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Abstract

In this thesis, we cover the related problems of image restoration and depth
map estimation from two or more space-variantly blurred images of the same
scene in situations, where the extent of blur depends on the distance of scene
from camera. This includes out-of-focus blur and the blur caused by camera
motion. The latter is typical when photographing in low-light conditions.

Both out-of-focus blur and camera motion blur can be modeled by con-
volution with a spatially varying point spread function (PSF). There exist
many methods for restoration with known PSF. In our case, the PSF is un-
known as it depends on depth map of the scene and camera motion. Such
a problem is ill-posed if only one degraded image is available. We consider
multichannel case, when at least two images of the same scene are available,
which gives us additional information that makes the problem tractable.

The main contribution of this thesis, Algorithm I, belongs to the group
of variational methods that estimate simultaneously sharp image and depth
map, based on the minimization of a cost functional. Compared to other
existing methods, it works for much broader class of PSFs.

In case of out-of-focus blur, the algorithm is able to consider optical
aberrations.

As for camera motion blur, we are concerned mainly with the special case
when the camera moves in one plane perpendicular to the optical axis with-
out any rotations. In this case the algorithm needs to know neither camera
motion nor camera parameters. This model can be valid in industrial appli-
cations with camera mounted on vibrating or moving devices. In addition, we
discuss the possibility to extend the described algorithm to general camera
motion. In this case, the knowledge of camera motion is indispensable. In
practice, information about the motion could be provided by inertial sensors
mounted on the camera.

Besides, we present two filter-based methods for depth map estimation
based on the measurement of the local level of blur. Algorithm II is a fast
method working for arbitrary sufficiently symmetrical blurs using only two
convolutions. Algorithm III places no constraints on the shape of PSF at the
expense of higher time requirements.

Finally, we propose an extension of Algorithms I and III to color images.
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Chapter 1

Introduction

Subject to physical and technical limitations, the output of digital imaging
devices, such as cameras, microscopes and astronomical telescopes, is not
perfect and substantial part of image processing research focuses on removing
of various types of image degradations.

1.1 Out-of-focus and camera motion blur

The most frequent degradations are perceived by humans as blur and noise.
They can be usually modeled with reasonable precision by linear relation

z(x, y) =

∫

Ω

u(x− s, y − t)h(x− s, y − t; s, t) dsdt + n(x, y), (1.1)

where u is an ideal image1, h is called point-spread function (PSF ), n(x, y)
is additive signal independent noise2 and z the blurred and noisy image. The
integral term of (1.1) can be viewed as smearing of each point (x, y) of the
image u into a blob of the shape given by h(x, y; s, t). If the PSF does not
depend on the position (x, y) in the image, i. e. h(x, y; s, t) = h(s, t), the
integral becomes convolution and we speak about space-invariant PSF. In
this situation, the discrete representation of h by matrix is called convolution
mask or simply mask. We will use this term in general space-variant case as
well in the sense that the mask is considered for each image pixel separately.

1We can also encounter expressions scene radiance, sharp image or original image.
Alternatively we could speak about the image we would get by hypothetical camera with
infinitely small aperture and free of diffraction effects. This so called pinhole camera model
is often used in stereo applications.

2The most widespread image sensors based on CCD and CMOS technologies are subject
to multiplicative (speckle) noise as well. For the purposes of this work, this phenomenon
can be neglected.
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(a) real digital camera has a finite depth of focus

(b) typical image blurred by camera shake,
shutter speed 1/15 s

Figure 1.1: Digital images are often subject to out-of-focus or motion blur.

While space-invariant case has been extensively studied, in more difficult
space-variant case there are much more open problems to resolve. The latter
case is the subject of this thesis.

We are interested in two important types of space-variant blur, namely
out-of-focus blur (defocus) and camera motion blur. Both types of blur have
common property that the extent of blur depends on the distance of objects
from camera.

Figure 1.1(a) illustrates the fact that real cameras have a finite depth
of focus and the whole image can be perfectly in focus only if the whole
scene is in the same distance from camera. Figure 1.1(b) is an example of
image blurred by camera shake which happens when we take photographs
from hand at long shutter speeds. It is typically unavoidable in low-light
conditions.

Now, we briefly characterize the PSF corresponding to the blurs we are
discussing. They are treated in detail in Chapters 4 and 5.
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In case of defocus, if we assume simple Gaussian optics and circular aper-
ture, the graph of PSF has a cylindrical shape usually called pillbox in lit-
erature. It’s radius r is a linear function of the reciprocal of the distance l
from camera, namely

r =
1

l
ρζ + ρζ

(
1

ζ
− 1

f

)
. (1.2)

Here f stands for focal length, ρ is aperture radius and ζ the distance of the
image plane from the optical center. Note that the distance l is measured
along the optical axis and often is referred to as depth. When we describe
appearance of this PSF in an image or a photograph, we speak about blur
circle or circle of confusion. In many cases, the PSF can be better approxi-
mated by two-dimensional Gaussian function with variance again related to
the object distance. As a rule, these models work well for high quality optics.
Otherwise, even for objects of the same distance, PSF changes as a function
of where the camera is focused and also of the coordinates (x, y) themselves.
For details see Chapter 4.

The second considered type of blur is the motion blur due to camera
motion. If we assume planar scene perpendicular to the optical axis and
steady motion of the pinhole camera1 in a plane parallel to the scene, it
is well known that the PSF is space-invariant one-dimensional rectangular
impulse in the direction of camera motion. The length of the impulse is
inversely proportional to the distance from camera. This situation can be
extended to the case when the camera moves, as in the steady case, in one
plane perpendicular to the optical axis without any rotations but can change
its speed and motion direction. Then, the size of PSF

l2

ζ2
h0(

l

ζ
s,

l

ζ
t) (1.3)

is again inversely proportional to the distance l from camera. Function
h0(s, t) corresponds to the path covered by the camera during the time the
shutter is open. This model can be valid for example for cameras mounted
on vibrating or moving devices. For distant objects or scenes taken with a
longer focal length the dominant camera motion is rotation. Then PSF does
not depend on the distance from camera and the problem can be converted
to simpler space-invariant case not treated in this work. In general case, the
PSF can be very complex depending on the camera motion, depth of scene
and parameters of the optical system. For details see Chapter 5.
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1.2 Terminology of related image processing

techniques

There are several frequently used terms referring to the image processing
techniques related to the presence of blur in the images.

The problem to find the sharp image u when we know the blurred image
z and the degradation h is called restoration, deblurring or, especially if h
is space-invariant, deconvolution. If even the PSF h is not known, we speak
about blind restoration or deconvolution. The problem of blind restoration
from one image is ill-posed. However, if we have at least two observations
of the same scene taken with different camera settings, it gives us additional
information that makes the task tractable. This situation is referred to as
multichannel (MC ) restoration.

The complementary problem to recover the blur h is an integral part of
many blind restoration algorithms but can be interesting in itself. We can
take advantage of the fact, that the amount of blur is a function of distance
and take its inverse to recover the three-dimensional structure of the scene.
This structure is usually represented by depth map, i. e. the matrix of the
same size as the image, where each element gives the depth of the part of
the scene imaged to the corresponding pixel of the image.

Depth from defocus (DFD) can be defined as the task to recover depth
map if we know a small set (usually two or three) of blurred images taken from
the same place with different camera settings. DFD as approach to passive
ranging developed as an alternative to depth from focus (DFF ) methods. The
idea behind DFF is that we successively focus at all the distances potentially
occurring in the scene and determine the distance related to certain pixel
by choosing the image that is least out-of-focus in its neighborhood [3]. An
important application area of both DFD and DFF approaches is microscopy.
In turn, for large-scale scenes it is often better to use stereo techniques [4],
which are more precise thanks to larger physical size of stereo base compared
to aperture diameter [5], and work even for fast-moving scenes.

The main drawback of DFF approach is that it involves lengthy focusing
motion of camera lens over the large range of positions, while DFD needs just
two or three positions or it is even possible to eliminate focusing completely
by changing of the aperture instead of the distance, where the camera is fo-
cused. Thus, for example in microscopy, DFD could be a useful alternative to
DFF, especially when the observed specimen moves. We can imagine a large-
scale application of DFD as well if the precision of depth measurements is of
no concern. An example of such an application is rough estimation of depth
map necessary for initialization of variational restoration methods. Com-
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pared to stereo methods, DFD does not suffer from correspondence problems
and occlusions happen only at object edges and can be mostly neglected.

Motion blur can be used in a way similar to DFD [6]. We have not found
any generally accepted name for this group of techniques, so we will call it
simply depth estimation based on motion blur or, in short, depth from motion
blur. Besides, by the extraction of optical flow (OF) we mean the recovery of
the direction and the extent of apparent motion corresponding to the given
part of the image. Some OF algorithms use motion blur to recover OF and
since the extent and direction of blur correspond to local optical flow, they
can be used to recover depth maps as well. Similarly to DFD, these methods
can be used as part of restoration algorithms.

1.3 Problem statement

The topic of this thesis is restoration of images blurred by space-variant
blur with the property that the extent of blur is a function of the distance
from camera. This includes out-of-focus blur and the blur caused by camera
motion.

Both out-of-focus and camera motion blur can be modeled by convolution
with a spatially varying PSF. There exist many techniques for restoration
with known PSF. In our case, the PSF is unknown as it depends on camera
motion and depth map of the scene. Such a problem is ill-posed if only
one degraded image is available. We consider multichannel case, when at
least two images of the same scene are available, which gives us additional
information that makes the problem tractable.

Most of existing algorithms for space-variant restoration are based on the
assumption that the character of blur does not change in a sufficiently large
neighborhood of each image pixel, which simplifies solution of the problem.

For space-variant blur caused by camera motion or defocus these methods
are not suitable as the condition of space-invariance is not satisfied, especially
at the edges of objects. For this case, so far, the only approach that seems
to give relatively precise results are multichannel variational methods that
first appeared in the context of out-of-focus images in [7]. This approach was
adopted by Favaro et al. [8, 9] who modeled camera motion blur by Gaussian
PSF, locally deformed according to the direction and extent of blur. This
method can be appropriate for small blurs.

The idea behind variational methods is as follows. Assume that we are
able to describe mathematically the process of blurring, in our case using
linear relation (1.1) and knowledge of the relation between the PSF and the
depth of the scene for given camera parameters. Algorithm is looking for
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such a (sharp) image and depth map that, after blurring of the image using
the depth map, give images as similar as possible to the blurred images at
the input of the algorithm. The “similarity” of images is expressed by a
functional that should achieve as small value as possible. Thus, solution of
the problem is equivalent to the minimization of the functional. Algorithms
can differ in the precise shape of the resulting functional and methods used
for its minimization.

All previously published variational algorithms suffer from weaknesses
that limit their use in practical applications. They are outlined in the rest
of this section.

First of all, the existing variational algorithms work with Gaussian PSF.
As regards out-of-focus, the PSF of a real lens system can significantly differ
from Gaussian function and this limits precision of the algorithm. Modelling
of motion blur by Gaussian PSF is impossible in all non-trivial cases, except
of very slight blurs.

Another issue with variational methods in general is that they are based
on the minimization of complex functionals, which can be very time-consuming
in the space-variant case. It is probably the reason, why these methods did
not appear until recently. One way around it is parallelization for which, at
least in principle, this approach is well suited. Unfortunately, for the previ-
ously published algorithms, possible level of parallelization is limited because
each of parallel units has to be able to compute rather complicated Gaussian
function.

The final difficulty with variational approach we should mention is that
the corresponding functional has many local minima and consequently it can
be hard to guarantee location of the correct global minimum. In theory, we
could apply simulated annealing [7], which guarantees global convergence,
but it is too slow to be used in practice.

1.4 Goals

The main goal of this thesis is to develop new methods for restoration of im-
ages with space-variant degradations with accent on out-of-focus and camera
motion blur.

In particular, an algorithm or algorithms should be developed that over-
come weaknesses of published methods mentioned in the previous section.
They should work

1. with only two input images (from one image the problem is not well
posed),
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2. without any restrictions on scene such as a small number of parallel
planes perpendicular to the optical axis (unlike for example [10, 11]) or
condition that every part of the image is sharp in at least one of the
input images (unlike image fusion methods such as [12]),

3. with PSF that cannot be well approximated using simple models such
as Gaussian or pillbox,

4. with motion blurred images, which is not well treated in literature. In-
vestigate non-trivial types of camera motion with potential applications
in the reduction of camera shake.

5. If possible, algorithms should be easily implementable, operations should
be as simple as possible to facilitate hardware implementation.

1.5 Contributions

This section gives the overview of the key results presented in this thesis. In
Section 1.5.3, we list the publications of the author.

1.5.1 Algorithm I

The main contribution of this thesis, Algorithm I, belongs to the group of
variational methods estimating the sharp image from two or more space-
variantly blurred images of the same scene [7, 8, 9].

Algorithm I was designed to overcome the weaknesses of existing varia-
tional methods described in the problem statement. For out-of-focus blur,
it assumes two or more images of the same scene taken from the same place
with different camera parameters. In turn, for the case of camera motion,
the camera parameters are supposed to be the same and the camera mo-
tion is different. In the basic version of the algorithm, the camera motion is
limited to one plane perpendicular to the optical axis and this limitation in-
cludes the change of camera position between the images. In this special case
the algorithm needs to know neither camera motion nor camera parameters.
The algorithm can be modified to work with color images and we discuss the
possibility of extension to general camera motion as well.

Now we indicate the ways, Algorithm I deals with the issues outlined in
the problem statement (Section 1.3).

Unlike the existing methods, our algorithm works independently of a
particular shape of PSF. The idea is to approximate the relation between
distance and PSF by a finite number of masks stored in memory and compute
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intermediate masks by polynomial interpolation. The interpolation makes it
possible to work with ordinary minimization algorithms.

This approach is especially useful in situations when PSF is not given
analytically. For out-of-focus blur, in case of significant optical aberrations,
it is easy to get the PSF of a particular lens system by a raytracing algorithm
or by a measurement but difficult to express it explicitly by an equation. This
approach can be naturally applied to motion blur as well. Indeed, to the best
of our knowledge, it is the first time, any space-variant restoration algorithm
works for a complex type of camera motion.

The second advantage of this approach is that in the course of minimiza-
tion it uses only elementary point-wise matrix operations, vector dot products
and two linear operations that can be seen as extensions of convolution and
correlation to space-variant case—we refer to them as “space-variant con-
volution” (3.1) and “space-variant correlation” (3.2). Besides being faster
in itself, we believe that this approach can simplify construction of multi-
purpose parallel hardware working for both out-of-focus and motion blur
with other potential applications in image and video processing.

To avoid the problem with the existence of many local minima, [7] used
method [1] for initial estimate of depth map. Algorithm I keeps this idea, but
since we work with more general class of blurs, we extended method [1] to
work with more general class of symmetrical PSFs, resulting in Algorithm II.
Unfortunately, there are important applications, such as reduction of camera
shake, where PSFs are not symmetrical. For this case we developed a new
filter-based depth estimation method described in this thesis as Algorithm
III.

The basic assumption of the used approach is the knowledge of the re-
lation between the PSF and the depth of the scene. As mentioned above,
if we know the arrangement of lenses, the PSF of an optical system can be
computed by a raytracing algorithm. Another possibility is taking a picture
of a grid of point sources, which gives directly PSFs for the whole field of
view. Of course, it must be done for all combinations of possible camera
parameters and possible depths of scene.

As for the blur caused by camera motion, besides somewhat impractical
hybrid systems [13], the relation between PSF and distance can be computed
from data gather by inertial sensors trekking motion of the camera. However,
if the camera is constrained to move only in one plane perpendicular to
the optical axis without any rotations, we can apply a blind space-invariant
restoration method on a flat part of the scene to get the mask for one distance
from camera. Then it is possible to compute masks for arbitrary distance.
We already mentioned that this limitation is assumed in the basic version of
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I and was also used in our experiments.

1.5.2 Algorithms II and III

Both algorithms were developed as auxiliary methods used for initial depth
map estimates for Algorithm I. However, especially Algorithm III turned out
to be interesting on its own.

Algorithm II is a modification of filter based DFD method [1] to work with
arbitrary sufficiently symmetrical PSF for both out-of-focus and motion blur.
Its primary merit is speed, main weakness its sensitivity to noise and limited
precision, especially in the areas of weak texture. Besides, it requires careful
calibration to provide applicable results.

Algorithm III is another filter based depth recovery method, which works
for arbitrary type of PSF at the expense of higher time consumption. Com-
pared to Algorithm II, it is more stable in the presence of noise and is also
less sensitive to the precise knowledge of the PSF. Since it places no require-
ments on the symmetry of the PSF, Algorithm III can be applied on images
blurred by camera motion blur, where we meet very irregular PSFs. This
algorithm, the same way as Algorithm I, has potential to be extended to
general camera motion.

1.5.3 Publications of the author

Preliminary versions of Algorithm I were published as [14, 15, 16]

• M. Šorel and J. Flusser, “Blind restoration of images blurred by com-
plex camera motion and simultaneous recovery of 3D scene structure,”
in Proceedings of the Fifth IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT), Athens, Dec. 2005,
pp. 737–742.

• M. Šorel and J. Flusser, “Simultaneous recovery of scene structure and
blind restoration of defocused images,” in Proceedings of the Computer
Vision Winter Workshop 2006. CVWW’06., O. Chum and V. Franc,
Eds. Czech Society for Cybernetics and Informatics, Prague, 2006,
pp. 40–45.

• M. Šorel, “Multichannel blind restoration of images with space-variant
degradations,” Research Center DAR, Institute of Information Theory
and Automation, Academy of Sciences of the Czech Republic, Prague,
Tech. Rep. 2006/28, 2006.
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Complete version, covering Chapters 5, 6 and 8 and part of Chapter 11,
was submitted as [17]

• M. Šorel and J. Flusser, “Space-variant restoration of images degraded
by camera motion blur,” IEEE Trans. Image Processing, 2007, sub-
mitted.

