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6 Removing camera shake in
smartphones without hardware
stabilization

Filip Šroubek and Jan Flusser

6.1 Introduction

Processing images becomes an every day practice in a wide range of applications

in science and technology and we rely on our images with ever growing emphasis.

Our understanding of the world is however limited by measuring devices that we

use to acquire images. Inadequate measuring conditions together with technolog-

ical limitations of the measuring devices result in acquired images that represent

a degraded version of the “true” image.

Blur induced by camera motion is a frequent problem in photography mainly

when the light conditions are poor. As the exposure time increases, involuntary

camera motion has a growing effect on the acquired image. Image stabilization

(IS) devices that help to reduce the motion blur by moving the camera sensor

in the opposite direction are becoming more common. However, such hardware

remedy has its limitations as it can compensate only for motion of a very small

extent and speed. Deblurring the image offline using mathematical algorithms

is usually the only choice we have to obtain a sharp image. Motion blur can

be modeled by convolution and the deblurring process is called deconvolution,

which a well-known ill-posed problem. In general, the situation is even more

complicated, since we usually have no or limited information about the blur

shape.

We can divide the deconvolution methods into two categories: methods that

estimate the blur and the sharp image directly from the acquired image (blind

deconvolution) and methods that use information from other sensors to estimate

the blur (semi-blind deconvolution).

The main contribution of this chapter is to illustrate that blur estimation

with built-in inertial sensors is possible and to implement image deblurring on

a smartphone, which works in practical situations and is relatively fast to be

acceptable for a general user.

6.2 Image acquisition model

In order to perform successful image deblurring, it is important to correctly

model the acquisition process. A commonly used model is the following. Let
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u(x) : Ω ⊂ R2 → R, x = [x, y], be an original latent image describing a real

scene, where Ω is a rectangular image support. A first-order approximation of

degradation acting on u is twofold: degradation linear operator H and additive

noise n. Then the output of acquisition is a degraded image g given by a relation

g = Hu+ n . (6.1)

The difficulty with H is that it is ill-conditioned, which means that during in-

version noise n gets amplified and the solution is unstable. We face an ill-posed

inverse problem that requires special handling.

6.2.1 Space-invariant model

The most common type of degradation, which is considered in this chapter, is

convolution:

[Hu](x, y) = h ∗ u =

∫
Ω

u(s, t)h(x− s, y − t)dsdt , (6.2)

This definition extends to any number of dimensions and not just R2. For ex-

ample, in confocal microscopy convolution is in R3. Function h is a convolution

kernel (or simply blur) and defines the behavior of the convolution operator. It is

also called a point spread function (PSF), because h is an image the device would

acquire after measuring an ideal point source δ(x) (delta function). Image blur

due to camera motion or improper camera focus setting can be in simple cases

modeled by convolution. The PSF size influences the degree of blurring and the

PSF shape reflects the physical nature of blurring. For example, out-of-focus cam-

era lens causes PSFs of various shapes depending on lens aperture, while camera

motion causes curvy PSF, where the curve shape is related to the trajectory of

the motion; see Fig. 6.1. There are a wide range of imaging devices in which

the acquisition process can be modeled by convolution. Apart from devices with

classical optical systems, such as digital cameras, optical microscopes or tele-

scopes, convolution degradation occurs also in atomic force microscopy (AFM)

or scanning tunneling microscopy (STM), where the PSF shape is related to

the measuring tip shape. Media turbulence (e.g. atmosphere for terrestrial tele-

scopes) can cause blurring that can be modeled by convolution, and there are

many more examples.

6.2.2 Space-variant model

To make convolution more general, it is often necessary to allow the PSF to

change over the image. This is called space-variant convolution, though strictly

speaking it is not mathematical convolution any more. Using space-variant convo-

lution we can model more general degradations, such as blur induced by complex

camera motion and rotation, out-of-focus blur in a wide-depth scene, or blur due

to hot-air turbulence.



