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Institute of Information Theory and Automation, ASCR

Pod Vodarenskou vezi 4, 182 08, Prague 8, Czech Republic

Email: sroubekf@utia.cas.cz

Peyman Milanfar
University of California, Santa Cruz

Electrical Engineering Dept., Santa Cruz CA 95064, USA

Email: milanfar@ucsc.edu

Abstract—Low-light hand-held photography requires long ex-
posures and leads to space-variant blur degradation. Removing
blur without any information about the camera motion is a
computationally demanding and unstable process. In this demo
system, we use rotational inertial sensors (gyroscopes) to detect
the motion trajectory of the camera during exposure and then use
it as a base for removing blur from the acquired photographs.
The demo is a close-to-real-time deblurring technology, imple-
mented on an Android smartphone.

Index Terms—space-variant deconvolution; gyroscope; mobile
phone;

I. INTRODUCTION

Image stabilization (IS) technology, common in modern

cameras, can compensate only for motion of a small extent

and speed. In this work we target mobile phones which are

rarely equipped with IS. Deblurring the image offline using

mathematical algorithms is often the only option.

Arbitrary camera motion blur can be modeled by space-

variant (SV) convolution and the deblurring process is referred

to as SV deconvolution [1]. Camera motion blur is SV for

several reasons. First, it is caused by the camera projection

itself. Phone cameras are usually equipped with wide-angle

lenses (field of view around 60◦), which distort objects close

to image borders. The blur caused by rotation around x and y
axes is therefore different in the image center and borders. The

SV blur are particularly noticeable when rotation around z axis

is significant. Second, the camera-object distance influences

the blur caused by camera translation and the knowledge of

depth map is thus necessary. However, phone cameras have

a focal length of a few millimeters and the scene projected

into the camera image plane moves by less then a pixel if the

objects are more then 2m away, so the camera translation in

such cases can be neglected [2]. We will thus focus on purely

rotational motion of the camera, which has several additional

advantages. Gyroscopes are sufficiently accurate for angular

speed estimation but drift. We use gyroscope data to estimate

rotation and compensate for a drift by either calibration of a

still camera or considering accelerometers during motion.

Another reason for SV blur, unrelated to camera motion

but intrinsic to camera hardware design, is rolling shutter

[3]. In image sensors on mobile devices, contrary to systems

with mechanical shutter, values of illuminated pixels are read

successively line by line while the sensor is exposed to light.

The readout from the CMOS sensor takes several tens of

milliseconds, which results in a picture not taken at a single

moment, but with a slight time delay between the first and last

row of pixels. The rolling shutter effect is therefore another

cause of space variance as the blur depends on the vertical

position in the image. To model accurately the blur at every

position, it is necessary to shift the exposure-time window in

which the gyroscope data are fetched according to the vertical

position.

Our work demonstrates the use of built-in inertial sensors

in smartphones for accurate blur estimation. The proposed

solution is simple and practical. It removes blur induced by

camera rotation and simultaneously overcomes rolling-shutter

effect, which, to our knowledge, has not been considered in

the deconvolution problem before. As a testing platform we

have chosen a Samsung Galaxy S II smartphone with Android

operating system.

A similar system was proposed by Joshi et al. in [4] but they

have designed an expensive measuring apparatus consisting of

a DSLR camera and an external inertial module, and perform

image deblurring offline on a computer. Contrary to low-

cost cameras, rolling shutter is not present in DSLR cameras.

Sindelar et al. [2] tested simple deconvolution running on

smartphones, but they have considered only space-invariant

blur, which limits applicability of their solution.

II. THE DEMO SYSTEM

The tested device is equipped with all the apparatus needed

for our demo system, namely a relatively high-quality camera,

inertial sensors, fast CPU (ARM Cortex-A9) and enough RAM

to perform computations. A block diagram of the deblurring

application is in Fig. 1.

We first perform offline calibration to obtain camera intrin-

sic parameters, rolling shutter delay and gyroscope drift.

During the photo acquisition, samples of angular velocity

are recorded using the embedded gyroscopes, which are after-

wards trimmed to match the exposure period. Integrating the

position track from the recorded gyroscope data allows us to

render a correct blur at every pixel of the image. To perform

full image deblurring with SV blur would be computationally

very expensive and not feasible on a mobile device. Instead, we

split the image into overlapping patches and generate one blur

for each patch. We use a division to 6× 8 squares with 25%

2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-1-4799-4308-1/14 $31.00 © 2014 IEEE

DOI 10.1109/CVPRW.2014.34

191



gyroscopes

Image
Reconstruction

App

captured photo sharp photo

rendered PSF grid

Fig. 1. The block diagram of the smartphone application: During camera
exposure, the application records data from the built-in gyroscopes. The data
are processed and blurs are estimated. The captured photo is divided into
overlapping patches, Wiener deconvolution is performed on every patch and
the reconstructed patches are blended to generate the sharp photo. The whole
process, entirely done on the smartphone, takes around 10s.

overlap in every directions. Each patch is then reconstructed

individually using the Wiener filter and the corresponding blur.

To avoid ringing artifacts around patch borders, edge tapering

is applied prior to filtering. Due to patch overlaps, we blend

the reconstructed patches by weighting them with Hamming

windows, which results in virtually seamless images.

The intensity values of the reconstructed image sometimes

lie outside the working bit-depth range (0-255), therefore we

added optional normalization with clipping of outliers. The

normalization is especially useful in the case of larger blurs

and scene with high luminance.

For the Fourier transformation, we use the FFTW library

ported to ARM CPUs, supporting two cores and a SIMD

instruction set (NEON). FFTW proved to be remarkably fast

on the tested smartphone.

The acquired images with native camera resolution of

3264×2448 are by default scaled down to 2048×1536 to take

advantage of better performance of FFTW when the image size

is a factor of small primes.

The Wiener filtering consists of several FFTs: one for the

blur and two (forward and backward for inverse) for each color

channel. That yields a total of 7 FFT operations for each patch.

The deconvolution of the image enlarged by the overlaps takes

about 7s; the whole process starting from the camera shutter

is done in a little over 10s. This includes image resizing, blur

estimation, compressing and saving the original and deblurred

image files.

We have identified several issues that hamper our solution.

Correct synchronization of camera shutter with the gyroscope

samples is critical. Even a few millisecond error can produce

annoying artifacts. We managed to find a good synchronization

mechanism for our test device, which will be unfortunately

hard to port to other models, because Android provides no

general aid for precise camera handling. Gyroscope drift is

substantial and without any compensation results in a biased

blur estimator. Correct calibration is still an open question.

Fig. 2. Examples of captured and reconstructed images using our demo
system. Best viewed on a computer screen and zoomed in.

Internal image post-processing done by the phone presents

another serious problem for deconvolution. Since the original

raw data from the image sensor are not available, we are forced

to work with JPEG (compressed) images, which are processed

by gamma correction and most likely also by unidentifiable

image enhancement steps. We have employed the inversion of

gamma correction, which indeed improves the results to some

degree. Three examples of performance are in Fig. 2. See more

examples and a demo video in supplementary materials.
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