Color extension of the algorithm was submitted as [18]

• M. Šorel and J. Flusser, “Restoration of color images degraded by
space-variant motion blur,” in Proc. Int. Conf. on Computer Analysis
of Images and Patterns, 2007, submitted.

A paper covering space-variant restoration of out-of-focus images (Chap-
ters 4, 6 and 8) with applications in microscopy is being prepared for publi-
cation as [19]

• M. Šorel and J. Flusser, “Restoration of out-of-focus images with ap-
plications in microscopy,” J. Opt. Soc. Am. A, work-in-progress.

Out of the scope of this thesis, the author published [20, 21]

• M. Šorel and J. Š́ıma, “Robust implementation of finite automata by
recurrent RBF networks,” in Proceedings of the SOFSEM, Seminar on
Current Trends in Theory and Practice of Informatics, Milovy, Czech
Republic. Berlin: Springer-Verlag, LNCS 1963, 2000, pp. 431–439.

• M. Šorel and J. Š́ıma, “Robust RBF finite automata,” Neurocomputing,
vol. 62, pp. 93–110, 2004.

1.6 Outline of the thesis

The thesis goes further with the survey of literature (Chapter 2). In Chapter
3 we overview used notation and explain important concepts of space-variant
convolution and correlation.

Chapter 4 gives basic facts about optics and models we use to describe
out-of-focus blur. Similarly, Chapter 5 deals with basic facts about models
describing camera motion blur.

The main result of the thesis, Algorithm I, including comments upon the
practical issues associated with its implementation, is presented in Chapter
6. Two auxiliary algorithms for estimation of depth maps are described in
Chapters 7 and 8.
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Short Chapter 9 discusses principal limitations of the precision of depth
measurements we can achieve.

To give the full picture of the behavior of the proposed algorithms, we
present two groups of experiments. Chapter 10 tests numerical behavior of
the algorithms under different levels of noise using simulated experiments.
Experiments on real images including color images are presented in Chapter
11.

Conclusion (Chapter 12) summarizes results presented in this thesis, de-
scribes their strengths and weaknesses with respect to existing methods and
indicates directions of future research and possible applications.

Finally, Appendices A and B detail proofs of mathematical propositions
necessary in Algorithms I and II respectively.
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Chapter 2

Literature survey

The algorithms proposed in this work fall to the categories of depth from
defocus, depth from motion blur and image restoration. All these categories
are covered in the following survey. The algorithms that do both restoration
and depth recovery simultaneously are treated at the end of the section on
image restoration. Abbreviations used in this chapter were explained in
Section 1.2.

2.1 Depth from defocus

Among the first DFD results we can mention Pentland [22, 23], who used
two images of a scene, only one of them out-of-focus. Ens and Lawrence [24]
iteratively estimated local convolution matrix that, convolved with one of
the images, produces the other image. The resulting matrix can be mapped
to depth estimates.

Subbarao and Surya [1] assumed the Gaussian mask shape, approximated
image function by third-order polynomial and derived an elegant expression
for relative blur

σ2
2 − σ2

1 = 2
z2 − z1

∇2
(

z1+z2

2

) , (2.1)

which can be used to estimate distance. Here z1, z2 are near and far focused
images, σ2

1, σ
2
2 denote variances of mask shapes taken as distributions of two-

dimensional random quantities and ∇2 is the symbol for Laplacian. This
method also requires knowledge of two constants α and β, describing relation
between the mask variances for pairs of corresponding points in z1 and z2 by
linear relation σ2 = ασ1 + β, where α and β can be computed from camera
settings. Note that this is assumed to hold analogously to the same relation
between radii of blur circles (4.8), which is true according to Gaussian optics
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model. See Chapter 4 for details. Note that assuming Gaussian masks we can
recover the relative blur σ2

2−σ2
1 but it is principally impossible to recover the

variances absolutely if we do not known the camera settings for both images.
In this context the requirement of Pentland that one of the images must be in
focus can be understood as the prior knowledge that σ1 = 0. We anticipate
that in our algorithm a generalization of this extremely fast method serves
as an alternative for reasonable initial estimate of the depth map.

All the early methods are based on the assumption that the amount
of defocus is constant over some fixed neighborhood of each image point.
The choice of window has naturally a profound impact on results. Xiong
and Schafer [25] addressed the problem of analyzing and eliminating the
influence of finite-width windows using moment and hypergeometric filters.
Their method requires a large number of filters to cover enough frequency
bands and as a consequence can be markedly more time-consuming then [1].
Note that application of a single filter is a synonym for making convolution
in this context.

Watanabe and Nayar [26] proposed another filter-based method but un-
like [25], they used a small number of broadband operators, resulting in much
faster (probably less precise but still much more precise then [1]) algorithm.
Nonlinear optimization is used to compute the filter kernels. As a byproduct,
they get a depth confidence measure. Their method assumes pillbox mask
shape.

Deschênes et al. [27] derived a filter for simultaneous estimation of defocus
and shift (disparity).

2.2 Depth from motion blur

Compared to defocus, there is markedly less literature related to to recovery
of depth from motion blur. In a very simple form, this idea appears in [28]
for space-invariant case, assuming two images, only one of them blurred.
Besides, we can mention several papers on the extraction of OF information
using motion blur, either from just one image [29, 30] or from more images
of the same scene taken with different camera parameters [28, 31]. Wang
and Liang [32] proposed a method to recover depth from both motion blur
and defocus. Again, all these methods are based on the assumption that for
each point of the image there exist a neighborhood of fixed size, where the
character of blur remains approximately constant.
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2.3 Image restoration

Now, we move our attention to the restoration of blurred images. First
we mention non-blind methods, which are simpler and more straightforward
than the blind ones. Then, we will focus on blind methods, many of which in-
corporate some non-blind methods as well as DFD algorithms and algorithms
for estimation of depth from motion blur as their part.

There exist many methods for restoration of single image degraded by
known space-invariant blur, so called space-invariant single channel (SC )
non-blind restoration techniques. A good survey paper is [33]. Many of
them are formulated as linear problems that can be efficiently solved by ele-
mentary numerical algorithms, some others including important anisotropic
regularization techniques [34, 35, 36] can be reduced to a sequence of lin-
ear problems. Extension of these methods to MC case is straightforward
and many of them can be used for space-variant restoration as well because
they treat convolution as linear operator that is sufficiently general to in-
clude space-variant PSF. Note that in this case the corresponding matrix
is no longer block-Toeplitz and we cannot take advantage of fast Fourier
transform to speed up the computation. One exception is the case, when
we know the PSF on a grid of image positions and the PSF is computed by
linear interpolation in the rest of the image [37]. An application of non-blind
restoration in conjunction with the extraction of OF for motion deblurring
can be found in [13].

Blind restoration requires more complicated algorithms as we need to
estimate the unknown degradation.

Although a number of SC blind deconvolution algorithms were proposed
[38, 39, 40, 41, 42, 43] their use is very limited even in space-invariant case
because of a severe lack of the information contained in just one image. They
work only in some special cases when it is possible to incorporate some prior
knowledge about the original image, such as uniformly illuminated back-
ground in case of astronomical images. Recently, a promising approach ap-
peared employing statistics of the distribution of gradients in natural images
[44].

In the MC blind space-invariant case, i.e. when we know two or more
degraded images and the degradation does not change throughout the im-
age, much more information is available and indeed, there exist a number of
methods successfully solving this issue [45, 46, 47, 2]. Note here that we use
method [2] as part of the proposed Algorithm I.

In connection with our algorithms we are interested mainly in the space-
variant case, when the PSF can change from point to point.
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If there are no constraints on the shape of PSF and the way it can change
throughout the image (general space-variant blind restoration), the task is
strongly underdetermined. A few results on this subject reported in lit-
erature followed the idea of sliding-window—PSF must be approximately
space-invariant in a window of reasonable size and the result of identifica-
tion is used as a starting point for the identification in subsequent windows.
Within this group, the method [48] is based on Kalman filtering, [49] on a
variant of expectation maximization (EM) algorithm and [50] on regular null
patterns in image spectrum. Note that all these methods are of very limited
application and we can expect that they fail whenever a depth discontinu-
ity appears. Unfortunately, it is typically the case of both out-of-focus and
camera motion blur.

If we know the type of space-variant blur, as in the case of motion blur or
defocus, the number of unknowns is significantly reduced. The vast majority
of algorithms still assumes that the PSF is locally space-invariant [51].

In the introduction we said that there are two important types of blur we
are concerned with, camera motion blur and defocus, with the property that
the PSF does not change arbitrarily but is a function of depth. If we have
two images of the same scene taken with different camera settings it gives us
additional information that makes the problem of space-variant restoration
tractable. We have seen that there exist a couple of DFD, OF and depth
from motion algorithms. A natural approach is to take the depth map or OF
information and use it together with the knowledge of the relation between
depth/OF and PSF for non-blind restoration [37]. In this way restoration is
closely related to the depth recovery algorithms.

An alternative approach is to do both depth recovery and restoration
simultaneously, using variational methods.

For defocus, Rajagopalan and Chaudhuri [7] proposed a variational method
based on Markov random fields, assuming two images and Gaussian PSF. To
minimize the corresponding cost functional they used simulated annealing
which has a nice property of global convergence, but is too slow to be used
in practice. To initialize the minimization, they used the filter-based depth
estimation method [1]. Later, they extended the algorithm for combination
of defocus and stereo [52].

Another view of the same minimization problem was given by Favaro et al.
[8] who modeled defocusation as anisotropic diffusion process and solved the
corresponding partial differential equation. In [9] they incorporated motion
blur into the model as well. The motion blur was modeled by Gaussian PSF,
which was locally deformed according to the direction and the extent of blur.
This approach can be adequate for small blurs.
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To bypass the deblurring phase of minimization, Favaro and Soatto [6]
derived projection operators that yield directly the minimum value of the
cost functional for given depth map. On terms of local invariance of the blur
and finite set of possible depths, they got an algorithm that can be used for
arbitrary known PSF. If the PSF is not know, the method is able to derive
filters from a set of sample images. Unlike the filter-based DFD algorithms
described in Section 2.1, it requires computation of a convolution for each
considered depth of scene.
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Chapter 3

Notation

This chapter is a short review of notation used in the thesis. We start with
two operators that can be seen as generalization of convolution and correla-
tion to space-variant situations. Then we explain conventions used to name
variables and in the end we give a table of used variables and mathematical
expressions with a concise description of their meaning.

Convolutions have a prominent role in image processing as they are able
to model most space-invariant image degradations, including out-of-focus and
motion blur. Moreover, convolution satisfies well known convolution theorem
that often makes computations faster.

Convolution can be viewed as spreading (distribution, diffusion) of energy
of each pixel over the neighboring points with weights given by the convo-
lution mask 1. It explains why the continuous counterpart of the convolution
mask is called point spread function (PSF ).

In case of general space-variant linear degradation according to (1.1),
we can look at the involved linear operation as convolution with PSF that
changes with its position in the image and speak about space-variant convo-
lution. Precisely, we can define it as

u ∗v h [x, y] =

∫

Ω

u(x− s, y − t)h(x− s, y − t; s, t) dsdt. (3.1)

Note that we use subscript v to distinguish from ordinary space-invariant
convolution usually denoted by asterisk.

1In image processing convolution is often (in somewhat confusing way) described as
gathering of energy from neighboring pixels with weights given by the convolution mask
turned around its center, i. e. computing of dot product. The rotation of mask is necessary
to get this correlation-like description in agreement with the “natural” definition.
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Similarly, with a slight abuse of terminology, we can define space-variant
correlation as

u ~v h [x, y] =

∫

Ω

u(x− s, y − t)h(x, y;−s,−t) dsdt. (3.2)

We can imagine this operator as putting space-varying PSF to all positions
in the image and computing dot product. It can be shown that for real h
space-variant correlation is the adjoint operator to space-variant convolution
with the same PSF2.

Note that in the space-invariant case, when h(x, y; s, t) = h(s, t), the
space-variant convolution gives exactly the standard convolution and the
space-variant correlation gives standard correlation without normalization
(which is again conjugate transpose to convolution with the same mask).

As we will see later, both definitions are useful and the introduced nota-
tion results in surprisingly neat expressions for the gradient of the used cost
functional. In the following chapter, we will show how space-variant convo-
lution can be naturally used to describe space-variant degradations produced
by camera lenses.

In the description of the algorithms and in all mathematical formulas we
use continuous (functional) notation. It means that images and depth maps
are treated as two-dimensional functions and convolutions are expressed using
integrals. The conversion to finite-dimensional form used in actual implemen-
tation is nevertheless straightforward. Functions and integrals correspond to
matrices and finite sums of matrix elements respectively. L2 norm turns into
Frobenius matrix norm and derivatives become symmetrical differences in
the common way.

We should also mention the notation used in integral limits. As a rule
we integrate over some finite subset of R2. To distinguish between two most
frequent cases at the first sight, we use D for integration over the whole image
and Ω for integration over some finite neighborhood corresponding to PSF
support.

Bold letters will denote functions (matrices), for example r(x, y) denotes
radius of blur circle r corresponding to point (x, y).

2It should be no surprise as columns of the matrix corresponding to convolution op-
erator with a mask tell us where the corresponding points spread and rows from which
points information for the given point comes. We work with real numbers so the adjoint
operator corresponds to simple transposition of the matrix.
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P the number of blurred images we process
z1, . . . , zP blurred images we get at the input of our algorithms
u ideal (sharp) image we wish to compute
w depth map or some convenient representation of the depth

map we wish to compute
hp(w) operator giving the space-invariant PSF corresponding to

the distance represented by scalar w (for input image p)
hp(w) operator returning space-variant PSF

h(x, y; s, t) = hp(w(x, y))[s, t]
∂hp(w)

∂w
derivative of PSF with respect to the value
of the depth representation

∂hp(w)

∂w
analogously to hp(w), gives space-variant PSF

h(x, y; s, t) = ∂hp(w(x,y))

∂w
[s, t]

∗v space-variant convolution (subscript v means variant
to distinguish from ordinary convolution)

~v space-variant correlation (adjoint operator to space-variant
convolution with the same PSF)

‖.‖ L2 norm for functions or corresponding Frobenius
norm for matrices∫

D integration over the whole image∫
Ω

integration over some finite neighborhood, usually
corresponding to the support of a PSF
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Chapter 4

Out-of-focus blur

This chapter is primarily concerned with description of degradations pro-
duced by optical lens systems and relation of the involved PSF to three-
dimensional structure of observed scene, position of the object in the field of
view and to camera settings. We begin by description of Gaussian model of
optical systems (Fig. 4.1) and corresponding PSFs, then proceed to more re-
alistic models and end up with the case of general axially-symmetric optical
system.

4.1 Gaussian optics

Image processing applications widely use a simple model based on Gaussian
(paraxial) optics which follows the laws of ideal image formation1 described
in the next paragraph. The name paraxial suggests that in reality it is valid
only in a region close to the optical axis.

Note that we will refer to image space and object space meaning the space
behind and in front of the lens, respectively. The basic postulate of ideal
image formation is that all rays through any point P in object space must
pass through one point P ′ in image space and the coordinates (x, y) of P are
proportional to the coordinates (x′, y′) of P ′. In other words, any figure on a
plane perpendicular to the optical axis is perfectly imaged as a geometrically
similar figure on some plane in image space that is also perpendicular to the
optical axis. The properties of the ideal optical system are completely fixed
by four cardinal points—two principal points and two foci. In other words,
we can use these four points to find the position and size of the image of
any object. The basic equation connecting the distance l of an object from

1Concept formalized by James Clerk Maxwell (1856) without invoking any physical
image-forming mechanism [53].
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the front principal plane, i. e. the plane perpendicular to the optical axis
at the front principal point, and the distance l′ of its image from the rear
principal plane, i. e. the plane perpendicular to the axis passing through the
rear principal point, is

1

f
=

1

l
+

1

l′
, (4.1)

where f is focal length, i. e. the distance of the focus from the principal point.
In theory there are two focal lengths, front and rear, but if media in front of
and behind the lens have the same index of refraction, as is usually true, the
lengths are the same [53].

Moreover, the principal planes (and so principal points) are usually as-
sumed to coincide, implying that depth (distance along the optical axis) in
object and image spaces is measured from the same plane and the whole
system is given by just two points.

In real optical systems, there is also a roughly circular aperture, the hole
formed by the blades that limit the pencils of rays propagating through the
lens (rays emanate within solid angle subtended by the aperture). Its size is
usually specified by f-number

f# =
f

2ρ
, (4.2)

where ρ is radius of aperture hole. A nice property of f -number is that it
describes illumination of film or image sensor independently of focal length.
Besides it controls depth of field. The aperture is usually assumed to be
placed at the principal plane, i. e. somewhere inside the lens. It should be
noted that this arrangement has an unpleasant property that magnification
varies with focus settings. If we work with more images of the same scene
focused at different distances, it results in more complicated algorithms with
precision deteriorated either by misregistration of corresponding points or by
errors introduced by resampling and interpolation2. Note that Algorithms
I and III solve this issue to some extent, but at the cost of higher memory
requirements.

2These problems can be eliminated using so called front telecentric optics, i. e. optics
with aperture placed at the front focal plane. Then all principal rays (rays through
principal point) become parallel to the optical axis behind the lens and consequently
magnification remains constant as the sensor plane is displaced [26]. Unfortunately most
conventional lenses are not telecentric.

24



ζ

ζ−l’

ρ=

Figure 4.1: Lens system and formation of blur circle (modified from [1]).

In the introduction we mentioned that the degradation produced by an
optical system can be described by linear relation (1.1). Using the notation
for space-variant convolution (3.1) we can write (1.1) as

z = u ∗v h + n. (4.3)

In the following sections we show several models that can be used for the
PSF h and its relation to the distance of objects from camera.