Removing camera shake in smartphones 3

(a) out-of-focus blurs (b) camera shake blurs

Figure 6.1 Examples of real camera blurs: (a) blur caused by out-of-focus lens with
different lens parameters (focal length and aperture size), notice polygonal shape
clearly visible in the central image, which corresponds to the aperture opening of
7-blade diaphragm; (b) blurs caused by camera motion during exposure.

The operator H can be written in a form naturally generalizing standard

convolution as

[Hu](x, y) =

∫
Ω

u(s, t)h(x− s, y − t, s, t)dsdt (6.3)

with h now dependent on the position (x, y) in the image. Convolution in (6.2)

is a special case of (6.3) with h(s, t, x, y) = h(s, t) for any position (x, y). It is

valid to refer to h(s, t, x, y) as a space-variant PSF (or kernel), for the function

h(s, t, x, y) taken as a function of two variables with fixed x and y, describes

how a delta function at (x, y) spreads its energy in space after degradation by

H. In many real scenarios h changes slowly with respect to (x, y) as discussed in

Sec. 6.3.3. In this case the operatorH can be locally approximated by convolution

with h̃(s, t) = h(s, t, x, y) in a neighborhood of the point (x, y).

It is worth noting that we can interpret the physical meaning of the PSF in

two different ways. The standard view is that the PSF tells us how a point source

is spread in space. The blurred image is obtained by spreading every pixel and

summing contribution of all pixels. The other interpretation is that the PSF

is a weighted window. The blurred image is calculated by performing weighted

averaging around every pixel. In the case of space-invariant convolution both

views are equivalent. However in the case of space-variant convolution, this is

not true and we assume the first interpretation, which describes the physical

nature of the blurring phenomenon.

In practice, we work with a discrete representation, where the same notation

can be used with the following differences: PSF h is defined on a discrete set of

coordinates, the integral in (6.3) becomes a sum, operator H corresponds to a

matrix and u to a vector obtained by concatenating columns of the image into

one long vector. Using the vector-matrix notation, (6.1) writes as

g = Hu + n . (6.4)

In the space-invariant case, H is a convolution matrix (block-Toeplitz matrix

with Toeplitz blocks) and each column of H corresponds to the same kernel. In

the space-variant case, as each column corresponds to a different position (x, y),

it may contain a different kernel h(s, t, x, y).
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6.3 Inverse problem

A standard formulation of the image deblurring problem is a stochastic one [1]

assuming that images and PSFs are random vector fields [2] with known prior

probability density functions p(u) and p(h), respectively. The Bayesian paradigm

dictates that the inference on the latent image and PSF should be based on the

posterior probability

p(u, h|g) ∝ p(g|u, h)p(u)p(h) , (6.5)

where u and h are assumed to be independent. The conditional density p(g|u, h)

is given by our model (6.1) and is equal to the probability density function of

noise n, which is typically normally distributed, p(n) = N(0, σ2). The prior p(u)

forces some type of image statistical characteristics, typically we assume sparse

distribution (e.g. Laplacian) of image derivatives [3]. The prior p(h) can be sim-

ilar to p(u), but it is often rectified to force positivity. Estimating the pair (û, ĥ)

is equivalent to maximizing the posterior p(u, h|g), which is commonly referred

to as the maximum a posteriori (MAP) approach. Note that maximization of

the posterior is equivalent to minimization of − log p(u, h|g).

6.3.1 MAP and beyond

The classical solution to the blind deconvolution problem is maximizing the

posterior probability p(u, h|g) with respect to both u and h (denoted as MAPu,h
approach). However, the posterior has very uneven shape with many local peaks

and alternating maximization often returns an incorrect solution.

