 2.11 (�0.60 %) 32

Skin 13.8 (�0.06 %) 14.67 (� 0.06 %) 7

Sub cut fat 9.33 (�0.03 %) 9.64 (�0.04 %) 3

Muscle 5.03 (�0.02 %) 5.64 (�0.03 %)

Including soft tissue

Soft tissue na 2.37 (�0.17 %)

Combined muscle and soft tissue 5.03 (�0.02 %) 5.24 4

Breasts 1.10 (�0.38 %) 1.25 (�0.35 %) 14

Lungs 3.89 (�0.15 %) 4.78 (�0.07 %) 23

Oesophagus 1.67 (�0.80 %) 1.93 (�0.78 %) 15

Kidneys 8.00 (�0.15 %) 9.02 (�0.17 %) 13

Liver 5.41 (�0.08 %) 6.39 (�0.06 %) 18

Spleen 15.55 (�0.13 %) 17.23 (�0.13 %) 11

Stomach 3.55 (�0.18 %) 4.05 (�0.19 %) 14

Small bowel (wall and contents) 2.27 (�0.12 %) 1.50 (�0.20 %)

(wall and contents) Including tra?asc colon

Large bowel 5.31 (�0.17 %) 3.67 (�0.13 %)

des?rec asc?tra?des?rec

Combined small and large bowel 3.07 3.03 -1

{including gas}

Pancreas 1.90 (�0.76 %) 2.14 (�0.81 %) 13

Gall bladder 2.88 (�1.95 %) 2.98 (�0.76 %) 3

Uterus 0.24 (�1.40 %) 0.31 (�2.09 %) 25

Ovaries 0.32 (�5.51 %) 0.31 (�5.82 %) -3

Bladder 0.17 (�2.28 %) 0.21 (�2.26 %) 18

Thymus 1.28 (�1.69 %) 0.94 (�1.15 %) -27

Trachea 0.62 (�3.38 %) 1.07 (�1.62 %) 71

Thyroid 0.53 (�1.56 %) 0.43 (�2.02 %) -18
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(Rayleigh scattering, electron impact ionisation and bound

Compton scattering) selected. A 120 kV spectrum with 4.9

mm Al (equivalent) filtration was used and attenuated

through a ‘‘bowtie’’ beam-shaping filter. The simulated

photons spread from a point source into a fan beam of

width 1 cm at the isocentre (in the absence of the anatomy)

and circled the anatomy without amplitude modulation. An

abdomen examination was chosen for the simulation rather

than a chest or pelvic examination as the CT images from

which ADELAIDE was constructed have parts of the

shoulders and hips truncated by the radius of the field of

view. The truncated anatomy was drawn in by hand when

ADELAIDE was manually segmented, but is absent from

the SRM–GUI segmented version of ADELAIDE prepared

for this work. An input file was produced for each of the

manually segmented ADELAIDE and the SRM–GUI seg-

mented version. They differed only in the assignation of

tissues to voxels.

The Monte Carlo simulation was run for 3:7� 108

histories per slice (this was enough to produce a photon

flux of 1:0� 107 photons/cm2 at the scanner isocentre in

the absence of the phantom). Un-normalised absorbed

doses to the organs/tissues of the manually segmented

ADELAIDE and to the SRM–GUI segmented version of

ADELAIDE were calculated in order to determine whether

the differences between the segmented anatomies were

sufficient to produce large differences in organ doses.

Results

Figure 3 shows the effect of using different Q values for

pre-segmenting images by using SRM. Note that for higher

Q values, pre-segmented regions are smaller. For example

the heart is segmented as a single region when Q ¼ 16, but

as several regions when Q ¼ 64 or 256. Note also that

different regions of the same tissue (e.g. bone) are identi-

fied as different SRM regions and so given a different

colour. Figure 4 shows two examples of a CT image

(451� 451 pixels) from the ADELAIDE data set, its ori-

ginal manual segmentation (from a 200� 200 pixel image)

and the SRM–GUI segmentation (from the same image but

at 128� 126 pixels). Table 1 lists 21 organs or tissues (or

organ groups) segmented in ADELAIDE along with the

un-normalised Monte Carlo calculated absorbed dose to the

tissue, while Table 2 lists the number of voxels assigned to

each tissue. Column two displays the data for the manually

segmented original ADELAIDE, while column three lists

the data for the SRM–GUI segmented ADELAIDE. In the

fourth column are shown the percentage differences

between the Monte Carlo calculated organ doses or

between the numbers of voxels in the two versions of

ADELAIDE. Seventeen of the 21 pairs of organ doses are

within 18 % of each other.

When numbers of voxels segmented to each tissue are

compared, liver, bone, kidney, heart, breasts, skin, com-

bined muscle and soft tissue, and combined small and large

intestine (including contents) differed by 0.5, 1, 2, 4, 7, 8,

10 and 10 percent respectively. Thirteen of the 21 SRM–

GUI segmented tissues are within 18 % of the manually

segmented values. A further four are small organs or tis-

sues (pancreas, ovaries, thymus and thyroid) that were not

amenable to SRM pre-segmentation and required manual

segmentation with the GUI. The greatest percentage dif-

ferences were for trachea and gall bladder (and contents).