4.2 PSF in case of Gaussian optics

We consider the Gaussian optics model described in the previous paragraphs.
If the aperture is assumed to be circular, graph of PSF has a cylindrical shape
usually called pillbox in literature. When we describe the appearance of the
PSF in the image (or photograph), we speak about blur circle or circle of
confusion. It can be easily seen from similarity of triangles (see Fig. 4.1)
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that its radius for arbitrary point in the distance l

r = ρ
l′ − ζ

l′
= ρζ

(
1

ζ
+

1

l
− 1

f

)
(4.4)

= ρζ

(
1

l
− 1

ls

)
(4.5)

=
1

l
ρζ + ρζ

(
1

ζ
− 1

f

)
, (4.6)

where ρ is the aperture radius, ζ is the distance of the image plane from the
lens and ls distance of the plane of focus (where objects are sharp) that can
be computed from ζ using (4.1).

Notice the importance of inverse distances in these expressions. The
expression (4.5) tells us that radius r of blur circle grows proportionally to
the difference between inverse distances of the object and of the plane of
focus3. Expression (4.6) can be restated that r is a linear function of the
inverse of the distance l. Other quantities ρ, ζ and f depend only on the
camera settings and are constant for one image.

Thus, PSF can be written as

h(x, y; s, t) =

{ 1
πr2(x,y)

, for s2 + t2 ≤ r2(x, y),

0, otherwise,
(4.7)

where r(x, y) denotes the radius r of the blur circle corresponding to the dis-
tance of point (x, y) given by relations (4.4)-(4.6). Given camera parameters
f , ζ and ρ, matrix r is readily only alternative representation of depth map.

Now, suppose we have another image of the same scene, registered with
the first image and taken with different camera settings. As the distance is
the same for all pairs of points corresponding to the same part of the scene,
inverse distance 1/l can be eliminated from (4.6) and we get linear relation
between the radii of blur circles in the first and the second image

r2(x, y) = αr1(x, y) + β, where (4.8)

α =
ρ2

ρ1

ζ2

ζ1

, (4.9)

β = ρ2ζ2(
1

ζ2

− 1

ζ1

+
1

f1

− 1

f2

). (4.10)

3An obvious consequence is a photographic rule to focus on harmonic average of the
distances of the nearest and farthest object we want to have in focus. As it does not
sound very practical, textbooks give a rule of thumb to focus to one-third of the distance.
Actually it holds only if the farthest object is twice as far as the nearest one.
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The proposed algorithm assumes α and β are known. Obviously, if we take
both images with the same camera settings except of aperture, i. e. f1 = f2

and ζ1 = ζ2, we get β = 0 and α equal to the ratio of f-numbers defined by
(4.2).

In reality the aperture is not a circle but shape (often polygon) with as
many sides as there are blades. Note that at full aperture, where blades are
completely released, the diaphragm plays no part and the support of the PSF
is really circular. Still assuming Gaussian optics, the aperture projects on
the image plane according to Fig. 4.1, changing its scale the same way as for
circular aperture, i. e. in the ratio

w =
l′ − ζ

l′
= ζ

(
1

l
− 1

ls

)
=

1

l
ζ + ζ

(
1

ζ
− 1

f

)
, (4.11)

with a consequence that

h(x, y; s, t) =
1

w2(x, y)
h(

s

w(x, y)
,

t

w(x, y)
), (4.12)

where h(s, t) is the shape of the aperture. The mask keeps the unit sum of
h thanks to the normalization factor 1/w2. Comparing (4.11) with (4.4)-
(4.6) it can be easily seen that blur circle (4.7) is a special case of (4.12) for
w(x, y) = r(x, y)/ρ and

h(s, t) =

{
1

πρ2 , for s2 + t2 ≤ ρ2,

0, otherwise.
(4.13)

On the other hand, using (4.11) for two images yields

w2(x, y) = α′w1(x, y) + β′, where (4.14)

α′ =
ζ2

ζ1

, (4.15)

β′ = ζ2(
1

ζ2

− 1

ζ1

+
1

f1

− 1

f2

). (4.16)

Notice that if the two images differ only in the aperture, then w2 = w1.

4.3 Approximation of PSF by two-dimensional

Gaussian function

In practice, due to lens aberrations and diffraction effects, PSF will be
a roughly circular blob, with brightness falling off gradually rather than
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sharply. Therefore, most algorithms use two-dimensional Gaussian function

1

2πσ2
e−

s2+t2

2σ2 (4.17)

instead of pure pillbox shape. Notice that it can be written in the form of
(4.12) for

h(s, t) =
1

2π
e−

s2+t2

2

with w = σ as well. To map the variance σ to real depth, [1] propose to use
relation σ = r/

√
2 together with (4.4) with the exception of very small radii.

Our experiments showed that it is often more precise to state the relation
between σ and r more generally as σ = kr, where k is a constant found
by camera calibration (for the lenses and settings we tested k varied around
1.2). Then analogously to (4.8) and (4.14)

σ2 = α′σ1 + β′, α′, β′ ∈ R, (4.18)

where α′ = α, β′ = kβ. Again, if we change only the aperture then β′ = 0
and α′ equals the ratio of f-numbers.

Corresponding PSF can be written as

h(x, y; s, t) =
1

2πk2r2(x, y)
e
− s2+t2

2k2r2(x,y) . (4.19)

If possible we can calibrate the whole (as a rule monotonous) relation
between σ and distance (or its representation) and consequently between σ1

and σ2.
In all cases, to use Gaussian efficiently, we need a reasonable size of its

support. Fortunately Gaussian falls off quite quickly to zero and it is usually
sufficient to truncate it by a circular window of radius 3σ or 4σ. Moreover,
any real out-of-focus PSF has finite support anyway.

4.4 General form of PSF for axially-symmetric

optical systems

In case of high-quality optics, pillbox and Gaussian shapes can give satisfac-
tory results as the model fits well with reality. For less well corrected optical
systems rays can be aberrated from their ideal paths to such an extent that it
results in very irregular PSFs. In general, aberrations depend on the distance
of the scene from camera, position in the image and on the camera settings
f , ζ and ρ. As a rule, the lenses are well corrected in the image center, but
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towards the edges of the image PSF may become completely asymmetrical
and look for example like in Fig. 10.2(a).

Common lenses are usually axially-symmetric. For such a system, since it
must behave independently of its rotation about the optical axis, it is easily
seen that

1. in the image center, PSF is radially symmetric,

2. for the other points, PSF is bilaterally symmetric about the line passing
through the center of the image and the respective point,

3. for points of the same distance from the image center and corresponding
to objects of the same depth, PSFs have the same shape, but they are
rotated about the angle given by angular difference of their position
with respect to the image center.

The second and third points can be written as

h(x, y; s, t) = h

(
0, |(x, y)|; |(−t, s)(x, y)T |

|(x, y)| ,
(s, t)(x, y)T

|(x, y)|
)

. (4.20)

The dot products are simply sine and cosine of the angle of rotation according
to the third point and the absolute value in the numerator of the third term is
the half of PSF which is sufficient to specify thanks to the bilateral symmetry.

In most cases, it is impossible to derive an explicit expression for PSF
of given optical system. On the other hand, it is relatively easy to get it
by a raytracing algorithm. Above mentioned properties of axially-symmetric
optical system can be used to save memory as we need not to store PSFs
for all image coordinates but only for every distance from the image center.
Naturally, it makes the algorithms more time consuming as we need to rotate
the PSFs every time they are used.

Finally, we should mention the existence of other optical phenomenons
that to some extent influence the real PSF but that can be neglected for the
purpose of this work.

Diffraction is a wave phenomenon which makes a beam of parallel light
passing through a circular aperture spread out a little. The smaller the
aperture, the more the spreading. Since we are interested in situations of
small depth of focus, diffraction takes no much effect and we can neglect it.

It is well known that the refractive index varies with wavelength or fre-
quency of light. This so called dispersion is a source of chromatic aberrations
in optical systems [53]. However, for algorithms working with intensity im-
ages it is probably impossible to take them into account because we have no
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information about spectral content of the images and in addition their in-
fluence is rather limited as the spectral sensitivity of one channel is narrow.
Color images are treated only marginally in this work.

4.5 Summary

In this chapter, we described several shapes of PSF that can be used to model
out-of-focus blur. Gaussian and pillbox shapes are adequate for good quality
lenses or in the proximity of the image center, where the optical aberrations
are usually well corrected. A more precise approach is to consider optical
aberrations. However, an issue arises in this case that aberrations must be
described for the whole range of possible focal lengths, apertures and planes
of focus.
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Chapter 5

Camera motion blur

In the previous chapters we have already mentioned that camera motion blur
can be modeled by convolution with a space-variant PSF. To use this model
in the proposed algorithms, we need to express the PSF as a function of the
camera motion and the depth of the scene.

Note that we follow the convention that the z-axis coincides with the
optical axis and the x and y axes are considered parallel to horizontal and
vertical axes of the image sensor. The origin of the coordinate system is
placed at the front principal point of the optical system, which corresponds
to the optical center of the pinhole camera.

5.1 General camera motion

In the general case, the PSF can be computed from the formula for velocity
field [54, 8] that gives apparent velocity of the scene for the point (x, y) of
the image at time instant τ as

v(x, y, τ) =
1

l(x, y, τ)

[−1 0 x
0 −1 y

]
T (τ)+

[
xy −1− x2 y

1 + y2 −xy −x

]
Ω(τ),

(5.1)

where l(x, y, τ) is the depth corresponding to point (x, y) and Ω(τ) and T (τ)
are three-dimensional vectors of rotational and translational velocities of the
camera at time τ . Both vectors are expressed with respect to the coordinate
system originating in the optical center of the camera with axes parallel to
x and y axes of the sensor and to the optical axis. All the quantities, except
of Ω(τ), are in focal length units.

31



The apparent curve [x̄(x, y, τ), ȳ(x, y, τ)] drawn by the given point (x, y)
can be computed by the integration of the velocity field over the time when
the shutter is open. Having the curves for all the points in the image, the
two-dimensional space-variant PSF can be expressed as

h(x, y; s, t) =

∫
δ(s− x̄(x, y, τ), t− ȳ(x, y, τ))dτ, (5.2)

where δ is two-dimensional Dirac delta function.

In the case of general camera motion, the solution of the restoration
problem can be difficult, as discussed in Section 6.7. Therefore, it may be
reasonable to consider some limited class of motions, where the PSF can be
expressed explicitly.

Arbitrary camera motion can be decomposed into two types of transla-
tions and two types of rotations. In the following sections we discuss the
influence of these motion components on the PSF they produce.

For the purposes of this thesis, the most important case is translation in
one plane perpendicular to the optical axis, which will be treated in detail in
Section 5.3. Rotations (Section 5.2) and translations in the direction of the
optical axis (Section 5.4) will be described briefly without explicit formulas
for the corresponding PSF.

5.2 Rotation

First we describe the rotational movements, which are simpler in the sense
that the blur they produce does not depend on the distance of the scene from
camera. Therefore, if we track rotational camera motion by an inertial sensor,
we are able to assign a PSF to each image pixel and restore the sharp image
from just one single image by one of non-blind restoration methods. It is well
known that any three-dimensional rotation can be decomposed into rotations
about three independent axes going through the center of rotation—in our
case, without loss of generality, about the axes of the coordinate system.

Rotation of the camera about the optical axis (rolling) makes the points
in the image move along concentric circles centered in the center of the im-
age. Consequently, the PSF is uniquely determined by the course of angular
velocity of the camera and the image coordinates (x, y). The extent of the
blur increases linearly with the distance from the image center.

The blur caused by the rotation about any axis lying in the front principal
plane and going through the optical center (panning, tilting) is influenced
by perspective distortion. In the proximity of the image center the PSF
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is almost space-invariant but as we move away from the image center, we
must compensate for the dilation/contraction in the direction of the axis of
rotation.

The PSF for combination of rotation (angular motion) with defocus, in-
cluding optical aberrations, was described recently in [55].

5.3 Translation in one plane perpendicular to

the optical axis

Now, we proceed to the translational motion, which depends on the distance
of the scene from the camera. Again, it can be decomposed into translations
in the directions of the three axes.

If the camera moves in one plane perpendicular to the optical axis without
any rotations (Ω = (0, 0, 0), T (3) = 0), which is the case assumed in the basic
version of Algorithms I and III, then the magnitude of the velocity vector
is proportional to the inverse depth. Moreover, depth for the given part of
the scene does not change during such a motion and consequently the PSF
simply decreases its scale proportionally to the depth, namely

h(x, y; s, t) = l2(x, y)h0(sl(x, y), tl(x, y)), (5.3)

where “prototype” PSF h0(s, t) corresponds to the path covered by the cam-
era during the time when the shutter is open. Depth is again given in focal
length units.

Equation (5.3) implies that if we know PSF for an arbitrary fixed distance
from camera, we can compute it for any other distance by simple stretching
in the ratio of the distances.

Interestingly, PSF (5.3) is the same formula that holds for most models
of out-of-focus blur described in Chapter 4 with w being inverse depth

w(x, y) = 1/l(x, y). (5.4)

The only difference is the shape of the “prototype” mask h0.

We should mention a special case, steady motion of the camera in a
direction perpendicular to the optical axis. Then, it is well known that the
PSF is space-invariant one-dimensional rectangular impulse in the direction
of camera motion and its length

d(x, y) =
b

l(x, y)
, (5.5)
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where b is the path covered by camera during the capture process. If we
realize that l is given in focal length units, it is not surprising that equation
(5.5) is exactly the formula for stereo disparity, where b is the length of the
the baseline.

5.4 Translation in the direction of optical axis

Finally, we come to the translational motion in the direction of the optical
axis. It it the most complicated motion component in the sense that the PSF
depends on both the distance from the camera and position in the field of
view. As the camera moves towards the scene, the image increases its scale
but the extent of this scale change depends on the distance from camera.
In other words, image points move outwards/inwards along lines emanating
from the image center but the speed of their motion depends on the depth.

5.5 Summary

In this chapter, we discussed relation between PSF and several types of cam-
era motions.

For our purposes, we need mainly Section 5.3, describing translational
motion in one plane perpendicular to the optical axis. It is exactly the model
with which the basic versions of Algorithms I and III work. The principal
advantage of this assumption is that the corresponding PSF is a function of
only depth and not of the position in the field of view. This model can be
valid in industrial applications with camera mounted on vibrating or moving
objects.

Possibility of restoration in the case of completely general camera motion
will be discussed in Section 6.7.
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Chapter 6

Restoration of space-variantly
blurred images (Algorithm I)

In this chapter we describe the main result presented in this thesis—an al-
gorithm for restoration of images blurred by space-variant out-of-focus or
camera motion blur.

Let us denote the blurred images at the input as zp. For out-of-focus blur,
the images must be taken from the same place with different camera param-
eters. In case of camera motion blur, the camera parameters are supposed
to be the same and the camera motion differs. In the following description
of the algorithm, the camera motion is limited to translational motion in one
plane perpendicular to the optical axis. This limitation includes not only
the camera motion during the capture of one image but also the change of
camera position between the images, which ensures that the depth map is
common for all the images. We should stress that in this case we need to
know neither how the camera moves nor camera parameters. The exten-
sion to general camera motion is discussed in Section 6.7. Finally, we assume
known relation between distance and PSF according to models from Chapter
4 for out-of-focus blur and from Chapter 5 for motion blur.

Recall that the process of blurring can be modeled using space-variant
convolution (1.1), which can be written in simplified form as (4.3) using
notation (3.1). The proposed algorithm can be described as minimization of
cost functional

E(u,w) =
1

2

P∑
p=1

‖u ∗v hp(w)− zp‖2 + λuQ(u) + λwR(w) (6.1)

with respect to sharp image u and depth map represented by w. The value
of w(x, y) does not give directly the distance related to pixel (x, y) in the
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common way but it is a convenient linear function of the reciprocal of the
distance from reasons explained later in this chapter. As will be discussed
later, a good choice is inverse depth w(x, y) = 1

l(x,y)
. Recall that the depth

map is common for all the images in the cases we consider now.
The first term of (6.1), called error term in the rest of this thesis, is a

measure of difference between the inputs, i. e. blurred images zp, and the
image u blurred according to chosen blurring model using information about
depth of scene w. The size of the difference is measured by L2 norm ‖.‖,
which corresponds to Frobenius matrix norm in the actual implementation.
The inner part of the error term,

ep = u ∗v hp(w)− zp, (6.2)

is nothing else than the matrix of error at the individual points of the image
p. The error term can be written as Φ =

∑P
p=1 Φp, where Φp = 1

2
‖ep‖2 =

1
2

∫
D e2

p(x, y).
For image p, the operator hp(w) gives space-variant PSF corresponding to

depth map represented by w according to chosen blurring model. Its space-
variant convolution with the sharp image u models the process of blurring.

In case of defocus, hp is unambiguously given as a function (pillbox or
Gaussian) of depth and camera parameters, with the exception of aberrated
optics, where the PSF must be stored in a way for all combinations of camera
parameters, depths of the scene and positions in the field of view.

In the considered case of camera motion in one plane perpendicular to
the optical axis, relation (5.3) implies that it is sufficient to known the PSF
for one fixed depth and hp can be computed for an arbitrary depth using
this relation. For this purpose, we can apply space-invariant blind restora-
tion method [2] on a flat part of the scene, where the blur is approximately
space-invariant. Besides the restored sections, this method provides also an
estimate of masks (PSFs). As we usually do not know the real depth for
this part of the scene, the depth map we compute is correct only up to a
scale factor. This is however sufficient, since our primary goal is restoration.
Note that the masks incorporate the relative shift of the cameras between
the images.

Regularization is a popular method to achieve satisfactory solution of
problems involving inversion of ill-conditioned operators such as the convo-
lution with space-variant mask. The role of regularization terms is to achieve
well-posedness of the problem and incorporate prior knowledge about the so-
lution [56, 57].