Typically the priors are defined in some other domain than the image do-

main and are assumed to be independent and sparse, p(u) = Πip(φi(u)), where

φi is a function mapping the image into the other domain. A common choice

of φ is an image gradient with p favoring sparse distributions, i.e., log p(u) =

−
∑
i

1
2γ |∇ui|

p + C for 0 ≤ p ≤ 1. In the vector matrix notation this can be ex-

pressed as log p(u) = − 1
2γu

TLpuu, where Lpu is a symmetrical sparse matrix with

elements related to ∇u. In the case of p = 2 (Gaussian prior), L2
u is independent

of u and is equal to the Laplacian, which we denote simply as L. A detailed

derivation of these relations is provided in [4].

The most common method to find MAPu,h is to alternate between minimiza-

tion of − log p(u, h|g) with respect to u and h. It is a well-known fact that this

leads to the so-called “no-blur” solution, i.e., the most probable solution is that h

is a delta function and u = g, which is clearly a solution we better want to avoid.

It is important to note that the posterior p(u, h|g) has a local extreme for the true

u and h, which can be reached if we initialize the alternating minimization close

to the true solution. Many authors [5, 6, 7, 8, 9] tried to alleviate this problem

by searching for more sophisticated priors that would better match the natural

image statistics. Unfortunately, mainly due to the fact that blur reduces image

variance, most of these priors still favor the blurred image over the sharp one as
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pointed out by Levin et al. [9]. Levin further demonstrated in [10] that a proper

estimator matters more than the shape of priors. Marginalizing the posterior

with respect to the latent image u and maximizing thus p(h|g) =
∫
p(u, h|g)du

leads to the correct solution. This is referred to as MAPh approach. Once we

estimate ĥ, we can estimate the sharp image as

uMAP = argmax
u

p(u, h = ĥ|g). (6.6)

The marginalized probability p(h|g) can be expressed in a closed form only

for simple priors that are not sparse. Otherwise approximation methods such as

variational Bayes [11, 6] or the Laplace approximation [12] must be used. For

example, using the Laplace approximation

log p(h|g) ≈ log p(u = uMAP , h|g)− 1

2
log |A|+ C , (6.7)

where |A| denotes determinant of the variance of p(u = uMAP , h|g) with respect

to u. If we assume a simple Gaussian prior, log p(u) = −
∑
i

1
2γ |φi(u)|2 + C =

− 1
2γu

TLu + C then the Laplace approximation is exact with A = HTH
σ2 +

L
γ , uMAP has a closed-form solution and so does p(h|g). In a general case

of sparse priors, we can use the above equation as an update equation for

ĥ = argmaxh p(h|g) and iteratively update also uMAP in (6.6). The variational

Bayes factorizes the posterior p(u, h|g) and approximates it by q(u)q(h), which

can be then solved by alternating maximization. As derived for example in [5],

the variational Bayes leads to a very similar update equation (6.7) for h, where

the second term 1
2 log |A| is replaced by 1

2h
T cov(q(u))h. In the case of the simple

Gaussian prior, cov(q(u)) = A−1. Both in the Laplace approximation (6.7) and

variational Bayes the second term plays a crucial role, since it favors kernels with

more blur and penalizes the “no-blur” solution. This brings us to an interesting

conclusion that the iterative algorithms of the approximation techniques are very

similar to the classical MAPu,h approach with an additional term that penalizes

blurs close to delta functions. This conclusion suggests that even MAPu,h should

work if a better numerical method is applied.

There are several other modifications (or maybe better to say tweaks) used

in blind deconvolution methods, which are often only briefly mentioned in the

literature but we believe play a key role and largely improve results in practice.

The first one is that in the blur estimation step we use ∇u instead of u. From the

perspective of the data model this formulation is equivalent, since ∇g = h ∗∇u.

One possible reason for the advantage of derivatives is that it fits better with

our model that the image prior is a product of independently and identically

distributed variables. An algebraic explanation is that the deconvolution system

solved in every iteration is better conditioned. The second modification is that

the current blind deconvolution methods, such as [13], start the estimation pro-

cess with a very high noise variance (σ2) and slowly decrease it to the correct

level. This idea is similar to what is used in simulated annealing and has an

effect that low frequencies (overall shape) of blurs are estimated first and then
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the high frequencies (details). The third modification is that the blur and im-

age are estimated in a coarse-to-fine framework, using pyramidal representation

of the input blurred image. This has similar effect as the second modification.