These tissues (as well as ovaries) have the smallest num-

bers of voxels in manually segmented ADELAIDE so the

Fig. 3 CT images 68 (left) and 48 (right) pre-segmented into regions

(of different colour) by the SRM technique with different Q values: a
Q ¼ 16, b Q ¼ 64, c Q ¼ 256
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percentage differences are strongly influenced by the ana-

tomical judgement of the person doing the segmentation.

Discussion

It is to be expected that two independent segmentations of

the same data will result in different numbers of voxels

being assigned to any given tissue. It is also required for

accurate segmentations, that the differences will be small.

For eight of the 21 tissues in Table 1, the differences are

10 % or less, while for 13, the voxel numbers are within

18 %. For seven of the 21 tissues the differences are greater

than 25 %. They are small organs that are not easily pre-

segmented by SRM unless there is good contrast between

them and surrounding tissue. In the case of these tissues,

relying less on SRM and more on manual techniques for

their segmentation would improve the outcome. However

for this work we were willing to accept a speedy but

possibly less than optimal segmentation for some tissues, if

the resulting anatomical model produced credible absorbed

doses.

Combining pre-segmentation of images using the sta-

tistical region merging technique, with a rapid means of

amalgamating regions via a graphical user interface has

allowed us to segment CT images in a much shorter time

than is possible using manual techniques and standard

image-processing software. If the organ doses that result

from using the SRM–GUI version of ADELAIDE are close

to those achieved using the manually segmented version of

ADELAIDE, then the rapid segmentation technique is

acceptable for use. From the literature, it may be concluded

that organ doses differences as high as 30 �% when dif-

ferent (but similar in size) computational models are used

might be expected. For example: Zhang et al. [30] com-

pared organ doses calculated using two different but sim-

ilar-sized reference computational models (that they called

XCAT and ICRP110) derived from medical images. For an

abdomen CT examination of the female models, the aver-

age difference for the ‘‘partially exposed radiosensitive

organs’’ (marrow, colon, lung, skin, bones) was 14 �%.

For the fully irradiated organs (stomach and liver) the

average difference was 21 �%. The corresponding values

for average organ dose difference when SRM–GUI seg-

mentation is compared to manual segmentation for ADE-

LAIDE are: 11 and 16 %. While not calculating organ

doses, Schlattl et al. [31] compared the organ dose con-

version coefficients normalized to CTDIvol calculated using

the same ICRP110 female phantom used by Zhang et al.

[31] (which they refer to as ACP-RF), and their female

model ‘‘Irene’’ (they are both 163 cm in height). For a CT

slice centered on the stomach, the average difference

between ACP-RF and Irene (for adrenals, stomach, liver,

gall bladder, spleen, pancreas and kidneys) was 27 %.

Since for 17 of the 21 tissues segmented, the MC calcu-

lated absorbed doses to the SRM–GUI segmented version

are within 18 % of the MC calculated absorbed doses to a

manually segmented version of the same anatomy, we

conclude that the resulting anatomical voxel model is

useful for CT dosimetry. The organ doses to the SRM–GUI

segmented version of ADELAIDE are higher for 16 of the

21 values in Table 1. This might be attributed to the fewer

voxels of muscle and soft tissue and of skin, and the greater

number of voxels segmented to sub-cutaneous fat in the

SRM–GUI segmentation (see Table 2). This would provide

less shielding to the internal organs.

It is likely that if more time is spent with the GUI to

segment tissue whose pixels are difficult to characterise as

Fig. 4 CT images 68 (left) and 48 (right) from the ADELAIDE data

set: a an original 451� 451 image, b as a 200� 200 image after

manual segmentation (cropped back to 128� 126), c as a 128� 126

image after SRM–GUI segmentation
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regions using the SRM technique (such as thymus and

trachea), then the differences between the absorbed dose to

these tissues in the differently segmented versions of

ADELAIDE would decrease. However we were interested

in whether a rapidly segmented voxel model would pro-

duce accurate absorbed doses so chose not to expend a lot

of time using the GUI to finesse the segmentation, choosing

instead to minimise segmentation time. While we could not

directly compare the segmentation time required by the two

techniques—the original manual segmentation of ADE-

LAIDE was spread over about 18 months (not full-time)

and the segmentation was often reworked to improve the

outcome—SRM–GUI segmentation of the 54 CT images in

the ADELAIDE dataset was achieved in 10 working days

(about 60 h).

Medical CT images have been used as the source of

anatomical data from which to build anatomical models

because of the high degree of realism that can be achieved.

Skilful manual or semi-automatic segmentation of CT

images is time-consuming, but results in organ and tissue

boundaries that are smooth and organ sizes, shapes and

positions that are anatomically accurate. Except for the

smallest tissues, SRM–GUI segmentation can achieve

segmentation of comparable accuracy and realism to that of

Table 2 The number of voxels

segmented to each tissue by

manual segmentation and by

SRM–GUI segmentation

Organ/tissue Number of voxels

by manual seg.