Thus, Q(u) is an image regularization term which can be chosen to repre-
sent properly the expected character of the image function. For the majority
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of images a good choice is total variation QTV (u) =
∫ |∇u|, proposed by

Rudin et al. [34]. Tikhonov regularization term Q(u) =
∫ |∇u|2 can be more

appropriate for scenes without sharp edges, where TV regularization often
results in a “blocky” look of the image. In turn, an issue with Tikhonov
regularization is that it tends to smooth sharp edges. For more detailed
discussion of image regularization, see [58, 33].

Similarly, we can choose convenient depth map regularization term R(w).
Contrasting the image regularization, paradoxically, the best choice for depth
map is usually Tikhonov regularization. The reason is that TV regularization
may cause convergence problems at steep depth edges as demonstrated in
simulated experiments.

6.1 Choice of depth map representation

Now, we will discuss why we do not work directly with depth and outline more
convenient depth map representations suitable for different models of blur.
We have already mentioned that a good choice is an arbitrary linear function
of inverse depth. We will show that in a sense all such representations are
equivalent. Note that the algorithm can be implemented independently of
any particular representation.

In theory, we could always use directly the real depth. However, it has
several major drawbacks. First, we need to know exactly all the camera
settings (f , ζ, ρ). We will show that it is not always necessary using other
representations if our goal is mainly restoration of the sharp image. Another
issue with the direct use of distance is that it tends to regularize the depth
map too heavily at the edges between near and distant objects which can
result in slight defocus of distant objects. Finally, non-linear dependence on
distance results in more complicated formulas for derivatives of functional
(6.1).

If we look at the considered models of out-of-focus and camera motion
blur, we can see that in all the cases PSF scales linearly with the inverse of the
distance. Note that while it is an inherent property of out-of-focus blur, for
motion blur it holds only when the camera motion is limited to translation. If
we take more images of the same scene, it holds for all of them and therefore
at corresponding image locations the size of PSF in one image is a linear
function of the size of PSF in another image. In other words, choosing any
representation linear with respect to inverse depth, that is w = γ/l + δ, PSF
in arbitrary channel scales linearly with this representation. We can also
imagine that PSF is now given as a function of the size of its support.

Using this type of representation, depth map regularization terms will reg-
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ularize a quantity proportional to the extent of blur. If we consider Tikhonov
and TV regularization terms, all the representations are equivalent with re-
spect to the regularization up to a multiplicative constant. Indeed, if we
change representation, it is sufficient to multiply λw by the ratio of γ’s for
RTV and squared ratio of γ’s for R2 to get the same results.

In case of pillbox out-of-focus blur a natural choice of depth map repre-
sentation is the radius of blur circle according to (4.4)-(4.6) for one of the
images. Without loss of generality, let it be the first image. We get linear
relation (4.8) that links PSF in the other images to the PSF in the first
image. If we take the images with the same camera settings except for the
aperture, i. e. β = 0, we need to know just one parameter α equal to the
ratio of f-numbers. It can help us in situations when we have only Exif1 data
produced by present-day digital cameras that usually contain only f-numbers
and rather unprecise focal lengths but no information where the camera was
focused2. Thus, the algorithm actually minimizes over the extent of blur
instead of over the distance and the regularization is also applied at this
quantity.

Interestingly, we can use similar representation even if we do not limit
ourselves to the pillbox PSF. If we consider non-circular aperture according
to (4.12) or Gaussian function (4.19), we can represent distance by the ratio
w given by (4.11). Again we have a linear relation between representations
(4.14) or (4.18) respectively.

In case of blur due to the translational camera motion in one plane per-
pendicular to the optical axis, the depth is naturally represented by the ratio
of the depth of the part of the scene where the PSF is known and the real
depth as mentioned in the description of hp above. The PSF for arbitrary
depth is then computed using (5.3).

If we consider both out-of-focus blur and camera motion blur simultane-
ously, we can represent distance by 1/l. In this mixed case we need all three
camera parameters.

1Exchangeable image file format is a specification for the image file format used by
digital cameras. The specification uses existing file formats with the addition of specific
metadata tags (see http://en.wikipedia.org/wiki/Exif).

2One exception are professional Canon cameras with some newer lenses providing focus-
ing information necessary for ETTL-II flash systems. Still, however, precision of provided
depth information is principally limited by relations discussed in Chapter 9.
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6.2 Gradient of the cost functional

In theory, to minimize the cost functional (6.1), we could apply simulated
annealing [7], which guarantees global convergence. In practice however it
would be prohibitively slow. For efficient minimization, we need to know at
least the gradient3 of the functional. Readily it equals the sum of the gradi-
ents of individual terms. First we cover the gradients of the regularization
terms.

The gradient of any functional of form
∫

κ (|∇u|), where κ is an increasing
smooth function, can be expressed [59] as

− div

(
κ′ (|∇u|)
|∇u| ∇u

)
, (6.3)

which for Q2 and QTV gives

∂Q2

∂u
= − div∇u = −∇2u, (6.4)

∂QTV

∂u
= − div

( ∇u

|∇u|
)

, (6.5)

where the symbol ∇2 denotes Laplacian operator and div the divergence
operator. The gradient of R(w) we get by simply replacing u with w in
(6.3)-(6.5).

Gradients of the error term in image and depth map subspaces are a
bit more complicated. We take advantage of the notation for space-variant
correlation and get surprisingly elegant formulas.

Proposition 1. Gradients of the error term Φ in subspaces corresponding
to image u and depth map represented by w can be expressed as

∂Φ

∂u
=

P∑
p=1

ep ~v hp(w) =
P∑

p=1

u ∗v hp(w) ~v hp(w)− zp ~v hp(w), (6.6)

∂Φ

∂w
= u

P∑
p=1

ep ~v
∂hp(w)

∂w
, (6.7)

where ∂hp(w)

∂w
[x, y; s, t] is the derivative of the mask related to image point

(x, y) with respect to the value of w(x, y).

3 Rigorously, if we use functional notation we should speak about Fréchet derivative
instead of gradient.
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Note that the formulas hold even if hp(w) and consequently ∂hp(w)

∂w
de-

pends also on coordinates (x, y). The proof of Proposition 1 can be found in
Appendix A. Notice that the computation of gradients (6.6) and (6.7) does
not take much longer than computation of the cost functional itself. They
consist of only four types of matrix operations: space-variant convolution,
space-variant correlation, point-wise multiplication and point-wise subtrac-
tion. The two space-variant operations itself consist of multiplications and
additions. All these operations can be highly parallelized since basically the
value can be computed separately in each pixel.

Here we should mention the actual implementation of hp(w) and ∂hp(w)

∂w

we used. For defocus and the considered type of motion blur, the mask is
unambiguously determined by depth, that is the space-variant PSF hp(w)
consists of the values of hp(w) that stand for the space-invariant PSF (mask)
for given w. These masks are precomputed for a sequence of values of w with
constant step Mw, i. e. we store hp(k Mw) for an interval of indices k. During
the minimization, intermediate masks are computed by linear interpolation
as

hp(w) = (d w

Mw

e − w

Mw

)hp(b w

Mw

c Mw) + (
w

Mw

− b w

Mw

c)hp(d w

Mw

e Mw). (6.8)

Thanks to linearity of these operations, the computation of space-variant
convolution and correlation with an arbitrary mask takes only about twice
more time than in the case of masks we stored.

Similarly ∂hp(w)

∂w
is based on ∂hp(w)

∂w
which is computed from masks stored

in another array generated from hp(k Mw) by taking symmetrical differences
of adjacent entries. Again, we use linear interpolation to get the derivatives
that are not stored. With higher precision, we can get them directly by
application of third-order polynomial fitting filters [60] on hp(w). Note that
the derivatives could be computed analytically using (5.3) but the way we
have just described turned out to be simpler to implement and faster.

Both types of arrays are precomputed for all the images.
We should remark that in general, it is not evident how such an inter-

polation influences the convergence properties of continuous gradient-based
minimization. In our experiments it has turned to be of no concern. But still
if necessary, we could use interpolation of a higher order as well.

6.3 Minimization algorithm

How to find the minimum of the cost functional if we know its gradient? It is
high-dimensional nonlinear problem with a huge amount of local minima, es-
pecially in the subspace corresponding to variable w. Experiments confirmed
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that the right choice of initial depth map estimate is essential to prevent the
algorithm from getting trapped in a local minimum. We tested random ini-
tialization of the depth map but as a rule the minimization resulted in a
number of artifacts. Constant initial choice did not work at all.

An approach that proved effective was to compute the initial estimates of
the depth map using one of simpler methods based on the assumption that
blur is space-invariant in a neighborhood of each pixel.

If the main requirement is speed, we can use the method presented in
Chapter 7 which is a generalization of already mentioned DFD method of
Subbarao and Surya [1]. It can be described by simple expressions (7.1),
(7.2), (7.4) and (7.5) and can be implemented by just two convolutions,
which is negligible in comparison with the time required by the following
minimization. It provides noisy and inaccurate depth estimates but often
proved sufficient to prevent the algorithm from getting stuck in a local min-
imum and it also speeds up the minimization considerably. Notice that it
also does not estimate distance directly but instead it estimates convenient
representation—variance of the PSF.

The necessary condition of this method is central symmetry of PSF. It
implies that under certain circumstances we can use it even for strongly
aberrated optics since, as we mentioned in Chapter 4 (the first point on p.
29), arbitrary axially-symmetric optical system has a rotationally symmetric
PSF in the area around the image center. Of course pillbox PSF is a special
case. We should remark that this method must be carefully calibrated to
give reasonable results. It works when there is no much noise in the image
and texture is of sufficient contrast.

Unfortunately, if the condition of symmetry is not satisfied, results can
be seriously distorted. For this reason this method is unsuitable for less well
corrected optics in the areas near the image border and for more complex mo-
tion blurs. For these cases, we developed another simple method described
in Chapter 8 which is more general but slower. It proved to be more stable
with respect to noise as well. Both methods provide either noisy and inac-
curate estimates or (after smoothing) estimates with lower spatial resolution
resulting in artifacts at the edges.

Let us denote the initial depth map estimate as w0. Now, we could use
the steepest gradient method but it is well known that it suffers from slow
convergence. Instead, we make use of a sort of alternating minimization (AM)
algorithm [42], which basically iterates through minimizations in subspaces
corresponding to unknown matrices u and w. From reasons explained later,
at the end of the algorithm there is another minimization over the image
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subspace with different image regularization constant λf
u and higher number

of iterations.

Algorithm I

1. for n = 1 : Ng

2. un = arg minu E(u,wn−1)

3. wn = arg minw E(un−1,w)

4. end for

5. uNg+1 = arg minu E(u,wNg)

Note that the steps 2, 3 and 5 itself consist of a sequence of iterations.
In the following paragraphs we will discuss the minimization methods

used in respective subspaces.
Minimization of E with respect to u is the well known and well examined

problem of non-blind restoration [33, 42]. If the regularization term Q(u) is
quadratic as in the Q2 case, the whole problem is linear and we use simple
and relatively fast conjugate gradients method (gradients (6.4) and (6.6) are
obviously linear with respect to u). In case of QTV , matters become more
complicated. However, even for this case there exist sufficiently efficient al-
gorithms, which usually reduce the problem to a sequence of linear problems.
We have chosen the approach described in [36]. Note that the authors orig-
inally designed their algorithm for denoising and space-invariant restoration
problems. Nevertheless, the space-invariant convolution is treated as suffi-
ciently general linear operator there and since the space-variant convolution
satisfies assumptions of their method as well, all the arguments are valid and
all the procedures can be modified to work with the space-variant case as
well. In a very simplified manner, the idea is as follows.

Let um be the current estimate of the image minimizing the cost func-
tional (6.1) for a fixed wn−1. We will replace the regularization term Q =
QTV =

∫ |∇(u)| by quadratic term

1

2

∫

D

1

|∇um| |∇u|2 + |∇um|. (6.9)

Obviously, it has the same value as QTV in um. The right term of (6.9) is con-
stant for now and consequently it does not take part in actual minimization.
We have got a “close” linear problem

um+1 = arg min
u

1

2

P∑
p=1

‖ep‖2 + λu

∫

D

1

2|∇um| |∇u|2, (6.10)
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Figure 6.1: Error after the nth iteration of steepest descent (upper curve)
and conjugate gradient (lower curve) methods.

solution of which becomes a new estimate um+1. It can be shown [36] that
um converges to the desired minimum for m → ∞. For numerical reasons
we take max(ε, |∇um|) in place of |∇um| in (6.10). The minimization is not
very sensitive to the choice of ε and for common images with values in the
interval [0, 1] can be set to something between 0.001 and 0.01.

Here we should stress that the use of the conjugate gradients method
(or some other method such as GMRES [61]) is crucial for the success of
the minimization. Figure 6.1 shows a simulation when we know the correct
depth map and minimization is run just over the image subspace. We can
see that in case of steepest descent it may look like converging but it is still
very far from minimum which is zero in this case.

In turn, in the subspace corresponding to depth map we can afford to
apply simple steepest descent algorithm. The optimum step length in one
direction can be found by interval bisection method. In this subspace the
convergence turned out sufficient to get satisfactory results.

Note that in both subspaces we can use TV regularization with very little
slowdown since the additional cost of the matrix norm computation is not
high compared to space-variant convolution in each step of the minimization
algorithm.

Finally we should mention that we carried out experiments with both
types of regularization (Tikhonov and TV) in both subspaces. The choice
of image regularization term Q(u) seems to have no much influence on con-
vergence properties of the minimization and we can freely choose the type
that works better for our application. In turn, the use of TV regularization
for depth map may cause convergence problems at places, where the depth
rapidly changes. In most cases we recommend TV regularization for the
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image and Tikhonov regularization for the depth map.

6.4 Scheme of iterations

First note that this section can be skipped in the first reading as it describes
some peculiarities of our implementation.

Experiments showed that the result of minimization and the speed of
convergence depends on the number and order of iterations. In this section
we will explain notation used to describe it. The Algorithm I consists of three
levels of iterations. To describe the whole sequence of iterations, we need to
introduce notation for the number of iterations of particular subproblems.

The outermost level is given by the number of times, the algorithm alter-
nates between the subspaces u and w. Recall that it is denoted Ng in the
description of the algorithm (p. 41).

The minimization over the image u depends on the type of regularization.
In case of Tikhonov regularization, we apply the conjugate gradients meth-
ods consisting of a certain number of iterations denoted as Nu. If we use TV
regularization, the minimization consists of the sequence of linear subprob-
lems (6.10) solved again by conjugate gradients method. Then, NTV refers
to the length of this sequence and Nu relates to the number of iterations of
conjugate gradients method used for the minimization of the subproblems.

As regards the subspace corresponding to unknown w, Nw stands for the
number of direction changes of the steepest decent algorithm.

Finally, we can see that at the end of the algorithm (line 5) we repeat
certain number of iterations over the image subspace. Note that this time
with different value of image regularization constant λf

u. Analogously to line
2, we will denote the number of iterations as N f

TV and N f
u .

Put together, the whole sequence of iterations will be described as

Ng × (NTV ×Nu + Nw) + N f
TV ×N f

u .

We tested a large amount of possible combinations of these parameters
and deduced several general rules. First, it is not efficient to simply minimize
over image subspace as far as possible, then over depth map subspace, etc.
It has turned out that the minimization is much faster if we make only some
small number of iterations in each subspace. A good choice that worked for
all our experiments was Nu = 8 and Nw = 10. Interestingly, in case of TV
image regularization it is sufficient to set NTV = 1.

The reason, why we need the final minimization over the image subspace,
is that another rule states that the alternating minimization is faster if used
with more image regularization. Therefore, we can use larger value of λu,
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which naturally results in somewhat “softer” image and finally sharpen the
image by running another minimization over the image subspace with less
regularization λf

u and higher number of iterations. We stress that this time
it is necessary to repeat several times the minimization (6.10) to get what
we want.

Thus, a typical description of iterations can look like 50×(8+10)+5×25.
Note that we leave out the NTV since it is equal to one.

6.5 Choice of regularization parameters

We already mentioned that regularization is an effective way to get reasonable
solutions to problems that involve inversion of ill-conditioned operators [56].
For the first time, the choice of regularization constants in image restoration
problems was addressed by Hunt [62]. An overview of methods can be found
in [57].

Unfortunately, it seems difficult to apply known approaches directly to
our problem. Nevertheless, a promising direction of future research could be
the application of generalized cross-validation (GCV ) for estimation of the
regularization parameters similarly to [61, 63]. GCV is based on the idea of
the “leave-one-out” principle which basically takes regularization parameter
which is most successful in guessing adjacent points. The difficult part is
the estimation of eigenvalues of the operator corresponding to space-variant
convolution.

Selection of depth map regularization parameter seems to be even harder
to solve due to the non-linearity of the problem. The papers working along
similar lines [7, 8, 9] do not address this problem at all.

In our implementation, we set the parameters by trial and error method
as well. Fortunately, the algorithm is not very sensitive to the choice of these
constants and if they work for one image with given noise level and given
amount of blur, it will probably work for other images in the same application
as well.

Another aspect of the issue with the estimation of regularization parame-
ters is that we do not have just one correct definition, what the best solution
is. There is always a trade-off between sharpness of the image and noise
reduction. We can choose sharper and more noisy (smaller values of λu) or
softer and less noisy image (larger values of λu).

45



6.6 Extension to color images

The algorithm can be extended to color images in a straightforward manner.
The error term of the functional (6.1) is summed over all three color

channels. Similarly, image regularization term can be implemented as the
sum of regularization terms for individual channels. Alternatively, better
results can be achieved when TV is applied on multivalue images [59] using
regularization term

∫

D

√
|∇ur|2 + |∇ug|2 + |∇ub|2, (6.11)

which suppresses noise more effectively. Another advantage of this approach
is that it prevents color artifacts at the edges. We used this approach in the
experiments with color images presented in this thesis.

Depth map is common for all the channels, which brings additional resis-
tance to noise.