However numerically, the coarser levels have lower dimension and are thus easier

to solve. It is thus possible that a combination of the coarse-to-fine approach

and gradual variance decrease makes the whole system more robust in practice.

Last but not least, it is necessary to constrain h to avoid local minima. Recent

methods propose to use prior p(h) such that only positive values are allowed and

sometimes support constraints are also added. Blur kernels are in general much

smaller then the image and it is therefore wise to constrain the blur support and

effectively decrease the dimensionality of the problem.

6.3.2 Getting more prior information

There are various ways to get additional information about the degradation

process so that the blind deconvolution problem addressed in the previous section

6.3.1 is better conditioned and thus easier to solve.

One approach is to use multiple degraded images of the same scene. This is

called multichannel blind deconvolution. The estimation of blurs from multiple

observed images is based on a simple but fundamental idea. Let us assume that

we have K > 1 images gk that represent the original image u according to our

space-invariant model

gk = hk ∗ u+ n . (6.8)

The PSF hk is different for every k. Let ĥk denote our estimated PSFs. In the

case of no noise holds that for every pair of images gi, gj , i 6= j

gi ∗ ĥj − gj ∗ ĥi = 0 , (6.9)

if ĥk = hk. This simple relation, which exists only in the multichannel case, give

us means to estimate PSFs directly from blurred images and forms the key idea

of every multichannel blind method discussed below.

One of the earliest intrinsic multichannel (MC) blind deconvolution methods

[14] was designed particularly for images blurred by atmospheric turbulence.

Harikumar et al. [15] proposed an indirect algorithm, which first estimates the

blur functions (published earlier for 1D signals in [16]) and then recovers the

original image by standard nonblind methods.

Giannakis et al. [17] developed similar algorithm based on Bezout’s identity of

coprime polynomials which finds restoration filters and by convolving the filters

with the observed images recovers the original image. Pai et al. [18] suggested

two MC restoration algorithms that estimate directly the original image from the

null space or from the range of a special matrix. Another direct method based

on the greatest common divisor was proposed in [19]. Interesting approaches

based on the ARMA (autoregressive moving average) model are given in [20].

MC blind deconvolution based on the Bussgang algorithm was proposed in [21],
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which performs well on spatially uncorrelated data, such as binary text images

and spiky images. Most of the algorithms lack the necessary robustness since

they do not include any noise assumptions in their derivation and miss regu-

larization terms. Šroubek et al. proposed an iterative MC algorithm [22] that

performs well even on noisy images. It is based on least-squares deconvolution

by anisotropic regularization of the image and between-channel regularization of

the blurs. Another drawback of the MC methods is that the observed images

must be spatially aligned, which is seldom true. A first attempt in this direction

was done by Šroubek et al. in [4], where they proposed MC blind deconvolution of

images, which are mutually shifted by unknown vectors. The same team extended

this idea to superresolution in [23]. In superresolution, the physical resolution of

the image is increased, which is equivalent to considering both convolution and

downsampling in the degradation operator H.

Another possibility is to acquire a pair of images: one correctly exposed but

blurred and one underexposed (noisy) but sharp image. Then we can apply the

above MC blind deconvolution methods, which are even better posed, as was

demonstrated in [24, 25, 26].

Blind deconvolution in the MC framework is in general a well-posed inverse

problem due to existence of the relation (6.9). However, in many practical sit-

uations we do not have multiple observations of the same scene, which would

differ only by the convolution kernel, and we must revert to the single-channel

methods in Sec. 6.3.1 or try parametric methods.

Parametric methods assume a certain set of plausible blurs that are fully de-

scribed by a few parameters. Inference is done on the parameters and not on

the blur function itself, which would be an intractable problem since the dimen-

sionality of the blur functions is too high. A classical example is the blur caused

by camera motion, which is limited by six degrees of freedom of a rigid body

motion, most commonly decomposed to three rotations and three translations.

