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ABSTRACT

Retinal images are often degraded with a blur that varies across the field view. Because traditional deblurring
algorithms assume the blur to be space-invariant they typically fail in the presence of space-variant blur. In this
work we consider the blur to be both unknown and space-variant. To carry out the restoration, we assume that
in small regions the space-variant blur can be approximated by a space-invariant point-spread function (PSF).
However, instead of deblurring the image on a per-patch basis, we extend individual PSFs by linear interpolation
and perform a global restoration. Because the blind estimation of local PSFs may fail we propose a strategy for
the identification of valid local PSFs and perform interpolation to obtain the space-variant PSF. The method
was tested on artificial and real degraded retinal images. Results show significant improvement in the visibility
of subtle details like small blood vessels.
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1. INTRODUCTION

Blur is one of main image quality degradations in eye fundus imaging which hinders the clinical use of the images.
Its main causes are: inherent optical aberrations in the eye, relative camera-eye motion, and improper focusing.
Because the optics of the eye is part of the optical imaging system, eye aberrations are a common source of image
degradation. To overcome this limitation, adaptive optics techniques have been successfully applied to correct
the aberrations, thus producing high resolution images.1 However, most commercial fundus cameras compensate
for spherical refractive errors of the eye, but not for astigmatism2—let alone higher order aberrations. In general,
the aberrations of the eye have a stronger impact in image degradation than the aberrations introduced by the
rest of the optical system, i.e. the retinal camera (See for instance, Figure 1).

The technique for recovering an original or unblurred image from a single or a set of blurred images in
the presence of a poorly determined or unknown point spread function (PSF) is called blind deconvolution.
Removing blur from a single blurred image is an ill-posed problem as there are more unknowns (image and blur)
than equations. Having more than one image of the same scene stabilizes solution of the problem. In retinal
imaging it is not difficult to obtain a second image from the same eye, with the convenience that acquisition
conditions remain quite similar. In fact, in Ref. 3 we proposed a blind deconvolution method to restore blurred
retinal images acquired several months apart, even when structural changes had occurred in the retina. However,
the method is limited to images blurred uniformly; in other words, we assumed the blur to be space-invariant.
The space-invariant assumption is commonplace in most of the restoration methods reported in the literature,4

but in reality it is a known fact that blur changes throughout the image.5 In this work we consider the blur to
be both unknown and space-variant (SV). This in itself is a novel and pertinent approach in retinal imaging,
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Figure 1. (a) Real case of a retinal image naturally degraded with space-variant blur caused by strong astigmatism. (b),
(c), (d), and (e) zoomed regions to show the space-variant nature of the blur.

in such a way that many common eye related conditions, such as astigmatism, keratoconus, corneal refractive
surgery, or even tear break-up, may contribute significantly to a decline in image quality6,7 typically in the form
of a SV degradation.

Restoration of images with SV blur from optical aberrations has been reported in the literature,8 with the
main limitation that the blurred image is often restored in regions or patches, which are then stitched together.
This inevitably leads to ringing artifacts in transition areas. Another clear disadvantage is a marked difficulty in
accurately estimating the SV PSF, for instance Bardsley et al.9 use a phase-diversity based scheme to obtain the
PSF associated with an image patch. This type of approach is common in atmospheric optics where the conditions
and set-up of the imaging apparatus (typically a telescope) are well known and calibrated. Unfortunately, this
is not immediately applicable to retinal imaging, at least non-adaptive optics retinal imaging. Recently, there
have been several works10–12 that try to solve the SV blind deconvolution problem from a single image. The
common ground in these works is that the authors assume that the blur is only due to camera motion. They do
this in order to reduce the space in which to search for SV blurs. Despite their approach being more general,
the strong assumption of camera motion is simply too restrictive to be applied in retinal imaging.