6.7 Extension to general camera motion

If the camera motion and camera parameters (focal length, resolution of
the sensor) are known, the proposed algorithm can be, at least in theory,
extended to the case of general camera motion. As this topic deserves fur-
ther investigation, we just summarize very briefly the main differences with
respect to the special case we have detailed above.

The functional remains the same, except of the PSFs hp(w). The main
issue arises from the fact that hp is a function of not only depth but also of
coordinates (x, y). In other words, different points of the scene draw different
apparent curves during the motion even if they are of the same depth. In
addition, depth map is no longer common for all the images and consequently,
for p > 1, the depth map must be transformed to the coordinate system of
the image p before computing hp using (5.1) and (5.2). The same is true in
the auxiliary algorithm for the estimation of initial depth map, where the
convolution becomes space-variant convolution.

The formulas in Proposition 1 hold in general case as well (see the proof)
and so the main issue remains how to compute hp and its gradient for arbi-
trary (x, y). Since we cannot store it for every possible (x, y), a reasonable
solution seems to store them only on a grid of positions and compute the
rest by interpolation. The necessary density of this grid depends on appli-
cation. However, the numerical integration of the velocity field can be quite
time-consuming even for a moderate size set of coordinates.
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In turn, a nice property of this approach is that once all the masks are
precomputed, both the depth map estimate and minimization do not take
much longer than in the case of the translational motion described in previous
sections.

6.8 Summary

In Chapter 6, we have presented the main contribution of this thesis, a multi-
channel variational method for restoration of images blurred by space-variant
out-of-focus blur, camera motion blur or both simultaneously.

The algorithm works independently of a particular shape of PSF, which
allows to use more precise models of blur than previously published methods.
For out-of-focus blur, it includes optical aberrations, for motion blur, trans-
lational motion in one plane perpendicular to the optical axis. In the latter
case, the algorithm needs to know neither camera motion nor camera param-
eters. Besides, if the camera motion is known, the algorithm seems to be
extensible to general camera motion. This case needs further investigation.

The algorithm is based on the minimization of a complex functional with
many local minima. To solve the problem how to localize the right minimum,
Algorithm I uses an initial estimate of depth map provided by one of simpler
methods described in the following two chapters.

The main weakness is high time consumption. However, this issue can be
alleviated by the fact that the algorithm uses only simple linear operations,
which could facilitate potential hardware implementation.
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Chapter 7

Depth from symmetrical blur
(Algorithm II)

Basically there are two groups of multichannel algorithms that recover three-
dimensional scene structure (depth map) based on the measurement of the
amount of blur. The first and historically older group of algorithms is based
on the assumption that the amount of blur does not change in a sufficiently
large neighborhood of each image pixel. They often suffer from noise and
poor accuracy.

Algorithms of the second group, variational methods, take an image for-
mation model and look for the solution that minimizes its error with respect
to the input images (see description of Algorithm I). Unfortunately, the min-
imization of the resulting cost functional is a nonlinear problem of very high
dimension, its minimization takes a lot of time and tends to trap in one of
many local minima. Nevertheless, if the minimum is localized correctly, the
result is relatively precise. To avoid the problem with local minima we can
naturally use an algorithm from the first group as an initial estimate. In this
way we use the method presented in this chapter. For an overview of related
literature see Sections 2.1 (Depth from defocus) and 2.2 (Depth from motion
blur) in the literature survey.

Subbarao and Surya [1] proposed a filter based method, already men-
tioned in the overview of relevant literature, which gives an estimate of depth
from two out-of-focus images assuming Gaussian PSF. It can be implemented
by just two convolutions with small masks as can be seen from expression
(2.1). In this chapter we show that their method can be modified to work
with arbitrary sufficiently symmetrical PSF.

Resulting expressions (7.1)-(7.5) are formally very similar to that in [1].
We stress that it is not the best existing filter-based method but it is the
simplest one and it was intended mainly as an initial estimate for variational
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Algorithm I.

Notation will be the same as in Algorithm I. We work with two blurred
images z1 and z2, supposed to be registered [64] at the input. This method
assumes that the amount of blur is approximately constant within a suffi-
ciently large window in the neighborhood of each image pixel which allows
to model the blur locally by convolution with a mask.

7.1 Filters for estimation of relative blur

The whole algorithm is based on the following statements describing relative
blur between images z1 and z2 expressed as the difference between the second
moments of masks hi. Of course, if we want to use the relative blur to recover
the depth, it must be an invertible function of the depth, at least for the
interval of considered depths. For many real cases, it is satisfied.

Propositions assume apparently very limiting condition that the sharp
image u is third-order polynomial within a local window. Later we will show
that this condition can be approximately met using a simple trick.

Proposition 2. Let u(x, y) be a third-order polynomial1 of two variables
and zi = u ∗ hi, i = 1, 2, where hi are energy preserving (

∫
h = 1) PSFs

symmetric about axes x, y and both axes of quadrants. Then

σ2
2 − σ2

1 = 2
z2 − z1

∇2
(

z1+z2

2

) , (7.1)

where σ2
1, σ

2
2 are the second moments2 of h1 and h2 and ∇2 is the symbol for

Laplacian.

Proof can be found in Appendix B. Note that the condition of symmetry
in Proposition 2 holds for all circularly symmetric masks. We mentioned in
Chapter 4 that it is a property of any axially symmetric lens with arbitrar-
ily strong optical aberrations in the proximity of image center. Of course,
relation between σ1 and σ2 must be carefully calibrated in this case.

In case of pillbox PSF, we can use relation between radius r of blur circle
and its second moment r = 2σ to get

1 Two-dimensional third-order polynomial is a polynomial P (x, y) =∑3
m=0

∑3−m
n=0 am,nxmyn.

2If we take mask as distribution of a random quantity, the second moment or variance
is usually denoted as σ2. For two-dimensional functions there are actually three second-
order moments but here σ2 = h2,0 = h0,2 and mixed second-order moment h1,1 is zero,
both thanks to the symmetry.
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Corollary 1. Let u(x, y) be a third-order polynomial of two variables and
zi = u ∗ hi, i = 1, 2, where hi are energy-preserving pillbox PSFs of radii ri.
Then

r2
2 − r2

1 = 8
z2 − z1

∇2
(

z1+z2

2

) . (7.2)

If we know camera parameters, we can use linear relation (4.8) to get r1

and r2 and equation (4.4) to estimate real depth. In the special case of β = 0
we get

r1 =
1√

1− α2

√
r2
2 − r2

1, (7.3)

which is useful even if we do not know α to get at least a scaled version of
the depth map.

Similar proposition holds for hi being one-dimensional even PSF, which
can happen in case of motion blur.

Proposition 3. Let u(x, y) be a third-order polynomial1 of two variables
and zi = u ∗ hi, i = 1, 2, where hi are energy preserving (

∫
h = 1) one-

dimensional even PSFs oriented in the direction of the x-axis. Then

σ2
2 − σ2

1 = 2
z2 − z1

∂2

∂x2

(
z1+z2

2

) , (7.4)

where σ2
1, σ

2
2 are the second moments of h1 and h2.

In case of one-dimensional rectangular impulse corresponding to steady
motion in the direction of the x-axis we get

Corollary 2. Let u(x, y) be a third-order polynomial of two variables and
zi = u ∗ hi, i = 1, 2, where hi are energy-preserving rectangular impulses of
length di oriented in the direction of the x-axis. Then

d2
2 − d2

1 = 24
z2 − z1

∂2

∂x2

(
z1+z2

2

) · (7.5)

Proofs can be found in Appendix B.
If the above mentioned motion blur originated in steady motion of the

camera in a direction perpendicular to the optical axis, according to (5.5),
the extent d of the motion blur depends linearly on the inverse distance of
the scene from camera. If we take two images from cameras of the same
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velocity with shutter speeds T1 and T2, d2/d1 is equal to the ratio α = T2/T1

and

d1 =
1√

α2 − 1

√
d2

2 − d2
1· (7.6)

To get the actual depth map, we can use equation (5.5). Again, even if we
do not know α, we can omit the constant term and (7.6) gives us a useful
representation of the scene as the actual distance is just its multiple given
by camera parameters.

However, there are not many practical situations, when camera moves
in this simple manner. First, camera rarely moves at constant speed. One
exception is a camera pointing out of the window of a moving vehicle. In
this situation speed remains approximately constant as the shutter time is
relatively short. Another issue is that it is quite difficult to get “coordinated”
measurements so as the position of the camera in the middle of the interval
of open shutter agrees. It requires a special hardware, which further limits
applicability of Algorithm II on motion blur. One possibility is to attach two
cameras to the same lens using semi-transparent mirror [26] and synchronize
shutters appropriately. At least in theory, a similar result could be achieved
using two stereo cameras rigidly attached above each other with respect to
the direction of side-motion if the disparity due to their relative position can
be neglected.

7.2 Polynomial fitting filters

Subbarao and Surya [1] also noticed that the assumption on u to be a third-
order polynomial can be approximately satisfied by fitting third-order poly-
nomials to the blurred images. It is not difficult to see that polynomial fitting
in the least square sense can be done by convolution with a filter, say p. If
zi = u ∗ hi then the commutativity of convolution implies zi ∗ p = u ∗ p ∗ hi

for an arbitrary mask hi. Now, if p fits polynomial to u, u ∗ p is smooth
enough to be close to a third-order polynomial and we can use Propositions
2 and 3 with zi ∗ p to get the relative blur σ2

2 − σ2
1. Notice that there is a

trade-off between precision of depth estimates (which needs large support of
p) and precision of localization since large support of p needs larger area of
space-invariant blur.

Polynomial smoothing filters corresponding to different window sizes can
be described by surprisingly simple explicit expressions given by Meer and
Weiss [60]. Thus the one-dimensional third-degree polynomial can be fitted
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by convolution with quadratic function

L0(n) = − 3 (5n2 − (3N2 + 3N − 1))

(2N − 1)(2N + 1)(2N + 3)
, (7.7)

where the support of the filter is n = −N,−(N − 1), . . . , 0, . . . , N − 1, N .
Similarly the second derivative of the fitted third-degree polynomial can

be directly expressed as convolution of the image with

L2(n) = − 30 (3n2 −N(N + 1))

(N(N + 1)(2N − 1)(2N + 1)(2N + 3)
· (7.8)

Corresponding two-dimensional filters fitting two-dimensional third-degree3

polynomials are separable, i. e. they can be expressed by convolution of cor-
responding one-dimensional filters as L0(n)T ∗L0(n) for the smoothing filter
and L0(n)T ∗ L2(n) for the second partial derivative.

If we need the result to be invariant with respect to the rotation of the
image, we can use circular instead of rectangular window. The only drawback
is that the filter is not separable and consequently takes a bit more time to
compute.

7.3 Summary

In this chapter, we described an extension of filter-based DFD method [1]
to arbitrary blur with centrally-symmetrical PSF. The method is extremely
fast, requires only two convolutions.

The main application area of this algorithm is defocus. Both Gaussian
and pillbox PSFs satisfy assumptions of this algorithm and even if we consider
optical aberrations, the PSF is approximately symmetrical at least in the
proximity of the image center. In this case, the method requires careful
calibration.

As for motion blur, there are not many practical situations that fulfill
requirements of this model. They are met only in the case of simple steady
motion in a direction perpendicular to the optical axis or in the case of
harmonic vibration that is symmetric about its center.

In the following chapter, we present more precise algorithm working with
an arbitrary type of blur, which turned out to be more suitable for the needs
of Algorithm I.

3Here we use term third-degree polynomials for two-dimensional polynomials with
terms am,nxmyn, m <= 3, n <= 3 opposed to third-order polynomials, where m + n ≤ 3.
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Chapter 8

Depth from blur
(Algorithm III)

In this chapter we present another algorithm for estimation of depth map
from two or more blurred images of the same scene originally meant as
auxiliary procedure to initialize depth map in Algorithm I. Compared to
Algorithm II and most of the methods published in literature, it places no
requirements on the form of the PSF, is less sensitive to the precise knowl-
edge of the PSF and more stable in the presence of noise. On the other
hand, it is more time-consuming. Compared to [6], which also works for
almost arbitrary PSF and has similar time requirements, is much simpler to
implement.

The algorithm works for the same class of problems as Algorithm I. In the
basic version, described in Section 8.1, it includes the case of translational
motion of the camera in one plane perpendicular to the optical axis and
Gaussian or pillbox PSF for out-of-focus blur. The algorithm can be easily
extended to the case of significant optical aberrations. The extension to
general camera motion is possible in principal, as discussed in Algorithm I,
but requires further investigation.

8.1 Description of the algorithm

Suppose that the blurred images z1 and z2 are registered and we know their
camera parameters and noise levels. Similarly to the other presented algo-
rithms, we must know the relation between PSF and depth for both images.
This relation is assumed to be given in discrete steps as masks hi(k Mw).
For reasons detailed in Chapter 6 we store masks in equal steps of inverse
distance, which corresponds to equal steps in the size of the PSF.
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The algorithm assumes that the blur is approximately invariant in a neigh-
borhood of each image pixel. For each pixel it computes minimum

min
k

∣∣∣∣∣m ∗
[(

z1 ∗ h2(k Mw)− z2 ∗ h1(k Mw)
)2

− (
σ2

2‖h1(k Mw)‖2 + σ2
1‖h2(k Mw)‖2

)]
∣∣∣∣∣

(8.1)

over all entries k covering the interval of possible depths. It is usually suffi-
cient, if the step Mw corresponds to about 1/10 of pixel in the size of PSF.
For details see the description of the PSF implementation on p. 40. Mask
m is a convenient averaging window (rectangular or circular). Parameters
σ1 and σ2 are variances of additive noise present in z1 and z2 respectively.
Thanks to commutativity of convolution, if there were no noise in z1 and z2,
the left term of (8.1) would be zero for the correct level of blur. In reality,
the right term becomes important. It equals the expected value of the first
term for correct masks given noise levels in z1 and z2. Without this term, the
algorithm prefers masks with small norms (that is large blurs) that remove
noise almost completely.

8.2 Time complexity

In the actual implementation we compute convolution of the whole images z1

and z2 with all the masks (or a subset) stored in the arrays corresponding to
h1 and h2 respectively and for each pixel we choose the entry with the minimal
value. It means that the algorithm computes twice more convolutions than
the number of considered blur levels. To suppress noise and avoid problems
in the areas of weak texture, we average the error over a window of fixed size.
The time of averaging can be neglected as it can be done in O(1) time per
pixel. For square window, simple separable algorithm needs four additions
per pixel. Altogether, if we use the above mentioned step of 1/10 of pixel in
the diameter of the support of PSF, the number of convolutions the algorithm
takes is 2× 10× the diameter of maximal blur in pixels.

8.3 Noise sensitivity

The quality of result naturally depends on the level of noise present in the
input images. Compared to other filter-based methods, this algorithm proved
to be relatively robust with respect to noise. Moreover, if the noise level is
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too high, we simply use larger window for error averaging. Doubling the size
of the window decreases the mean error in (8.1) approximately by the factor
of four. The price we pay for this improvement is that we effectively half the
resolution of the image in the neighborhood of the edges. In other words, we
will get less noisy depth map of lower spatial resolution.

If we do not know the actual noise variance, we can set σ1 = σ2 = 0
and for moderate noise levels and a reasonable upper estimate of the mask
support it will often give satisfactory results.

8.4 Possible extensions

If we have more than two images, we sum the value of (8.1) over all pairs
of images. A similar strategy can be used with RGB images. The error is
simply computed as the sum of errors in individual channels. If the level
of noise is low, it usually brings no much improvement because of strong
correlation between channels. In the opposite case, the improvement can be
significant.

We can use the algorithm even if the PSF is a function of not only distance
but also of the position in the field of view. It includes optical aberrations
or zooming motion. The only difference is that we replace convolution by its
space-variant counterpart. For details of the difficult case of general camera
motion see the discussion in Section 6.7.
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Chapter 9

Precision of depth estimates

How precise are depth estimates produced by the proposed algorithms? Our
experiments and analysis of published methods indicate that it is not possible
to estimate the local extent of blur with precision higher than some constant
fraction of one pixel. Applying relation between the precision of distance
measurements and precision of detected support of PSF, we obtain an upper
limit for the precision of depth estimates we can expect from methods using
the amount of blur to measure distance.

We begin by recalling the linear dependence of the size of the blur circle
on the inverse of the distance from camera (4.6). By differentiating with
respect to the distance l we get

∂r

∂l
= −ρζ

l2
. (9.1)

One consequence of (9.1) is an intuitive fact that small depth of field is
essential for the precision of DFD methods as the error is proportional to
the reciprocal of the aperture radius ρ. Second, assuming a constant error in
detected blur size, the absolute error of the distance measurements increases
quadratically with the distance from camera and the relative (percentage)
error increases linearly.

Obviously, the same is true for all blurs depending linearly on the inverse
distance 1/l. We have shown that this is a property of several other types
of blur considered in this thesis. Moreover, exactly the same is well known
to be true in stereo, where distance is proportional to the reciprocal of pixel
disparity [4]. It should come as no surprise as disparity is nothing other than
the length of motion smear in the case of motion along stereo baseline.

We believe that this is a principal limitation of all ranging methods based
on image pixel measurements, including stereo, DFF, DFD and depth from
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motion blur, which is in agreement with arguments of Schechner and Kiryati
[5] that DFD and stereo are not principally different.
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Chapter 10

Experiments on synthetic data

To give the full picture of the properties of the proposed algorithms we present
two groups of experiments. Experiments on synthetic data (simulated exper-
iments) assume that the image formation model is correct and test numerical
behavior of the presented algorithms in presence of different amounts of noise
using the knowledge of ground truth. Experiments working with real data,
on the other hand, are intended to validate the model we used and assess
its applicability. We start with the experiments on synthetic data. Real
experiments are presented in the next chapter.

First, let us look at the figure of historical map Fig. 10.1(a) used as the
original image for the simulated experiments. It contains areas of very com-
plex texture but we can also find places of almost constant image function.
Since proposed algorithms behave locally in the sense that the solution de-
pends mainly on points in close neighborhood of the given point (one step
of minimization depends only on the neighborhood of size corresponding to
blur mask support), it suggests a lot about the behavior of the algorithms
on different types of scenes.