Number of voxels by

SRM–GUI seg.

Percentage

difference

(GUI/manual)

Bone 26,135 41,485

Including bone surf

Bone surface 14,841 na

Combined bone and bone surface 40,976 41,485 1

Heart 10,689 11,070 4

Spinal cord 1,040 1,308 26

Skin 16,682 15,304 �8

Sub cut fat 42,252 48,864 16

Muscle 139,354 110,537

Including soft tissue

Soft tissue na 15,365

Combined muscle and soft tissue 139,354 125,902 �10

Breasts 4,611 4,303 �7

Lungs 65,421 65,726 0.5

Oesophagus 466 548 18

Kidneys 5,419 5,302 �2

Liver 22,696 22,801 0.5

Spleen 3,004 2,702 �10

Stomach 5,086 4,390 �14

Gas in bowel 15,981 14,515 �9

Small bowel 19,184 9,355

(wall and contents) Including tra?asc colon

Large bowel 6,817 22,224

des?rec asc?tra?des?rec

Combined small and large bowel 26,001, {41,982} 31,579, {46,094} 21, {10}

{including gas}

Pancreas 873 511 �42

Gall bladder 125 268 214

Uterus 541 399 �26

Ovaries 162 90 �44

Bladder 282 445 56

Thymus 228 356 56

Trachea 143 315 220

Thyroid 270 159 �41
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manual segmentation (compare Fig. 4b, c for the same

slice). For the smallest organs or tissues, manual inter-

vention is required. SRM–GUI segmentation probably will

not achieve organ boundaries that are as smooth as those

that can be achieved manually—even after applying

smoothing. However, the SRM–GUI segmentation tech-

nique, while it sacrifices smoothness of boundaries for

speed of segmentation, maintains anatomically accurate

organ size, shape and position. The organ doses calculated

using the resulting model are comparable to those calcu-

lated with a manually or semi-automatically segmented

model. Consequently SRM–GUI segmentation is useful for

construction of voxel anatomical models from CT images.

The field of view used to acquire the clinical CT images

for ADELAIDE was not quite wide enough to include the

entire anatomy of the patient. Consequently any muscle, fat

and skin beyond 128 pixels laterally is absent from the SRM–

GUI segmentation. This means that there are fewer voxels of

skin (15,304 compared with 16,682), and of combined soft

tissue and muscle (125 902 voxels compared with 139 354

voxels) in the SRM–GUI segmented version of ADELAIDE

than in the manually segmented version. Absent muscle and

fat tissue that was adjacent to the skin envelope but super-

ficial to muscle was assigned with the GUI, to subcutaneous

fat (rather than reconstructing muscle pixels manually).

Hence the SRM–GUI segmentation has more fat voxels than

the original manual ADELAIDE segmentation (48,864

compared to 42,252). These differences between the two

versions of ADELAIDE will affect the Monte Carlo calcu-

lated dose to those and other tissues. However, it was deemed

that comparing the dose to the SRM–GUI segmented model

(despite having truncated anatomy at the shoulders and hips),

with that to the manually segmented version (which has

complete anatomy), would be a more rigorous test of the

ability of the SRM–GUI segmented anatomical model to

produce CT dose calculations that are comparable to those

produced with the manually segmented original ADE-

LAIDE. To offset the differences, an abdominal CT exami-

nation was chosen for simulation as the truncated anatomy is

not directly exposed in the X-ray beam.

Images pre-segmented by SRM still require the user to

have anatomical knowledge and to perform some manual

segmentation with the GUI. For example thin structures

such as skin and small structures such as oesophagus, tra-

chea, gall bladder and ovary still need to be handled

manually. Structures that may not be easily visible (such as

pancreas and adrenal glands) may also need manual tech-

niques to segment. Thus to some extent, the segmentation

outcome will depend on the skill of the person doing the

segmentation. The ADELAIDE data set was acquired with

a now dated CT scanner—it is likely that newer scanners

will provide better images for SRM to work with and that

modern data sets will have slices at narrower intervals.

Conclusion

The SRM pre-segmentation technique has been combined

with an in-house GUI to segment the same data set of CT

images that were used to construct ADELAIDE. The

SRM–GUI segmented images were used to construct a new

version of the ADELAIDE voxel model of anatomy. The

Monte Carlo calculated absorbed doses to the organs and

tissues of this new model were compared to those calcu-

lated using the original manually segmented ADELAIDE

voxel model. For 17 of the 21 tissues for which absorbed

dose was calculated, the doses to the SRM–GUI version

were within 18 % of the doses to the manually segmented

version of ADELAIDE. The SRM–GUI segmentation

technique is a valid way to reduce the time taken to con-

struct a voxel tomographic model from CT images. The

SRM–GUI method is faster than manual or semi-automated

methods. The ability to produce a voxel model in a short

time (that is, weeks rather than requiring many months)

may make it practical, in the near future, to construct a

range of paediatric models that span the size range of

children.
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