The main obstacle when dealing with this type of blur is that for translations,

the blur depends on scene distance (depth). As a consequence, under general

camera motion, we need to estimate the depth map, which makes the algorithm

complicated and time consuming. Nevertheless, there are algorithms that work

satisfactorily, assuming certain additional constraints on the camera motion. We

refer the interested readers to [27, 28, 29] and references therein.

Here we describe a more practical approach that exploits the fact that cer-

tain types of camera motion can be neglected in practice. The most common

assumption is that all camera translations can be neglected, making the blur

independent of scene depth. Validity of this assumption is discussed in Sec. 6.4.

Many devices, such as modern smartphones, are now equipped with inertial sen-

sors (gyroscopes and accelerometers) that can give us a very accurate information

about camera motion. If we are able to reconstruct camera path then we can

recover blur and perform nonblind image deblurring. This idea was recently de-

scribed in [30] using an expensive measuring apparatus consisting of a DSLR

camera and a set of inertial sensors, where image deblurring is performed offline
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on a computer. Another possibility is to attach an auxiliary high-speed camera

of lower resolution to estimate the PSF using optical flow techniques as discussed

in [31, 32]. Later in Sec. 6.5 we demonstrate that image deblurring is feasible on

modern smartphones and not requiring any other devices.

A versatile approach applied recently in [33] is to express the operator of

blurring in a specially chosen set of PSF basis Bi

Hu =
∑
i

diBiu (6.10)

which allows us to work with spatially varying blur in a manner similar to com-

mon convolution. In this case, Bi are operators (in the discrete case matrices)

that perform image warping such that images Biu correspond to all possible

transforms (rotations in our case) within a specified range of motions. Note how-

ever, that unlike common convolution such operators do not commute. The set

of weights di, which are our unknown parameters, are referred to as kernels or

motion density functions.

Whyte et al. [34] consider rotations about three axes up to several degrees

and describe blurring by the corresponding three-dimensional kernel. For blind

deconvolution, it uses a straightforward analogy of the well-known blind decon-

volution algorithm [6] based on marginalization over the latent sharp image. The

only difference is that it uses (6.10) instead of convolution. For deblurring, fol-

lowing the kernel estimation phase, it uses the corresponding modification of the

Richardson-Lucy algorithm.

Gupta et al. [35] adopted a similar approach but instead of rotations about x

and y axes consider translations in these directions. Because of the dependence

of translation on depth, they require that the scene is approximately planar and

perpendicular to the optical axis. Interestingly, in this case it is not necessary

to know the real distance because the corresponding kernel works in pixel units.

They first estimate locally valid convolution kernels by the original blind decon-

volution algorithm [6] and estimate the corresponding sharp image patches. In

the second step, they estimate the kernels di from (6.10) using the knowledge of

both the observed image and an estimate of the sharp image made up of the uni-

formly distributed patches from the previous step. They do not use all patches

but choose iteratively a subset of patches and check consistence with the rest

by a RANSAC-like algorithm. The image is regularized by standard smoothness

priors applied separately on derivatives in x and y directions. The kernel is regu-

larized to be sparse by a ‖.‖p norm applied on kernel values and to be continuous

using a quadratic penalty on kernel gradient.

An obvious advantage of the kernel model (6.10) is that it is very robust

with respect to local non-existence of texture as well as local inaccuracies of the

used model, such as sensor saturation for example. On the other hand, it may be

considerably more time consuming than algorithms based on local approximation

by convolution described in the next section. Another disadvantage is that the
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Figure 6.2 Kernel interpolation: If image blur varies slowly, we can estimate
convolution kernels on a grid of positions and approximate kernels in the rest of the
image by interpolation of four adjacent kernels.

actual motion may be more complicated and it is difficult to combine (6.10) with

other models.