To produce the artificial depth map representation we used data from
Fig. 10.1(b) for both out-of-focus and motion blur experiments. In case of
motion blur the graph gives the half length of the motion smear. In case of
out-of-focus, the data correspond to the radius of the PSF support. Again,
the scene was designed to show behavior of the algorithms on various types
of surfaces—there are areas of constant depth (lower and upper parts of the
image), slanted plane, steep edge and curved smooth surface. The central
part of the depth map was generated as the maximum value of the slanted
plane and a quarter-sphere.

All the experiments were carried out at four different levels of noise—
zero (SNR = ∞), low (40dB), moderate (20dB) and heavy (10dB). As a
rule, results are arranged in two column tables with each line corresponding

61



(a) original image, 245×356 pixels
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(b) depth map

Figure 10.1: Original image, artificial depth map and prototype mask used
for simulated experiments. Z-coordinate of the depth map indicates half of
the PSF size. Note that the “rear” part of the depth map corresponds to the
most blurred lower part of images Fig. 10.2 and Fig. 10.8.

to certain noise level (zero noise in the first line, low in the second, etc.).

All experiments were run several times for different instances of noise
and we give the average MSE. The restored images were almost visually
undistinguishable and therefore images to present were chosen randomly.
We used two channels, additional channels bring improvement approximately
corresponding to decrease in noise variance we would obtain by averaging of
measurements if we had more images taken with the same camera settings.

Since we know the corresponding ground truth Fig. 10.1, all the figures
of restored images and depth maps contain the related value of mean square
error (MSE). For images it is given in grey levels per pixel from 256 possible
values. As follows from the discussion in Chapter 9, it has no much meaning
to measure directly the error of depth since it depends on camera parameters
and distance of the scene. Instead, we give the error of depth map as the
error in blur radius or in the size of PSF support which is measured in pixels.

10.1 Out-of-focus blur

The first set of simulated experiments tests simultaneously Algorithms I and
II for the case of out-of-focus blur.

To simulate how the PSF changes with the distance of corresponding ob-
ject, we assumed that it keeps its shape and stretches analogously to models
(4.12) and (4.19) to have the same support it would have if it was the pillbox
of radius (4.4). It enables us to generate masks of arbitrary size from the
prototype Fig. 10.2(a). The mask shape was chosen to imitate real PSF of a
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(a) prototype mask, 13× 13

(b) MSE = 17.21 levels (c) MSE = 19.19 levels

Figure 10.2: To simulate out-of-focus blur, we blurred image Fig. 10.1(a) us-
ing blur map Fig. 10.1(b) and the PSF generated from prototype Fig. 10.2(a).
The largest PSF support (in the lower part of the left image) is about 11×11
pixels. Amount of blur in the second (right) image is 1.2 times larger than
in the first image (left), i. e. α2 = 1.2.

lens system with strong coma and spherical aberration1 [53] in the area near
the border of the field of view. We generated two channel (images) from
Fig. 10.1(a) using depth map Fig. 10.1(b) assuming they had been captured
with the same camera settings except of the aperture, which was considered
1.2 times larger in the second image, i. e. α2 = 1.2 and β2 = 0. Finally, we
added the above mentioned four levels of noise. Fig. 10.2 shows the result.

If we know the correct values of the depth map, it is not difficult to
compute the image minimizing the cost functional using the first of two
alternating phases of Algorithm I. Fig. 10.3 shows the result of such non-
blind restoration using 100 iterations of Tikhonov regularization with λu =

1Optical aberrations are deviations from Gaussian optics. Both, coma and spheri-
cal aberration, appear when inner and outer parts of a lens have different focal lengths.
Whereas spherical aberration does not change through the field of view, coma increases
linearly with the distance from the image center and causes comet like effects at the
periphery of the view field.
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5 × 10−3. We tested also total variation (TV) regularization but for this
image the result turned out to look too blocky. Because of the guaranteed
convergence of such minimization, it is the optimal result we can expect from
any algorithm minimizing the cost functional over both unknowns. We will
show that it is possible to achieve almost the same quality of restoration even
if the actual depth map is not known. Notice that even in zero noise case,
the mean square error of the result is about 5 levels. One could suspect it is
caused by the influence of finite number of iterations, but it is negligible in
this case and the actual reason is the regularization which makes the result
somewhat smoother than it should be.

For comparison, in the right column we can see the result of the same
restoration using Gaussian mask. It indicates the quality of the result we can
expect if a method is limited to Gaussian mask and the mask significantly
differs. Notice that the mean square error of the restored image is the same
or even worse than of blurred images Fig. 10.2. It indicates that if we use
wrong mask, we cannot hope for any reasonable result—at least in the sense
of MSE. It is interesting that the result undoubtedly looks markedly sharper
than the blurred images, which demonstrates the well known fact that the
mean square error does not express exactly the human perception of image
quality. Anyway, even from the human point of view, the results in the
left column are much better and we will show that Algorithm I can achieve
almost the same quality of restoration.

For the initial blur map estimate we use Algorithm II, covered in detail in
Chapter 7. Note that the model of PSF we use does not satisfy requirements
of Algorithm II, nevertheless the error is not as large. The first column of
Fig. 10.4 shows the result for different amounts of noise. Obviously, we can
use it directly for restoration. The second column shows the result of such a
restoration, again using CG method with Tikhonov regularization and still
the same λu = 5× 10−3. The result looks relatively good, which is not very
surprising since the MSE of the blur map is quite low, only 0.25 pixels. In
reality, the error of this method can be much worse and even here, the error
is still almost two times larger than that from Fig. 10.3 we want to approach.

Now, we will show that Algorithm I can provide results comparable with
those in the left column of Fig. 10.3. We used TV regularization for the
depth map and Tikhonov regularization for the image. Iteration scheme was
50× (8 + 10).

Fig. 10.6 gives resulting depth maps for Gaussian mask in the left column
and the correct mask in the right column. The error with the correct mask
is only about one-eight of a pixel, one half of the error achieved by direct
restoration using the depth map produced by Algorithm II. Notice the blocky
look of the top part of the quarter-sphere, which is a well known effect of
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TV regularization. Corresponding restored images are presented in Fig. 10.7
and we can see that up to moderate noise level the result of Algorithm I is
very satisfying. The MSE almost achieved the optimal values from Fig. 10.3
and with the exception of the depth discontinuity in the proximity of the
image center, the image is visually undistinguishable from the original image
Fig. 10.1(a). The issue at the discontinuity is very illustrative. Experiments
showed that, at least in our implementation, using TV regularization for
depth map often gave rise to convergence problems at places like that. In
real experiments we will demonstrate, that it is often better to use Tikhonov
regularization, which leads to somewhat oversmoothed depth map, but better
image restoration. In this case, the problem is worsened by a shift of the edge
position due to the unprecise localization of the edge typical for Algorithm
II and all other algorithms based on the assumption of local space-invariance
of the blur. Then, because of the problem with many local minima of the
cost functional, the minimization algorithm is not able to “push” the edge
back to the right position.

65



(a) SNR = ∞, MSE = 4.79 levels (b) SNR = ∞, MSE = 17.68 levels

(c) SNR = 40dB, MSE = 5.22 lev-
els

(d) SNR = 40dB, MSE = 17.75
levels

(e) SNR = 20dB, MSE = 16.39 lev-
els

(f) SNR = 20dB, MSE = 18.48 lev-
els

(g) SNR = 10dB, MSE = 52.22
levels

(h) SNR = 10dB, MSE = 29.01
levels

Figure 10.3: Result of restoration of images from Fig. 10.2 using known
blur map 10.1(b) and prototype mask 10.2(a), 100 iterations of CG method,
Tikhonov regularization with λu = 5× 10−3. The best result we can expect
from any algorithm minimizing the cost functional. In the right column the
same reconstruction using Gaussian mask, the result we can expect from
methods that assume fixed Gaussian PSF if it does not correspond to reality.
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(a) SNR = ∞, MSE = 0.25 pixels (b) SNR = ∞, MSE = 10.87 levels
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(c) SNR = 40dB, MSE = 0.26 pix-
els

(d) SNR = 40dB, MSE = 11.39
levels
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(e) SNR = 20dB, MSE = 0.51 pix-
els

(f) SNR = 20dB, MSE = 17.63 lev-
els
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(g) SNR = 10dB, MSE = 1.42 pix-
els

(h) SNR = 10dB, MSE = 45.70
levels

Figure 10.4: Depth maps recovered directly using filter based Algorithm II
(smoothed by 11× 11 median filter) and corresponding restorations.



(a) SNR = ∞, MSE = 18.97 levels (b) SNR = 40dB, MSE = 19.02
levels

(c) SNR = 20dB, MSE = 20.62 lev-
els

(d) SNR = 10dB, MSE = 32.31
levels

Figure 10.5: Restorations with Gaussian PSF using depth maps from the left
column of Fig. 10.4.
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(a) SNR = ∞, MSE = 0.170 pixels
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(b) SNR = ∞, MSE = 0.152 pixels
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(c) SNR = 40dB, MSE = 0.172
pixels
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(d) SNR = 40dB, MSE = 0.151
pixels
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(e) SNR = 20dB, MSE = 0.309
pixels
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(f) SNR = 20dB, MSE = 0.307
pixels
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(g) SNR = 10dB, MSE = 0.895
pixels
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(h) SNR = 10dB, MSE = 0.889
pixels

Figure 10.6: Depth map estimate we got from Algorithm I. In the first column
using (wrong) Gaussian mask, in the second column using the correct mask.
Iteration scheme 50 × (8 + 10) + 100. Interestingly, the depth map got by
Gaussian mask is not much worse than using correct mask.



(a) SNR = ∞, MSE = 16.43 levels (b) SNR = ∞, MSE = 6.12 levels

(c) SNR = 40dB, MSE = 16.47 lev-
els

(d) SNR = 40dB, MSE = 6.42 lev-
els

(e) SNR = 20dB, MSE = 18.72 lev-
els

(f) SNR = 20dB, MSE = 15.42 lev-
els

(g) SNR = 10dB, MSE = 31.57
levels

(h) SNR = 10dB, MSE = 42.89
levels

Figure 10.7: Restored images corresponding to Fig. 10.6, i. e. using Gausian
PSF (left column) and correct PSF Fig. 10.2(a) (right column). In both cases
iteration scheme 50× (8 + 10) + 100.
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(a) lmax = 8.25 pixels, MSE =
17.39 levels

(b) lmax = 9.90 pixels, MSE =
18.97 levels

Figure 10.8: To simulate motion blur, we blurred Fig. 10.1(a) using depth
map Fig. 10.1(b). The extent of motion blur in second image (right) is 1.2
times larger than in the first (left) image, i. e. α2 = 1.2. Quantity lmax

denotes maximal blur extent, we can see in the lower part of the images.

10.2 Motion blur

The second set of simulated experiments illustrates behavior of Algorithms I
and II in case of motion blur. Its primary goal is to show limits of Algorithm
I concerning the amount of noise and its sensitivity to the quality of initial
depth map estimate.

This experiment has the same structure as the simulated experiment with
out-of-focus blur. We used simple model of motion blur in the direction of
x-axis, where the length of the motion smear is proportional to the inverse
distance from camera. Recall that it is one of two simple types of motion blur
the Algorithm II works with. In the next chapter, we present real experiments
that work with more complex motion of the camera and require Algorithm
III to get the initial estimate of the depth map.

Again, we used the original image Fig. 10.1(a) and depth map Fig. 10.1(b),
blurred the original image in accordance with the model and added four dif-
ferent amounts of noise. The extent of motion blur in right image is 1.2 times
larger than in the left image, that is α2 = 1.2.

The left column of Fig. 10.9 shows the depth map estimate computed
by Algorithm II. We used it as initial estimate for Algorithm I and the
result after 50 iterations can be seen in the right column of the same figure.
The MSE clearly decreased by about one-third. Again, Fig. 10.9(f) is a nice
illustration of the problem with local minima. Weak texture in the upper-left
part of the images leads to wrong initial depth estimate and this propagates
through the whole minimization resulting in the peaks in the lower-left corner
of the depth map. Note that they developed primarily as a result of the noise
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sensitivity of Algorithm II, not of the Algorithm I.
Fig. 10.10 allows to compare the result of corresponding restorations. We

can see that in the zero noise case the result of minimization is almost visually
undistinguishable from the ideal image Fig. 10.1(a), again with the excep-
tion of steep depth change in the central part of the image. Also the direct
restoration using depth map computed by filter-based Algorithm II gives sat-
isfactory result but the improvement of Algorithm I is clearly visible. Again,
notice the depth edge in the image center and convergence problems in its
neighborhood from reasons mentioned in the previous experiment. Similarly
to the experiment with out-of-focus blur, real experiments will demonstrate
that it is often better to use Tikhonov regularization.

10.3 Summary

In this chapter, we have presented simulated experiments that demonstrated
behavior of the proposed algorithm in the presence of four different levels of
noise.

The scene for the experiments was chosen to represent various types of
textures and the depth map was generated so as to cover several types of
surfaces.

We demonstrated that Algorithm I works well up to about 20dB but is
dependent to a large extent on good initial estimate of the depth map. The
artifacts on the depth discontinuity (Fig. 10.7 and Fig. 10.10) were caused
by the unprecise localization of the edge by Algorithm II typical for most of
the algorithms based on the assumption of local blur space-invariance. We
have seen as well that Algorithm II gives quite noisy results even for ideal
input lacking any noise.
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(a) SNR = ∞, MSE = 0.31 pixels
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(b) SNR = ∞, MSE = 0.21 pixels
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(c) SNR = 40dB, MSE = 0.32 pix-
els
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(d) SNR = 40dB, MSE = 0.20 pix-
els
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(e) SNR = 20dB, MSE = 0.72 pix-
els
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(f) SNR = 20dB, MSE = 0.44 pix-
els
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(g) SNR = 10dB, MSE = 0.97 pix-
els
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(h) SNR = 10dB, MSE = 0.82 pix-
els

Figure 10.9: Comparison of depth map estimation using Algorithm II (left
column) and the result of Algorithm I (right column). We used Tikhonov
regularization with λu = 5× 10−3 and as the initial estimate we took the left
column. Iteration scheme 50× (8 + 10).



(a) SNR = ∞, MSE = 10.48 levels (b) SNR = ∞, MSE = 8.09 levels

(c) SNR = 40dB, MSE = 12.59 lev-
els

(d) SNR = 40dB, MSE = 10.89
levels

(e) SNR = 20dB, MSE = 24.99 lev-
els

(f) SNR = 20dB, MSE = 21.91 lev-
els

(g) SNR = 10dB, MSE = 59.93
levels

(h) SNR = 10dB, MSE = 51.44
levels

Figure 10.10: Comparison of restored images corresponding to Fig. 10.9. Re-
sults of filter-based Algorithm II (left column) and subsequent minimization
using Algorithm I (right column). Iteration scheme 50× (8 + 10) + 100.

74



Chapter 11

Experiments on real data

To document behavior of the proposed algorithms on real images we present
three experiments, one for space-variant out-of-focus blur and two for the
space-variant blur caused by camera motion. Algorithms II and III are not
presented separately but they are discussed as part of Algorithm I.

In all cases we used digital SLR camera Canon 350D with set lens Canon
EF-S 18–55mm II. For experiments with intensity (monochromatic) images
we use red channel for the first and second experiments and green channel
for the third experiment.

11.1 Out-of-focus blur

We focused the camera in front of the scene and took two images Fig. 11.7(a)
and 11.7(b) from tripod using the same camera settings with the exception
of the aperture. We chose f-numbers F/5.0 and F/6.3, which is the worst
case in the sense that close apertures result in very similar blurred images
and consequently bring least information about depth. To compare with
reality, we took another image Fig. 11.7(c) with aperture F/16 to achieve
large depth of focus. The basic version of the proposed algorithms works
with intensity (monochromatic) images. In this experiment we consider red
channel Fig. 11.1.

To show the difficulties arising from space-variance of the blur in the
input images we took three small sections of approximately constant blur
and computed corresponding PSFs using space-invariant blind restoration
algorithm [2] (with parameters λ = 1000, ε = 0.1, γ = 10, support of both
PSFs was set to 17× 17 pixels). Fig. 11.2 shows results of restoration of the
whole image using the computed PSFs (using least squares method with TV
regularization which is a special case of the first part of Algorithm I). It can
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be readily seen that in all the cases the images contain many artifacts in the
areas where the degree of defocus differs significantly from the right value.
Thus Fig. 11.2(a), deconvolved by PSFs valid in the lower part of the images,
is completely out-of-focus in the parts further from camera. Fig. 11.2(b), on
the other hand, results from PSFs valid on the wall in the upper right corner
of the images and we can see strong ringing effects in the lower part of
the image. Fig. 11.2(c) corresponds to the PSF valid at the front part of
the flowerpot and is somewhat out-of-focus at the back and there are also
artifacts around edges in the front (lower) part of the image. To overcome
the principal limitations of space-invariant methods we must consider space-
varying PSF which is the case of the algorithms proposed in this work.

An assumption of Algorithm I is that we know the relation between PSF
and distance from camera (or a convenient representation of the distance). In
this experiment we assume pillbox model of PSF which fits the real PSF quite
well as can be seen from the results that follow. Restoration would not be
much better even if we knew the right PSF precisely. Moreover, paradoxically,
the pillbox is a good PSF shape for testing of algorithms because of the
difficulties arising from its non-continuous derivatives with respect to depth.

Now, we will show the outcomes of Algorithm I, which is the main result
presented in this thesis.

