
A SMARTPHONE APPLICATION FOR REMOVING HANDSHAKE BLUR AND
COMPENSATING ROLLING SHUTTER
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ABSTRACT

Smartphones are now widely used as photographic devices.
Equipped with cheap cameras they are prone to many degra-
dations, most notably handshake in combination with rolling
shutter causes severe space-variant blur. Removing blur with-
out any information about the camera motion is a computa-
tionally demanding and unstable process. We use built-in gy-
roscopes to record the motion trajectory of the camera during
exposure and then remove blur from the acquired photograph
based on the reconstructed trajectory. The proposed deblur-
ring application is implemented on Android smartphones with
close-to-real-time performance.

Index Terms— space-variant deconvolution; gyroscope;
mobile phone; rolling shutter

1. INTRODUCTION

One of the most frequent problems in photography is blur
induced by camera motion under poor light conditions. As
the exposure time increases, involuntary camera motion has
a growing effect on the acquired image. Image stabilization
(IS) devices that help to reduce the motion blur by moving the
camera sensor in the opposite direction are becoming more
common. However, such hardware remedy has its limita-
tions as it can compensate only for motion of a very small
extent and speed. In addition, mobile phones are currently not
equipped with IS. Deblurring the image offline using mathe-
matical algorithms is usually the only choice we have in order
to obtain a sharp image. Arbitrary camera motion blur can be
modeled by space-variant (SV) convolution and the deblur-
ring process is referred to as SV deconvolution [1]. This is
a hard ill-posed problem if the blur shape is completely un-
known.

Camera motion blur is SV for several reasons. First, it
is caused by the camera projection itself. Phone cameras are
usually equipped with wide-angle lenses (field of view around
60◦), which distort objects close to image borders. The blur
caused by rotation around x and y axes is therefore different
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in the image center and borders. The SV blur are particularly
noticeable when rotation around z axis is significant. Sec-
ond, the camera-object distance influences the blur caused by
camera translation and the knowledge of depth map is thus
necessary. However, phone cameras have a focal length of a
few millimeters and the scene projected into the camera im-
age plane moves by less than a pixel if the objects are more
than 2m away, so the camera translation in such cases can
be neglected [2]. In our work we consider purely rotational
motion of the camera, which has additional advantages. Un-
like accelerometers, gyroscopes are sufficiently accurate for
angular speed estimation but drift. We use gyroscope data to
estimate rotation and compensate for the drift by calibrating
a still camera.

Another reason for SV blur, unrelated to camera motion
but intrinsic to camera hardware design, is rolling shutter [3].
In image sensors on mobile devices, contrary to systems with
mechanical shutter, values of illuminated pixels are read suc-
cessively line by line while the sensor is exposed to light. The
readout from the CMOS sensor takes several tens of millisec-
onds, which results in a picture not taken at a single moment,
but with a slight time delay between the first and last row of
pixels. The rolling shutter effect is therefore another cause of
space variance as the blur depends on the vertical position in
the image. An example in Fig. 1 illustrates the rolling shutter
effect. We took a snapshot of a LCD screen displaying a grid
of white points on black background. Due to camera motion,
the points appear as streaks on the captured image. To model
accurately the blur at every position, it is necessary to shift
the exposure-time window in which the gyroscope data are
fetched according to the vertical position.

Our work demonstrates the use of built-in gyroscopes in
smartphones for accurate blur estimation. The proposed solu-
tion is simple and practical. It removes blur induced by cam-
era rotation and simultaneously overcomes rolling-shutter ef-
fect, which, to our knowledge, has not been considered in the
deconvolution problem before. As a testing platform we have
chosen a Samsung Galaxy S II smartphone with Android op-
erating system.

A similar system was proposed by Joshi et al. in [4] but
they have designed an expensive measuring apparatus con-
sisting of a DSLR camera and an external inertial module,
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Fig. 1. Rolling shutter effect: A snapshot (exposure time
1/14s) of a point grid. The right column shows a series of
blur kernels rendered using data from the gyroscope sensor
shifted in time. Blurs were created from sensor data starting
0–60 ms after a synchronization timestamp.

and perform image deblurring offline on a computer. Con-
trary to low-cost cameras, rolling shutter is not present in
DSLR cameras. Sindelar et al. [2] tested simple deconvo-
lution running on smartphones, but they have considered only
space-invariant blur, which limits applicability of their solu-
tion. A different approach to minimize handshake in smart-
phones was proposed in [5], where they take a burst of short-
exposure noisy images, align them using gyroscope data and
average them. Gyro-based deconvolution in [6] assumes mul-
tiple blurred photos and the authors argue that deconvolution
in general outperforms the align-and-average approach.