2. SPACE-VARIANT MODEL OF IMAGE BLUR

In reality we know that the PSF is indeed spatially variant,5 to such extent that in some cases the space-invariant
approach completely fails, bringing forth the need for a SV approach. To address this limitation we model the
blurred retinal image z as

z = Hu+ n , (1)

where the operator H is given by

[Hu](x, y) =

∫
u(s, t)h(x− s, y − t, s, t) dsdt , (2)

u is the unblurred retinal image, h is the SV PSF, and n is zero-mean Gaussian noise. The operator H is a
generalization of standard convolution where h is now a function of four variables. We can think of this operation
as a convolution with a PSF that is now dependent on the position (s, t) in the image. Standard convolution is
a special case of Eq. (2), where h(x − s, y − t, s, t) = h(x − s, y − t) for an arbitrary position (s, t). Note that
(2) is a general construct that can represent most other complex image degradations which depend on spatial
coordinates, such as motion blur, optical aberrations, lens distortions and out-of-focus blur.
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3. METHOD

3.1 Preprocessing

Because we use a multi-channel scheme for the estimation of the local PSFs, we assume that at least two images
with similar content (field of view) are available. The images are preprocessed so that they meet the requirements
imposed by the space-invariant convolutional model given by Eq. (3). This consists in registering the images and
adjusting their illumination distribution following the work by Marrugo et al.3 By carrying out this procedure
the remaining radiometric differences between the images are assumed to be caused by blur and noise. Since
image g is registered and its illumination matched to z, we denote this transformed auxiliary image as g̃.

3.2 Blind estimation of PSFs

We approximate the global function h from Eq. (2) by interpolating local PSFs estimated on a set of discrete
positions. The main advantage of this approach is that the global PSF needs not be computed on a per-pixel basis
which is inherently time-consuming. The procedure for estimating the local PSFs is the following. We divide
the images z and g̃ into a grid of m×m patches. In each patch p we assume a convolutional blurring model, like
in Ref. 3, where an ideal sharp patch up originates from two degraded patches zp and g̃p (for p = 1 . . .m×m).
The local blurring model is

zp =hp ∗ up + n

g̃p =h̃p ∗ up + ñ , (3)

where ∗ is the standard convolution, and hp and h̃p are the convolution kernels or local PSFs, and the noise (n
and ñ) is assumed to be Gaussian additive with zero mean.

From this model we can estimate the local PSFs with an alternating minimization procedure as described in
Ref. 3 but applied locally. We do so on a grid of 5–by–5 image patches to compute 25 PSFs, as shown in Fig. 2.
The general guideline is that the patch size should be large enough to include retinal structures and much larger
than the size of the local PSF. The ground-truth SV PSF grid was built from a grid of 3 × 3 realistic PSFs
obtained from degraded retinal images using the method of Ref. 3 and interpolated to form a 5 × 5 grid. By
visually comparing the ground-truth PSF grid with the estimated grid it is important to note that not all local
PSFs have been correctly estimated. There are a number of non-valid PSFs which need to be indentified and
left out from the restoration procedure to avoid artifacts.

(a) (b) (c)

Figure 2. (a) Retinal image artificially degraded with SV blur. (b) Ground-truth SV PSF grid. (c) Estimated SV PSF
grid.
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3.3 Identification of valid local PSFs

Because reconstruction artifacts arise from poorly estimated local PSFs we have carried out artificial experiments
to determine an adequate approach for identifying non-valid PSFs. Recently Hu and Yang13 studied the problem
of identifying good regions for estimating the PSF of an image degraded by motion blur. Their reasoning comes
from the fact that for estimating the PSF from an image with motion blur, not all parts of the image contribute
equally. Moreover, there are parts of the image that hinder the estimation procedure. In light of this, we have
carried out experiments to determine if the non-valid PSFs can be identified either from the degraded retinal
image or directly from the estimated PSFs. These experiments consist in artificially degrading pairs of retinal
images, estimating the PSFs per patch, comparing the estimated PSFs with the original PSFs with a similarity
measure, computing an image or PSF descriptor to determine an identification criterion.

3.3.1 Similarity measure

To avoid the problem with shift ambiguity of blind deconvolution, the comparison of estimated ĥp and corre-
sponding ground-truth PSF hp is carried out by the similarity measure

S(hp, ĥp) = max
γ

ρ(hp, ĥp, γ) (4)

proposed by Hu and Yang.13 The measure is defined as the maximum response of the normalized cross correlation

ρ(hp, ĥp, γ) =

∑
τ hp(τ) · ĥp(τ + γ)

‖hp‖ · ‖ĥp‖
, (5)

where γ is the possible shift between the two kernels, τ represents image coordinates and ‖·‖ is the l2 norm.
Larger similarity values reflect more accurate PSF estimation.