First, the algorithm needs a reasonable initial estimate of depth map.
For this purpose, we used Algorithm III and got depth map Fig. 11.3(a) with
brighter areas corresponding to further objects. Unfortunately, this depth
map cannot be used directly for restoration. Indeed, even if we smooth the
depth map to a large extent (here we used 7× 7 window for error averaging
and the result of the algorithm was smoothed by additional median filtering
by 23 × 23 window), it still produces many artifacts, especially in the areas
of weak texture. We illustrate this fact in Fig. 11.3(b)-11.3(d), where we
can see images restored using the depth map from Fig. 11.3(a) for three
different levels of image regularization. Notice the areas on the floor where
low contrast, implying very high SNR, results in poor depth estimates which
again results in artifacts in the restored image.

Fig. 11.4 shows depth maps produced by 20× (8+10) iterations of Algo-
rithm I for combinations of three different depth regularization constants λw

and two different image regularization constants λu. Note that all of them
started from the initial depth map estimate Fig. 11.3(a). We can observe
that the depth maps does not depend much on the degree of image regu-
larization. The depth map regularization constant λw, on the other hand,
determines smoothness of the depth map. Basically, we can choose between
more robust depth map with lower spatial resolution and a depth map with
higher spatial resolution and more errors in the areas of weak texture or low

76



contrast.
As we mentioned in the description of Algorithm I, the algorithm tends to

converge faster for higher degree of image regularization (higher λu). There-
fore, as a rule, we first minimize with some higher degree of image regular-
ization (here λu = 10−3) and finally we use the depth map we got for final
restoration with less regularization and higher number of iterations (here
we used 5 × 20 iterations of constrained least squares restoration with TV
regularization).

Thus, we have got images Fig. 11.5 and 11.6 using three different depth
maps Fig. 11.4(b), Fig. 11.4(d) and Fig. 11.4(f) (results for λu = 10−3 were
almost identical so we omit them) and three different values of image reg-
ularization constants. Results are divided in two figures, λf

u = 10−3 and
λf

u = 10−4 in Fig. 11.5 and λf
u = 3 × 10−4 in Fig. 11.6. We can see that

it is always possible to choose between sharper and noisier (smaller λf
u) and

softer but less noisy image (higher λf
u). Interestingly, the level of depth map

regularization has only a minor influence on the restored image.

In the description of Algorithm I we mentioned that the algorithm can
be extended to work with color images as well. Here, we show a simpli-
fied approach that takes depth maps from Algorithm I and uses them for
least squares restoration [33] modified for color regularization using the term
(6.11).

Fig. 11.7 shows color version of out-of-focus images from Fig. 11.1. Fig. 11.8
gives result of restoration using depth maps Fig. 11.4(b), Fig. 11.4(d) and
Fig. 11.4(f) and two different values of image regularization constant λf

u =
10−4 and λf

u = 10−5. Notice that we can use less regularization and conse-
quently get sharper images since the regularization term (6.11) suppresses
noise using information from all three RGB channels.
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(a) out-of-focus image, 730 × 650 pixels,
F/5.0

(b) another out-of-focus image of the same
scene, F/6.3

(c) ground truth image taken with F/16

Figure 11.1: Red channel of RGB images in Fig. 11.7. The scene with flow-
erpot was taken twice from tripod. All the camera settings except of the
aperture were kept unchanged. For comparison, the third image was taken
with large f-number to achieve large depth of focus. It will serve as a “ground
truth”.
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(a) deconvolution using PSFs valid in the
lower part of the image

(b) deconvolution using PSFs valid on the
wall in the upper-right corner of the image

(c) deconvolution using PSFs valid at the
front of the flowerpot

Figure 11.2: Illustration of the fact that we cannot use space-invariant
restoration methods. We used deconvolution with TV regularization and
image regularization constant λu = 10−4. In all cases, using only one PSF
for the whole image results in clearly visible artifacts.
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(a) depth map obtained by Algorithm III
(7 × 7 window for error averaging) after
smoothing by 23× 23 median filter

(b) λu = 10−3

(c) λu = 3× 10−4

(d) λu = 10−4

Figure 11.3: Illustration of the fact that we cannot use simple depth recovery
methods directly for restoration. Results of TV restoration using depth map
(a) for three levels of image regularization. We can see many visible artifacts,
especially in the areas of weak texture.
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(a) λw = 10−6, λu = 10−3 (b) λw = 10−6, λu = 10−4

(c) λw = 10−5, λu = 10−3 (d) λw = 10−5, λu = 10−4

(e) λw = 10−4, λu = 10−3 (f) λw = 10−4, λu = 10−4

Figure 11.4: Depth maps produced by Algorithm I for three different levels
of depth map regularization and two levels of image regularization. In all
cases minimization started from depth map Fig. 11.3(a). Iteration scheme
20× (8 + 10).
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(a) restoration using depth map 11.4(b),
λf

u = 10−3
(b) restoration using depth map 11.4(b),
λf

u = 10−4

(c) restoration using depth map 11.4(d),
λf

u = 10−3
(d) restoration using depth map 11.4(d),
λf

u = 10−4

(e) restoration using depth map 11.4(f),
λf

u = 10−3
(f) restoration using depth map 11.4(f),
λf

u = 10−4

Figure 11.5: Results of restoration using Algorithm I. For final minimization
we used depth maps from the right column of Fig. 11.4. For comparison, see
ground truth image Fig. 11.1(c). Iteration scheme 20× (8 + 10) + 5× 20.





(a) restoration using depth map 11.4(b) (b) restoration using depth map 11.4(d)

(c) restoration using depth map 11.4(f)

Figure 11.6: Results of restoration using Algorithm I for λf
u = 3× 10−4. For

comparison, see ground truth image Fig. 11.1(c). Iteration scheme 20× (8 +
10) + 5× 20.
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(a) out-of-focus image, 730 × 650 pixels,
F/5.0

(b) another out-of-focus image of the same
scene, F/6.3

(c) ground truth image taken with F/16

Figure 11.7: The flowerpot scene was taken twice from tripod. The only
camera setting that changed was aperture. For comparison, the third image
was taken with large f-number to achieve large depth of focus. It will serve
as a “ground truth” (color version of Fig. 11.1).
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(a) restoration using depth map
Fig. 11.4(b), λf

u = 10−5
(b) restoration using depth map
Fig. 11.4(b), λf

u = 10−4

(c) restoration using depth map
Fig. 11.4(d), λf

u = 10−5
(d) restoration using depth map 11.4(d),
λf

u = 10−4

(e) restoration using depth map
Fig. 11.4(f), λf

u = 10−5
(f) restoration using depth map
Fig. 11.4(f), λf

u = 10−4

Figure 11.8: Color restoration using depth maps Fig. 11.4(f), Fig. 11.4(d)
and Fig. 11.4(b) computed by Algorithm I.





11.2 Motion blur (I)

Camera motion blur is another frequent type of blur we meet when working
with digital cameras. In this thesis, we present two experiments with motion
blurred images. Both were taken from the digital camera mounted on a
framework that limits motion or vibrations to one vertical plane.

The first experiment documents behavior of our algorithms for images
blurred by one-dimensional harmonic motion of the camera. The scene is cho-
sen relatively simple but so as the extent of blur varies significantly through-
out the image. The second experiment was set up to show limitations of the
proposed algorithms. The scene is much more complex with a lot of small
details and there are many places where the depth changes rapidly. Also
the camera motion is much more complex, constrained only by the condition
that the camera cannot rotate.

Note that the structure of both experiments is similar to the experiment
with out-of-focus images.

We took two color images Fig. 11.15(a) and 11.15(b) from a camera
mounted on the device vibrating approximately in horizontal (a) and ver-
tical (b) directions, both with shutter speed T = 5s. To achieve large depth
of focus, we set f-number to F/16. The third image Fig. 11.16(b) was taken
without vibrations and we use it as ground truth. Algorithm I works basi-
cally with intensity (monochromatic) images. For this purpose, we use red
channel Fig. 11.9.

We work with model (5.3) that scales PSF according to the distance
from camera. Unlike out-of-focus blur, we do not have any prior estimate of
prototype PSF h0. In this case, it is equivalent to the knowledge of the PSF
for at least one distance from camera. For this purpose, we took two small
sections Fig. 11.10(a) from the right part of the input images and computed
PSFs Fig. 11.10(b) using space-invariant blind restoration algorithm [2] (with
parameters λ = 1000, ε = 0.1, γ = 10, support of both PSFs was set to 11×11
pixels). These PSFs will serve as the prototype PSFs h0 from relation (5.3).

To show the space-variance of the blur in our images we took another
sections Fig. 11.10(c) from the image center (bear in waterfall) and computed
PSFs Fig. 11.10(d), again using the method [2]. We can see that the extent
of defocus is about half compared to the PSFs Fig. 11.10(b) which is in
agreement with our model (5.3).

Similarly to the previous experiment, we will demonstrate that if the
image contains areas with as much varying degree of blur as in our experi-
ment, the space-invariant restoration methods (that is methods that use one
PSF for the whole image) cannot yield satisfactory results. Let us look at
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Fig. 11.11, where we can see deconvolutions using PSFs from Fig. 11.10(b)
and Fig. 11.10(d). In addition, Fig. 11.11(c) contains the result of one of the
best known blind space-invariant restoration method [2] applied on the whole
images. In all the cases the images contain strong artifacts in the areas where
the PSFs do not fit. Thus, in Fig. 11.11(a) the bear in the image center is not
well restored, in Fig. 11.11(b) the juice box remains somewhat out-of-focus
and in Fig. 11.11(c) there are visible artifacts in the whole image.

Now, we will present the application of Algorithms III and I on blurred
images Fig. 11.9(a) and (b).

First, we applied Algorithm III to get an initial estimate of depth map
Fig. 11.12(b). In the algorithm, we averaged the error by 7 × 7 window.
Afterwards, the result was smoothed by 11 × 11 median filter. Again, the
question arises whether it is possible to use this depth map estimate directly
for restoration. The answer is that in most situations it results in significant
artifacts in the whole area of the image, as shown in Fig. 11.12(a).

Next, we applied the iteration procedure from p. 41, that is the alter-
nating minimization of functional (6.1). Figures 11.13 and 11.14 show depth
maps and restored images for three different levels of depth map regulariza-
tion. In all cases we used the same image regularization constant λu = 10−3

for the alternating minimization and λf
u = 10−4 for final restoration. We have

seen in the previous experiment that the image regularization constant has
no much influence on the produced depth map. The influence on the restored
image we saw in Fig. 11.5 and 11.6 and is well described in literature [33].
Analogously to previous experiment, we have got visually almost undistin-
guishable results for different depth maps. In the following experiment we
will show that in case of more complex scene we must choose the depth map
regularization constant more carefully.

Figure 11.15 shows color originals of motion blurred images from Fig. 11.9.
The same way as in the first experiment we employed least squares restora-
tion with color regularization term (6.11). Figure 11.16(a) gives result of
restoration for image regularization constant λf

u = 10−4 using depth map
Fig. 11.13(a). Results for the other two depth maps Fig. 11.13(b) and
11.13(c) were visually undistinguishable and we withhold them. For final
non-blind restoration we used 5× 25 iterations.
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(a) image blurred by periodic horizontal motion

(b) image blurred by periodic vertical motion

(c) ground truth image

Figure 11.9: Red channel of RGB images (870× 580 pixels) from Fig. 11.15.
We took two images from the camera mounted on device vibrating in hor-
izontal (a) and vertical (b) directions. For both images, the shutter speed
was set to 5s and aperture to F/16. For comparison, the third image was
taken without vibrations serving as a “ground truth”.





(a) sections of images Fig. 11.9(a) and (b) used for the estimate of PSFs were taken
from areas at the juice box on the right (50× 54 pixels, 5× enlarged)

(b) 11× 11 PSFs computed from images (a)

(c) another section from the proximity of image center used for computation of PSFs
(d) (46× 59 pixels, 5× enlarged)

(d) 11× 11 PSFs computed from the bear images (c)

Figure 11.10: Algorithm I needs an estimate of PSFs for at least one distance
from camera. For this purpose, we cropped a section from the right part of
images Fig. 11.9(a) and (b) where the distance from camera was constant and
computed PSFs (b) using blind space-invariant restoration method [2]. For
comparison we computed PSFs (d) from sections (c) taken from the image
center. We can see that in agreement with our model, the PSFs (d) are a
scaled down version of PSFs (b).
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(a) deconvolution using PSFs from Fig. 11.10(b), TV regular-
ization, λu = 10−4

(b) deconvolution using PSFs from Fig. 11.10(d), TV regular-
ization, λu = 10−4

(c) Result of blind space-invariant restoration method [2]. This
method belongs to the best known methods for space-invariant
restoration.

Figure 11.11: Illustration of the fact that we cannot use space-invariant
restoration methods. In all cases, using only one PSF for the whole image
results in clearly visible artifacts.





(a) direct restoration using depth map (b), TV regularization,
λu = 10−4

(b) depth map got by Algorithm III, error averaging by 7× 7
window, result smoothed by 11× 11 median filter

Figure 11.12: Illustration of the fact that we cannot use simple depth recovery
methods directly for restoration. We can see many visible artifacts in all parts
of the image.
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(a) λw = 10−6

(b) λw = 10−5

(c) λw = 10−4

Figure 11.13: Depth maps produced by Algorithm I for three different levels
of depth map regularization. In all cases minimization started from depth
map Fig. 11.12(b) with image regularization constant λu = 10−4.





(a) restoration using depth map 11.13(a)

(b) restoration using depth map 11.13(b)

(c) restoration using depth map 11.13(c)

Figure 11.14: Results of restoration using Algorithm I. We can see that we
can get good restoration for different degrees of depth map regularization.
For comparison, see ground truth image Fig. 11.9(c). In all cases λf

u = 10−4.
Iteration scheme 20× (8 + 10).





(a) image blurred by periodic horizontal motion, 870 × 580
pixels

(b) image blurred by periodic vertical motion, 870×580 pixels

Figure 11.15: We took two images from the camera mounted on device vi-
brating in horizontal and vertical directions. For both images, the shutter
speed was set to 5s and aperture to F/16 (color version of Fig. 11.9).
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(a) restoration using depth map Fig. 11.13(a), λf
u = 10−4

(b) ground truth image

Figure 11.16: Result of the color version of Algorithm I. For comparison, the
third image was taken by motionless camera serving as a “ground truth”.
In the case of restored image (a) we used simple white-balance algorithm to
make the image more realistic.
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11.3 Motion blur (II)

In the third real experiment, we tested the proposed algorithms on images
blurred by a complex camera motion blur. As we mention in the description
of the previous experiment, it was set up to show limitations of the proposed
algorithm. The scene is much more complex with a lot of small details and
there are many places where the depth changes rapidly. Also the camera
motion is more complex. The structure of experiment is again similar to the
previous one.

The color images Fig. 11.23(a) and 11.23(b) were taken from the same
device limiting motion and vibrations to one vertical plane. We made the
framework quiver by a random impulse of hand and took two images in a
rapid sequence. This time the shutter speed was set to T = 1.3s. To achieve
large depth of focus, we used f-number F/22. The third image Fig. 11.24(c)
was taken without vibrations and we use it as ground truth. In the monochro-
matic version of the algorithms we work with green channel Fig. 11.17.

The same way as in the previous experiment, we computed PSFs for one
distance from camera using algorithm [2] (with parameters λ = 1000, ε = 0.1
and γ = 10 for larger mask of size 15×15 and λ = 104, ε = 0.1 and γ = 10 for
the smaller mask of size 11× 11). For this purpose, we chose the area close
to the image center with the most blurred blossoms Fig. 11.18(a). Resulting
masks are in Fig. 11.18(b). For comparison, we cropped sections Fig. 11.18(c)
and computed masks Fig. 11.18(d) corresponding to the upper-right corner
of the LCD screen in the background part of the image. Again, we can see
that our model (5.3) approximately holds.

The use of space-invariant methods Fig. 11.19 is again not acceptable.
Thus, we applied Algorithm III to get an estimate of depth map Fig. 11.20(a).

Again, this estimate is not suitable for restoration as illustrated in Fig. 11.20(b).
However, this depth map can be used as the initial estimate for Algo-

rithm I. Figures 11.21 and 11.22 give results for two degrees of depth map
regularization. In the previous experiments we saw that the image regular-
ization constant has no much influence on the produced depth map and we
indicated sufficiently the influence of this constant on the restored images.
Here in both cases we used image regularization constant λu = 10−3 for the
alternating minimization and λf

u = 10−4 for final restoration.
We can see that if we use less regularization, there are visible wave-like

artifacts on the wall in the background. On the other hand, if we use more
regularization, it causes visible ringing effects on the places, where distance
from camera suddenly changes. Sometimes we must take a compromise ac-
cording to the situation.

We should also remark that the depth map estimate is not very good in
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this case. The main reason is the complexity of the scene that results in
poor performance of the auxiliary algorithm for initial depth map estimate.
Fortunately, at least in these experiments, it does not affect restoration seri-
ously.

Figure 11.23 shows color originals of motion blurred images from Fig. 11.17.
Again, we employ constrained least squares restoration with color regu-
larization term (6.11). Figure 11.24 gives results of restoration using two
depth maps obtained using different levels of regularization λw = 10−6 and
λw = 5×10−6. Color images pronounce artifacts present in intensity images.
Again, we can see wave-like artifacts on the wall in the background if we use
smaller value of depth map regularization constant. On the other hand, if
we use higher degree of regularization, there are visible ringing effects on the
edges, for example at the blossoms near the right edge of the LCD screen.
In addition, in either case, we can observe color artifacts present especially
on thin objects such as grass-blades. This could be probably removed only
by taking into account occlusions present at object edges [65, 66, 67].

11.4 Summary

In this chapter, we have demonstrated behavior of the proposed algorithm
on real images. We presented three experiments, one for out-focus blur and
two for camera motion blur.

We saw that if the image contains areas with as much varying degree of
blur as in our experiments, the space-invariant restoration methods cannot
yield satisfactory results, which approved the need for space-variant methods.

Next, we applied Algorithm III to get a rough estimate of depth maps.
Experiments showed that it is not possible to use this estimate directly for
restoration as it resulted in visible artifacts in the whole area of the image.