2. SMARTPHONE APPLICATION

The tested device is equipped with all the apparatus needed
for our demo system, namely a relatively high-quality cam-
era, inertial sensors, fast CPU (ARM Cortex-A9) and enough
RAM to perform computations. A block diagram of the de-
blurring application is in Fig. 2.

We first perform offline calibration to obtain camera in-
trinsic parameters, rolling shutter delay and gyroscope drift.

During the photo acquisition, samples of angular velocity
are recorded using the embedded gyroscopes, which are af-
terwards trimmed to match the exposure period. Integrating
the position track from the recorded gyroscope data allows us
to render a correct blur at every pixel of the image. State-
of-the-art non-blind deconvolution methods use sparse image

priors and the solution is usually found by some iterative min-
imization algorithms, such as Alternating Direction Method
of Multipliers (ADMM). To perform full image deblurring
with SV blur would be computationally very expensive and
not feasible on a mobile device. Instead, we split the image
into overlapping patches and generate one blur for each patch.
We use a division to 6 × 8 squares with 25% overlap in ev-
ery directions. Each patch is then reconstructed individually
using the Wiener filter for the corresponding blur:

U = G
H∗

|H|2 + Φ
, (1)

where Φ is the inverse signal to noise ratio, and G, H and U
are discrete Fourier transforms of the observed image patch,
blur and the estimated image patch, respectively. To avoid
ringing artifacts around patch borders, edge tapering is ap-
plied prior to filtering. Due to patch overlaps, we blend the
reconstructed patches by weighting them with Hamming win-
dows, which results in virtually seamless images.

The intensity values of the reconstructed image some-
times lie outside the working bit-depth range (0-255), there-
fore we added optional normalization with clipping of out-
liers. The normalization is especially useful in the case of
larger blurs and scene with high luminance.

For the Fourier transformation, we use the FFTW library
ported to ARM CPUs, supporting two cores and a SIMD in-
struction set (NEON). FFTW proved to be remarkably fast on
the tested smartphone.

The acquired images with native camera resolution of
3264 × 2448 are by default scaled down to 2048 × 1536
to take advantage of better performance of FFTW when the
image size is a factor of small primes.

The Wiener filtering consists of several FFTs: one for the
blur and two (forward and backward for inverse) for each
color channel. That yields a total of 7 FFT operations for
each patch. The deconvolution of the image enlarged by the
overlaps takes about 7s; the whole process starting from the
camera shutter is done in a little over 10s. This includes image
resizing, blur estimation, compressing and saving the original
and deblurred image files.

We have identified several issues that hamper our solution.
Correct synchronization of camera shutter with the gyroscope
samples is critical. Even a few millisecond error can produce
annoying artifacts. We managed to find a good synchroniza-
tion mechanism for our test device, which will be unfortu-
nately hard to port to other models, because Android provides
no general aid for precise camera handling. Gyroscope drift is
substantial and without any compensation results in a biased
blur estimator. Correct calibration is still an open question.
Internal image post-processing done by the phone presents
another serious problem for deconvolution. Since the origi-
nal raw data from the image sensor are not available, we are
forced to work with JPEG (compressed) images, which are
processed by gamma correction and most likely also by un-

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20142161



Fig. 2. The block diagram of the smartphone application:
During camera exposure, the application records data from
the built-in gyroscopes. The data are processed and blurs
are estimated. The captured photo is divided into overlap-
ping patches, Wiener deconvolution is performed on every
patch and the reconstructed patches are blended to generate
the sharp photo. The whole process, entirely done on the
smartphone, takes around 10s.

Fig. 3. Examples of captured and reconstructed images us-
ing our demo system. Best viewed on a computer screen and
zoomed in.

documented image enhancement steps. We have employed
the inversion of gamma correction, which indeed improves
the results to some degree.

Three examples of the application output are in Fig. 3.
More examples and a demo video showing how the applica-
tion runs are available on http://zoi.utia.cas.cz/mobile.

3. CONCLUSIONS

This work presents an image deblurring method that can ef-
fectively remove blur caused by camera motion using infor-
mation from gyroscopes. The deconvolution method incor-
porates spatially varying blur, which allows us to handle both
complex camera motion and rolling shutter. The proposed
method runs on a smartphone device.

There are several topics for future research. Implement-
ing smarter deblurring algorithms that avoid ringing artifacts
is viable. Gyroscope data are not precise and one could use
the calculated blurs as an initial estimate and apply modi-
fied blind deconvolution methods to improve their accuracy.
Camera-gyroscope synchronization errors could be solved by
formulating a minimization problem over a single parameter
– the synchronization shift.
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