6.3.3 Patch-based

There are several types of blur that can be assumed to change slowly with po-

sition, which allows to approximate the blurring locally by convolution. Under

this assumption we can estimate locally valid convolution kernels that give us a

local estimate of the PSF. This usually holds for motion blurs caused by camera

shake and optical aberrations. For out-of-focus blur it holds only for approxi-

mately planar scenes.

The kernels are usually estimated at a set of regularly spaced positions. For

estimation we can use one of many available blind deconvolution methods, work-

ing either with a single image [6, 13], or more precise methods working with

multiple images [4]. If it is possible to change camera settings, we can also fuse

information from one blurred and one noisy/underexposed image [24, 25, 26].

Once the local convolution kernels are computed, they can be used to estimate

the PSF for an arbitrary position (x, y). The simplest possibility is to divide the

image to a set of regularly spaced patches, each with an assigned PSF. The

patch size is chosen such that the patches overlap and the reconstructed image

is generated by blending the reconstructed patches. Blending must be tuned to

minimize blocking artifacts that tend to appear around patch boundaries.

A more elaborate but only slightly more computationally demanding method
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is to assign the estimated kernels just to patch centers (instead of the whole

patch) and approximate the PSF h in intermediate positions by bilinear in-

terpolation as indicated in Fig. 6.2. An advantage of this solution is that the

PSF changes smoothly, thus avoiding the blocking artifacts. Moreover, the cor-

responding operator H can be computed in time comparable with the time of

standard convolution using the fast Fourier transform (FFT) [36, 37]. The main

reason are simple formulas for blur operators created as a linear combination of a

finite set of convolution kernels. Indeed, if the PSF h is defined as a combination

of kernels
∑
i wihi, then

Hu =
∑
i

(wiu) ∗ hi . (6.11)

For linear interpolation, the weight functions wi(x, y) satisfy the constraint∑
i wi(x, y) = 1 for an arbitrary position (x, y), and wi(x, y) = 1 in the center

(x, y) of the window where the kernel hi was estimated. In [26], the authors

use this model to deblur an image, if another underexposed image taken with

sufficiently short shutter time is available. The same model in a more versatile

setup working with only one input image and using a recent blind deconvolution

method [38] is shown in [39].

If the blur changes faster across the image, linear interpolation is not re-

alistic and produces false PSFs, which consequently leads to artifacts in the

reconstructed image. More advanced techniques, such as shape-preserving PSF

morphing proposed in [40], should be used instead.

6.4 Pinhole camera model

Let us consider the image a camera captures during its exposure window. Light

from a scene point xw = [xw, yw, zw]T projects on the image plane at a location

x = [x, y]T ; see Fig. 6.3. Using homogeneous coordinates in the image plane

x̄ = [dxT , d]T , the relation to xw is given by

x̄ = K[Rxw + t] , (6.12)

where R (3 × 3) and t (3 × 1) are the camera rotation matrix and translation

vector, respectively. Upper triangular matrix K (3 × 3) is the camera intrinsic

matrix. The third element d of the homogeneous coordinates corresponds to

distance. The camera intrinsic matrix is typically of the form

K =

fsx 0 cx
0 fsy cy
0 0 1

 , (6.13)

where f is the camera focal length, [cx, cy] is the image center and [sx, sy] is the

pixel scale.
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Figure 6.3 Pinhole camera model: A 3D point xw in the world coordinate system
xw, yw, zw projects into the image plane x, y at the position x. The projection is
defined by a camera intrinsic matrix, which is primarily a function of the camera focal
length f . Due to camera motion during exposure the projected point draws a trace
(2D curve) T (x, τ), which is a function of time τ .