We also showed the influence of regularization parameters on the result
of minimization. We have seen that the image regularization constant λu

controls the trade-off between sharpness of the image and noise reduction
but has no much influence on the produced depth map. Too much depth
map regularization may cause ringing effects on the edges but in turn, if we
use too little regularization, the algorithm does not smooth sufficiently areas
without texture. For both constants, we must take a compromise according
to the character of the scene.

The color experiments confirmed possibility to extend the Algorithm I
to color images. In addition, the use of color regularization term (6.11) al-
lowed to use less regularization and consequently to get even sharper images,
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because the regularization term suppresses noise using information from all
three RGB channels.
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(a) image blurred by space-variant motion blur (first image)

(b) image blurred by space-variant motion blur (second image)

Figure 11.17: Red channel of Fig. 11.23. We took two images from the camera
mounted on vibration framework limiting motion to one vertical plane. For
both images, the shutter speed was set to 1.3s and aperture to F/22. Image
size 800× 500 pixels.
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(a) sections of images Fig. 11.17(a) and (b) used for the estimate of PSFs taken from
the foreground part of the image (167× 353 pixels, 3× enlarged)

(b) 15× 15 PSFs computed from images (a)

(c) another section from the upper-right corner of the LCD screen in the background
(54× 67 pixels, 3× enlarged)

(d) 15× 15 PSFs computed from image sections (c)

Figure 11.18: Algorithm I needs an estimate of PSF for at least one distance
from camera. We took a central part of the images Fig. 11.17(a) and (b)
where the degree of blur was approximately constant and computed PSFs
(b) using blind space-invariant restoration method [2]. For comparison we
computed PSFs (d) from background sections (c). We can see that in agree-
ment with our model, the PSFs (d) are a scaled down version of PSFs (b).
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(a) deconvolution using PSFs from Fig. 11.18(b), TV regularization,
λu = 10−4

(b) deconvolution using PSFs from Fig. 11.18(d), TV regularization,
λu = 10−4

(c) Result of blind space-invariant restoration method [2]. This
method belongs to the best known methods for space-invariant
restoration.

Figure 11.19: Illustration of the fact that we cannot use space-invariant
restoration methods. In all cases, using only one PSF for the whole image
results in clearly visible artifacts.





(a) depth map obtained by Algorithm III, error averaging by 11×11
window, result subsequently smoothed by 11× 11 median filter

(b) direct restoration using depth map (a), TV regularization, λu =
10−4

Figure 11.20: Illustration of the fact that we cannot use simple depth recovery
methods directly for restoration. We can see many artifacts in the whole
image.
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(a) λw = 10−6

(b) λw = 5× 10−6

Figure 11.21: Depth maps produced by Algorithm I for two different lev-
els of Tikhonov depth map regularization. In both cases, the alternating
minimization was initialized with depth map Fig. 11.20(a).
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(a) restoration using depth map 11.21(a)

(b) restoration using depth map 11.21(b)

(c) ground truth image

Figure 11.22: Results of restoration using Algorithm I. We can see that
lesser depth map regularization (a) may result in artifacts in the areas of
weak texture (wall in the background). Higher degree of regularization (b)
caused artifacts on the edges (edge between blossoms near the right edge of
the LCD screen). For comparison, the third image was taken by motionless
camera serving as a “ground truth”.





(a) image blurred by camera motion

(b) another image of the same scene blurred by different camera
motion

Figure 11.23: We took two images from the camera mounted on the frame-
work limiting motion to one vertical plane. The shutter speed was set to the
same value 1.3s and aperture to F/22 (color version of Fig. 11.17). Image
size 800× 500 pixels.
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(a) restoration using less regularized depth map 11.21(a), λw =
10−6

(b) restoration using smoother depth map 11.21(b), λw = 5×10−6

(c) ground truth image

Figure 11.24: Result of the color extension of Algorithm I using regularization
term (6.11). Notice the color artifacts on grass-blades. For comparison, the
third image was taken by motionless camera as a “ground truth”.





Chapter 12

Conclusion

In this thesis, we have covered the problems of space-variant image restora-
tion and depth map estimation from two or more blurred images of the same
scene in situations, where the degree of blur depends on the distance of the
objects from camera. It includes out-of-focus blur, camera motion blur or
both simultaneously.

12.1 Evaluation

This section summarizes the results presented in the thesis and progress we
achieved with respect to previously published methods.

We developed three algorithms, related to the goals of this thesis, all of
them working for both out-of-focus and camera motion blur.

The main result, presented as Algorithm I, is a variational method for
image restoration and simultaneous estimation of the depth map. In com-
parison with other variational methods based on the same idea [7, 8, 9], it
can be applied for much broader class of PSFs. For the best of our knowl-
edge, it is the only method working for complex camera motion and optical
aberrations. In addition, Algorithm I is robust with respect to noise and
solves successfully the problem with non-convexity of the functional.

Algorithm I needs a reasonable initial estimate of depth map. For this
purpose, we modified filter based DFD algorithm [1] to work for a broader
class of symmetrical PSFs (Algorithm II). The main virtue of this algorithm
is speed, its computation consists of only two convolutions. On the other
hand, it requires careful calibration and often fails at places of weak texture.

Next, we proposed more general algorithm for estimation of depth maps
(Algorithm III), working for arbitrary blurs at the expense of higher time
consumption. It also proved to be robust to noise. The principal improve-
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ment with respect to existing DFD and depth from motion blur methods is
that it places no restrictions on the PSF. Compared to [6] is much simpler
to implement.

Besides, we have proposed an extension of Algorithms I and III to color
images. As demonstrated in the experimental section, the joint regularization
significantly reduces noise contained in individual channels and allows for
sharper results.

To clarify expressions derived in Algorithm I, we introduced notation
for two linear operators, “space-variant convolution” and “space-variant cor-
relation”, which generalize several frequent image processing operations. If
implemented in a graphic card or signal processor, they could speed up many
video and image processing applications.

The goals of this thesis, specified in Chapter 1.4, have been met. All of
the algorithms are able to work with only two input images (goal 1). They
place no restrictions on the structure of the scene (goal 2), with the exception
of extreme cases, such as very complex objects with holes of dimensions close
to width of a pixel. In turn, objects lacking texture often make no harm to
restoration since simply there is “nothing to restore”. Algorithms I and III
put no constraints on the shape of PSF (goal 3) and even Algorithm II works
for broader class of PSFs than most older methods. As a consequence, our
algorithms can be used for a class of non-trivial motion blurs (goal 4). All
the presented methods can be implemented using only a small set of linear
operations (goal 5).

12.2 Future work and applications

Probably the most interesting topics for future research stem from a promis-
ing application of Algorithm I—reduction of camera shake. In theory, Algo-
rithm I can be extended to arbitrary camera motion. In completely general
case, however, an issue arises how to generate and efficiently store all the
PSFs, which differ for all combinations of depths, coordinates in the field
of view and camera parameters (focal length, plane of focus, aperture). In
addition, if we do not know the data from inertial sensors describing camera
motion, an interesting and difficult problem arises, how to reconstruct the
course of camera motion from the blurred images itself. In all these problems,
a thorough analysis of constrains valid for the motion of handheld camera
would be very helpful.

Next, the proposed algorithms neglect occlusions at object edges on ac-
count of finite lens aperture. The Algorithm I could probably be extended
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to the more precise model of blurring described in [65, 66, 67].

As for applications, successful implementation of Algorithm I for general
camera motion could result in very powerful anti-shake systems, especially in
combination with existing optical stabilizers. Of course, cameras would have
to provide information about the true motion they obtain from the inertial
sensors of the stabilizer.

Finally, we should mention an interesting application of proposed algo-
rithms in photography, changing of the depth of focus. For this purpose, we
can apply Algorithm I directly on two images taken from a tripod.
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Appendix A

Proofs related to Algorithm I

For the convenience of the reader we repeat the body of the propositions and
corollaries before proving them.

Proposition 1. Gradients of the error term Φ in subspaces corresponding
to image u and depth map represented by w can be expressed as

∂Φ

∂u
=

P∑
p=1

ep ~v hp(w) =
P∑

p=1

u ∗v hp(w) ~v hp(w)− zp ~v hp(w), (A.1)

∂Φ

∂w
= u

P∑
p=1

ep ~v
∂hp(w)

∂w
, (A.2)

where ∂hp(w)

∂w
[x, y; s, t] is the derivative of the mask related to image point

(x, y) with respect to the value of w(x, y).

Proof. Proofs are straightforward. The basic idea is to find the Riesz repre-
sentation for directional derivatives. It exists as the derivatives are bounded
linear operators. The representing function we have found is nothing else
than the wanted gradient (Fréchet derivative).

To show the first equality, recall that Φ =
∑P

1 Φp. Let us denote hp(w) as
h. We can treat it as a constant for the moment. The directional derivative
of Φp in a direction g is

∂

∂λ
Φp(u + λg,h) |λ=0 =

∫

D
ep(x, y)(g ∗v h)[x, y] dxdy (A.3)

=

∫

D
ep(x, y)

[∫

Ω

g(x− s, y − t)h(x− s, y − t; s, t)dsdt

]
dxdy (A.4)

=

∫

D
g(x′, y′)

[∫

D
ep(x, y)h(x′, y′; x− x′, y − y′)dxdy

]
dx′dy′, (A.5)
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which after back substitution s′ = x− x′ and t′ = y − y′ yields

∫

D
g(x′, y′)

[∫

Ω

ep(x
′ − s′, y′ − t′)h(x′, y′;−s′,−t′)ds′dt′

]
dx′dy′. (A.6)

It is exactly the Riesz representation of directional derivative (A.3). Since
Φ =

∑P
1 Φp, the inner integral gives the right side of (A.1).

To prove (A.2), in parallel to the proof of (A.1), we express directional
derivative

∂

∂λ
Φp(u,w + λg) |λ=0 = (A.7)

=

∫

D
ep(x, y) (A.8)

·
∫

Ω

u(x− s, y − t)
∂hp(w(x− s, y − t) + λg(x− s, y − t))

∂λ
[s, t]λ=0 dsdtdxdy.

(A.9)

Using the chain rule for each particular [s, t] it equals

∫

D
ep(x, y)

[∫

Ω

u(x− s, y − t)g(x− s, y − t)
∂hp(w(x− s, y − t))

∂w
[s, t] dsdt

]
dxdy

(A.10)
and after substitution x′ = x− s, y′ = y − t, s′ = −s and t′ = −t

∫∫

D×Ω

ep(x
′−s′, y′−t′)

[
u(x′, y′)g(x′, y′)

∂hp(w(x′, y′))
∂w

[−s′,−t′] ds′dt′
]

dx′dy′.

(A.11)
Now, by getting g and u out of the inner integral we get the Riesz represen-
tation of (A.7)

∫

D
g(x′, y′)

[
u(x′, y′)

∫

Ω

ep(x
′ − s′, y′ − t′)

∂hp(w(x′, y′))
∂w

[−s′,−t′] ds′dt′
]

dx′dy′.

(A.12)
The inner bracket of (A.12) is exactly the right side of (A.2) for image p.
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Appendix B

Proofs related to Algorithm II

Proposition 2. Let u(x, y) be a third-order polynomial1 of two variables
and zi = u ∗ hi, i = 1, 2, where hi are energy preserving (

∫
h = 1) PSFs

symmetric about axes x, y and both axes of quadrants. Then

σ2
2 − σ2

1 = 2
z2 − z1

∇2
(

z1+z2

2

) , (B.1)

where σ2
1, σ

2
2 are the second moments of h1 and h2 and ∇2 is the symbol for

Laplacian.

Proof. We follow the technique used in [1] for Gaussian masks. It is based
on the idea that convolution of finite-order polynomials with a mask h can
be expressed using derivatives of the polynomial and moment of the mask.
Let the third-order polynomial u is given by

u(x, y) =
3∑

m=0

3−m∑
n=0

am,nx
myn (B.2)

and z = u ∗ h. Then the derivatives of u of order higher than three vanish
and we can write

z(x, y) =
∑

0<=m+n<=3

(−1)m+n

m!n!

∂m∂n

∂xm∂yn
u(x, y) hm,n, (B.3)

where the moments hm,n of the point spread function h are defined by

hm,n =

∫ ∞

−∞

∫ ∞

−∞
xmynh(x, y)dxdy. (B.4)

1Two-dimensional third-order polynomial is a polynomial P (x, y) =∑3
m=0

∑3−m
n=0 am,nxmyn.
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Now we make use of the fact that almost all the moments of h up to third
order are zero, which eliminates almost all terms of (B.3).

Almost all the moments of h up to the third order are zero, which elim-
inates almost all terms of (B.3). Since h is symmetrical about the x and y
axes, h1,0 = h0,1 = h1,2 = h2,1 = h3,0 = h0,3 = h1,1 = 0.

There are only three nonzero moments left, namely the zeroth moment
h0,0 and the second moments. We know that h0,0 = 1 as h preserves energy.
Thus,

z(x, y) = u(x, y) +
1

2!

∂2u

∂x2
h2,0 +

1

2!

∂2u

∂y2
h0,2. (B.5)

In addition, because of symmetry about the axes of quadrants, we get
h2,0 = h0,2 = σ2 and consequently

z(x, y) = u(x, y) +
σ2

2

(
∂2u

∂x2
+

∂2u

∂y2

)
= u(x, y) +

σ2

2
∇2u. (B.6)

Since u is a third-order polynomial, applying ∂2

∂x2 and ∂2

∂y2 on (B.6) gives

∂2z

∂x2
=

∂2u

∂x2
and

∂2z

∂y2
=

∂2u

∂y2
(B.7)

which after substitution to (B.6) gives sort of a deconvolution formula

u(x, y) = z(x, y)− σ2

2
∇2z. (B.8)

As z1 and z2 originated in the same image u, according to (B.7) ∇2z1 =
∇2z2. In practice it does not hold exactly (because of noise for example) and
it is better to take the average value

∇2z1 +∇2z2

2
= ∇2

(
z1 + z2

2

)
, (B.9)

which, using (B.8) for z1 and z2, gives (B.1).

Proposition 3. Let u(x, y) be a third-order polynomial1 of two variables
and zi = u ∗ hi, i = 1, 2, where hi are energy preserving (

∫
h = 1) one-

dimensional even PSFs oriented in the direction of the x-axis. Then

σ2
2 − σ2

1 = 2
z2 − z1

∂2

∂x2

(
z1+z2

2

) , (B.10)

where σ2
1, σ

2
2 are the second moments of h1 and h2.
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Proof. The proof of Proposition 3 is similar to the proof of Proposition 2.
Again, we assume third-order polynomials u and zi = u ∗hi satisfying (B.3).

Again, almost all the moments of h up to the third order are zero, which
eliminates almost all terms of (B.3). Indeed, hm,n = 0 for n 6= 0, because
h(x, y) = 0 for y 6= 0. Similarly, since h is symmetrical about the y-axis,
h1,0 = h3,0 = 0. There are only two nonzero moments left, namely h0,0 = 1
because h preserves energy and the second moment h2,0 = σ2.

Thus,

z(x, y) = u(x, y) +
1

2!

∂2u

∂x2
h2,0 = u(x, y) +

σ2

2

∂2u

∂x2
· (B.11)

Since u is a third-order polynomial, applying ∂2

∂x2 on (B.11) gives

∂2z

∂x2
=

∂2u

∂x2
, (B.12)

which after substitution to (B.11) gives sort of a deconvolution formula

u(x, y) = z(x, y)− σ2

2

∂2z

∂x2
. (B.13)

As z1 and z2 originated in the same image u, according to (B.12)

∂2z1

∂x2
=

∂2z2

∂x2
. (B.14)

In practice it does not hold exactly (because of noise for example) and it is
better to take the average value

(
∂2z1

∂x2
+

∂2z2

∂x2
)/2 =

∂2

∂x2

(
z1 + z2

2

)
, (B.15)

which, using (B.13) for z1 and z2, gives (B.10).

Corollary 2. Let u(x, y) be a third-order polynomial of two variables and
zi = u ∗ hi, i = 1, 2, where hi are energy-preserving rectangular impulses of
length di oriented in the direction of the x-axis. Then

d2
2 − d2

1 = 24
z2 − z1

∂2

∂x2

(
z1+z2

2

) · (B.16)
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Proof.

σ2 = h2,0 =

∫ ∞

−∞

∫ d/2

−d/2

x2 δ

d
dxdy =

∫ d/2

−d/2

x2

d
dx

∫ ∞

−∞
δdy (B.17)

=

∫ d/2

−d/2

x2

d
=

2

d

∫ d/2

0

x2 =
d2

12
· (B.18)
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[20] M. Šorel and J. Š́ıma, “Robust implementation of finite automata by
recurrent RBF networks,” in Proceedings of the SOFSEM, Seminar on
Current Trends in Theory and Practice of Informatics, Milovy, Czech
Republic. Berlin: Springer-Verlag, LNCS 1963, 2000, pp. 431–439.

[21] ——, “Robust RBF finite automata,” Neurocomputing, vol. 62, pp. 93–
110, 2004.

[22] A. P. Pentland, “Depth of scene from depth of field,” in Proc. Image
Understanding Workshop, Apr. 1982, pp. 253–259.

[23] ——, “A new sense for depth of field,” IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 9, no. 4, pp. 523–531, July 1987.

[24] J. Ens and P. Lawrence, “An investigation of methods for determining
depth from focus,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15,
no. 2, pp. 97–108, Feb. 1993.

[25] Y. Xiong and S. A. Schafer, “Moment and hypergeometric filters for
high precision computation of focus, stereo and optical flow,” Carnegie
Mellon University, Tech. Rep. CMU-RI-TR-94-28, Sept. 1994.

[26] M. Watanabe and S. K. Nayar, “Rational filters for passive depth from
defocus,” International Journal of Computer Vision, vol. 3, no. 27, pp.
203–225, 1998.
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