3.3.2 The good regions approach

As we have seen in Fig. 2 the estimation of PSFs may fail and one way to avoid this is to determine suitable
regions where to compute the PSFs from. In the work by Hu and Yang13 they use low level image descriptors
that focus on sharp edges or textured regions. We compute on a per-patch basis the image entropy, the sum
of absolute value of the gradient in the vertical and horizontal directions, and the relative value of the patch
dominant orientation based on filtering with Kirsch’s templates14 widely used for detecting the blood vessels in
retinal images.15 We also compute the sum of pixels detected as blood vessels per patch.

We compute the correlation of the similarity measure for the estimated PSFs with these image descriptors.
The results are shown in Table 1. Note that not a single descriptor correlates well with similarity measure,
because they do not even reach a value above 0.5 in absolute value. This approach is along the lines of Ref. 13,
but it significantly differs in that we consider blur that, due to the imaging procedure, is much more complex
than simple shift because of the aberrations in the eye. The work in Ref. 13 is limited to motion blur which
typically produces a type of degradation that is dependent on the trajectory of motion.

3.3.3 The valid PSFs

Having found no significant correlation with the image patches we address the problem of valid PSF identification
from the PSFs themselves. Because the optics of the eye is part of the imaging system, our assumption is that
valid PSFs may display a shape and energy distribution that make them differentiable from PSFs where the
estimation failed. In fact, the PSF typically looks as a set of concentric rings or waves. This can be detected for
example by Hu rotation invariants.16

Indeed, from the plot we can confirm the correlation, but more importantly we can observe that most non-
valid PSFs, which we assume to be the ones with S < 0.6, can be clearly identified. Roughly, the greater the I4
value the lower the similarity measure. We select a threshold to remove almost all non-valid PSFs even at the
expense of several valid PSFs. In Fig. 3 we show the PSFs selected as valid ones for carrying out the restoration.
However, the fact that we leave out several valid PSFs is not critical because according to our model the PSF
changes smoothly and having few PSFs distributed throughout the FOV should be sufficient for an accurate
restoration. In the following section we demonstrate how to restore the degraded image with a SV PSF defined
on irregularly distributed points of the image.
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Descriptor Correlation coefficient

Image patch

Entropy -0.059
Sum of gradients -0.187
Dominant orientation 0.064
Blood vessel detection -0.044

PSF

First image moment I1 -0.519
Second Hu invariant I2 -0.569
Third Hu invariant I3 -0.536
Fourth Hu invariant I4 -0.577
Fith Hu invariant I5 -0.082
Sixth Hu invariant I6 -0.394
Seventh Hu invariant I7 0.241

Table 1. Correlation of image patch and PSF descriptors with PSF similarity measure (S). Higher correlation coefficient
in magnitude is better, it means that the descriptor is better suited for identifying valid or non-valid PSFs.
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Figure 3. (a) PSF similarity measure (S) versus fourth image invariant (I4). A threshold (dashed vertical line) is selected
so that most non-valid PSFs (similarity of < 0.6) are excluded from the restoration procedure. (b) The PSFs selected as
valid ones (white squares) for carrying out the restoration.

3.4 PSF interpolation and image restoration

Having determined the valid PSFs we address the problem of computing a space-variant PSF for restoring
the whole image. We compute the Delaunay triangulation on the positions of the PSFs and perform linear
interpolation within each triangle with interpolation coefficents given by barycentric coordinates. This defines a
continuous SV PSF for irregularly distributed valid PSFs. The restoration can be described as the minimization
of the functional

min
u

[
1

2
‖z −Hu‖2 + λ

∫
|∇u| dxdy

]
, (6)

where z is the blurred observed image, H is the blurring operator (Eq. (2)), u is the unknown sharp image, and
λ is a positive regularization constant, which we have set according to a fine-tuning procedure.3 The first term
penalizes the discrepancy between the model and the observed image. The second term is the regularization
term which serves as a statistical prior. As regularization we use total variation, a technique that exploits the
sparsity of image gradients in natural images. At present, solving the convex functional of Eq. (6) is considered a
standard way to achieve close to state-of-the-art restoration quality without excessive time requirements.17 We
used an efficient method18 to solve Eq. (6) iteratively as a sequence of quadratic functionals

ui+1 = arg min
u

[
1

2
‖z −Hu‖2 + λ

∫
|∇u|2

2|∇ui|
+
|∇ui|

2
dxdy

]
. (7)
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Eq. (7) bounds the original function in Eq. (6) and has the same value and gradient in the current ui, which
guarantees convergence to the global minimum. To solve Eq. (7) we used the conjugate gradient method.19

4. EXPERIMENTS AND RESULTS

To demonstrated the applicability of the proposed method we have designed several experiments on both artificial
and real degraded retinal images. The artificial experiment was devised mainly for validating the proposed
method.