During the exposure window the camera position and orientation may change

and therefore the extrinsic parameters R and t are function of time τ . The

projected point x moves along a curve parametrized by τ , which we denote as

T (x, τ) and call it a point trace:

T (x, τ) : x̄(τ) = K[R(τ)K−1x̄0 +
1

d0
t(τ)] , (6.14)

where x̄0 = [xT , 1]T = [x, y, 1] is the initial location of the point in the image

plane using normalized homogenous coordinates and d0 is the initial distance

of the corresponding 3D point xw from the camera. Refer to Fig. 6.3 for illus-

tration of the point trace. Assuming a constant illuminance over the exposure

period, the light energy emitted from the point is distributed evenly (with re-

spect to time) over the trace T . This effectively gives us a time parametrization

of a point-spread function for a given point x, which forms the blur opera-

tor H. The space-variant PSF h(s, t,X) corresponds precisely to the rendered

trace T (x, τ). The point trace as defined in (6.14) is in homogenous coordi-

nates T (x, τ) = [d(τ)x(τ), d(τ)]T . The space-variant PSF h(s, t,x) can be thus

expressed as follows:
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Figure 6.4 Influence of 1mm translation in x and y axes as a function of object
distance from the camera with 28mm focal length (35mm equivalent). Even for
relatively large sensors of 8 Mpixels, if the objects are 3 meters away from the
camera, 1 mm translation in the plane perpendicular to the optical axis produces a
shift of less than 1 pixel in the image plane.

h(s, t,x) =
1

T

∫
δ
([s
t

]
− x(τ)

)
dτ , (6.15)

where T is the exposure time. The point trace in (6.14) depends on camera

intrinsic parameters K and distance d0. Unlike the camera parameters (focal

length, image center and pixel scale), which are usually known or can be easily

estimated for any camera model, the distance of 3D points (depth map) are not

readily available. We cannot assume that the depth map is known in practise.

However, only camera translation t(τ) is influenced by the distance and rotation

R(τ) is independent. The translation term in (6.14) is 1
d0
Kt(τ) and after substi-

tution for K we see that the translation vector is multiplied by a factor f
d0

in the

x and y direction, and by a factor 1
d0

in the z direction. Typical phone cameras

have focal length of several millimeters and objects that we shoot are usually

at least few meters away, thus both factors are small numbers and the influence

of camera translation is negligible. Fig. 6.4 illustrates influence of 1 mm camera

translation in x or y direction as a function of the distance of the object from

the camera. For typical phone cameras, a scene projected into the camera image

plane moves by less than a pixel if the objects are more than 2 m away.

The above discussion allows us to focus on purely rotational motion of the cam-

era and this provides us with one additional benefit. Smartphones are equipped

both with accelerometers and gyroscopes. Accelerometers measure translation

acceleration, which is the second derivative of t(τ), and gyroscopes measure an-
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gular velocity, which is proportional to the first derivative of R(τ). To estimate

translation vector t one has to perform double integration of accelerometer data

along time. On the other hand, estimation of the rotation matrix R is done by

single integration of gyroscope data along time. In double integration, accelerom-

eter noise quickly amplifies and precision deteriorates shortly afterwards. This is

not the case for the gyroscope data, which can give a relatively precise estimation

of rotational angles throughout the camera exposure time. Since we assume only

rotation in our camera motion model, the approximated point trace T ′ is given

by

T ′(x, τ) : x̄(τ) = KR(τ)K−1x̄0 . (6.16)

The rotation matrix R is a function of three angles φx(τ), φy(τ) and φz(τ)

and these angles are estimated from gyroscope data, three angular speeds ωx(τ),

ωy(τ) and ωz(τ), by

φx(τ) =

∫ τ

0

ωx(t)dt , φy(τ) =

∫ τ

0

ωy(t)dt , φz(τ) =

∫ τ

0

ωz(t)dt . (6.17)

Knowing the camera intrinsic parameters (K) and having the data stream

from gyroscopes (ωx(τ), ωy(τ) and ωz(τ)), we can generate PSFs h(s, t,x) at

any position x in the image plane using (6.15), (6.16), and (6.17).

6.5 Smartphone application

This section illustrates that blur estimation with built-in inertial sensors is pos-

sible and we developed an implementation of image deblurring on a smartphone,

which works in practical situations and is relatively fast to be acceptable for a

general user.