4.1 Artificially Degraded Images

For the artificial experiment we take a pair of images and degrade them with a 5× 5 grid of realistic PSFs plus
Gaussian noise (σ = 10−6). The grid of PSFs was built upon estimated PSFs from retinal images following
the approach of Ref. 3. We restore a single image, the second image is used exclusively for the purpose of
PSF estimation. We estimate the local PSFs by dividing the image into overlapping patches on a 5 × 5 grid.
The estimated PSFs are shown in Fig. 2. Because the PSF estimation may fail, we identify the valid PSFs as
described in § 3.3. Using the positions of valid PSFs we construct the Delaunay triangulation and perform linear
interpolation of the PSFs to obtain the SV PSF for the whole image.

In Fig. 2(a) we show the restored artificial image with the direct estimated PSFs. The effect of non-valid PSFs
is evident in the poor quality of the restoration and the ringing artifacts. In Fig. 2(b) we show the restoration
with the proposed method. To evaluate the restoration we use the cumulative error histogram on a patch basis.
The error4 is the difference between a recovered image Ir with the estimated kernels and the known ground-truth
sharp image Ig over the difference between the deblurred image Ikg with the ground-truth kernels. The error
is given by ‖Ir − Ig‖/‖Ikg − Ig‖. In Fig. 4(c) we show the cumulative error histogram for three restorations.
H1 is the restoration with the directly estimated PSFs. It is important to note that shifted local PSFs warp
the image which introduce additional artifacts and is the reason for such low performance with approximately
40% of patches with an error lower than 2.5. After shifting the centroid of the PSFs to the geometrical center
(restoration H2 in Fig. 4(c)) the reconstruction error is reduced significantly, about 60% of patches have an error
lower than 1.5. Finally, the restoration (H3) with the valid PSFs increases significantly with all patches now
displaying an error lower than 1.5.

(a) (b)
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Figure 4. (a) Restoration with direct estimated PSFs (notice the artifacts due to non-valid PSFs) and (b) proposed
interpolation of valid PSFs. (c) Error histogram for evaluating the reconstruction using: H1-directily estimated PSFs,
H2-PSFs shifted toward the geometrical center, and H3-the valid PSFs interpolated over the whole image.

4.2 Naturally Degraded Images

As we illustrated in Fig. 1 there are a number of conditions that lead to space-variant degradations of retinal
images, for example strong astigmatism. In Fig. 5 we show the real case of an original degraded retinal image
alongside the SV restoration with the directly estimated local PSFs and proposed SV restoration with the PSFs
selected by the strategy defined in § 3.3.3. Notice how the image in Fig. 5(b) has artifacts originated from poorly
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(a) (b) (c)

Figure 5. (a) Original degraded image from Fig. 1(a), (b) space-variant restoration with direct estimated PSFs, and (c)
space-variant restoration with linear interpolation of valid PSFs.

estimated PSFs. In contrast, the image in Fig. 5(c) is much sharper with with fine structures like blood vessels
more properly resolved. In Fig 6 we show the grid of estimated PSFs and the valid PSFs selected with the
strategy defined in § 3.3.3 highlighted with red squares.

Figure 6. PSF grid estimated for the real degraded retinal image from Fig. 1(a). The PSFs within red squares correspond
to the valid PSFs selected according to the criterion described in § 3.3.3.

5. CONCLUSION

We have presented a method for restoring retinal images degraded with space-variant blur. The space-variant
PSF is approximated via the interpolation of local space-invariant PSFs estimated from a pair of degraded retinal
images. Because the PSF estimation may fail we developed a PSF selection strategy based on image invariant
moments to identify valid PSFs. To perform the restoration we interpolated the valid PSFs based on the Delaunay
triangulation with vertices defined on an arbitrary point of the image. With the artificial experiment we showed
how our approach significantly reduces the reconstruction error, being less prone to artifacts. The results on
naturally degraded images validate our apporach with notable enhancement throughout the whole image.
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