As a testing platform, we have chosen a Samsung Galaxy S II smartphone with

Android OS. It is equipped with all the apparatus needed for our experiments;

namely, a relatively high-quality camera, motion sensors, a fast CPU, and enough

RAM to perform computations. A block diagram of the deblurring application

is shown in Fig. 6.5.

We first discuss the space-invariant implementation, which assumes a single

PSF in the entire image. Then we show a simple patch-based extension for the

space-variant implementation, which applies the space-invariant method in a

patch-wise manner which is still manageable on the tested smartphone platform.

6.5.1 Space-invariant implementation

During the photo acquisition, samples of angular velocity are recorded using the

embedded gyroscopes, which are afterwards trimmed to fit the exposure period.
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Figure 6.5 The block diagram of the smartphone application. During camera
exposure, the application records data from the built-in gyroscopes. The data is
processed and PSFs are estimated. The captured photo is divided into overlapping
patches, Wiener deconvolution is performed on every patch and the reconstructed
patches are blended to generate the sharp photo. The whole process for a 3Mpixel
photo, entirely done on the smartphone, takes around 6 seconds.

An estimation of the PSF is rendered by integrating the curve position from the

recorded gyroscope data using (6.15) and (6.16) for X in the center of the image.

State-of-the-art non-blind deconvolution methods use sparse image priors and

the solution is usually found by some iterative minimization algorithms, such as

in [8]. However the limited computational power of the smartphone prevents us

from implementing these sophisticated deconvolution methods. We thus use a

simple and fast Wiener filter in the form

Û = G
H∗

|H|2 + Φ
, (6.18)

where Φ is an estimation of the inverse signal-to-noise ratio (SNR), and G, H

and Û are discrete Fourier transforms of the observed image g, PSF h and the

estimated latent image û, respectively.

Filtering in the frequency domain treats the image as a periodic function,

which causes ringing artifacts around image borders. To overcome this problem,

several techniques were proposed in the literature [41, 42]. We have found it

sufficient to preprocess the input image g by blending the opposite image borders

at the width of the PSF, which creates a smooth transition and eliminates the

artifacts.

The intensity values of the output image û sometimes lie outside the 8-bit range

(0-255), therefore we added optional normalization with clipping of outliers. The

normalization is especially useful in the case of larger blurs and scenes with high

illumination.
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To convert images between the frequency and spatial domains, we use the FFT

algorithm implemented in the FFTW library. Utilizing a fast ARM Cortex-A9

CPU with two cores and support for a SIMD instruction set (NEON), FFTW

proved to be remarkably fast on the tested smartphone; see Tab. 6.1.

resolution no NEON, no hardware FPU NEON, 1 core NEON, 2 cores

1536× 1152 2900 185 110
2048× 1536 5300 330 195
2050× 1538 — 1000 540
3264× 2448 21200 1450 800

Table 6.1 Computational time (in milliseconds) of FFT transform of gray-scale images
with different sizes and different CPU settings.

Images are acquired with the native camera resolution of 3264 × 2448 which

we then rescale to 2048 × 1536 to take the advantage of better performance of

FFTW when the image size is a factor of small primes. Image downsampling

has a negligible effect on the image quality, because native camera resolution is

unnecessarily high. The optical system of the camera has a very small aperture,

which, because of diffraction and optical aberrations, limits the number of pixels

that can be effectively captured by the image sensor.

To perform Wiener filtering, the FFT must be applied several times: once

for the PSF and twice (forward and backward) for each color channel. That

yields a total of 7 FFT operations. With some overhead of bitmap transfers, the

deconvolution phase for the image resolution 2048×1536 takes about 2.6 seconds.

The whole process starting from the moment the camera shutter closes takes a

little over 6 seconds. This includes image resizing, PSF estimation, compressing

and saving the original and deblurred image files.

In Fig. 6.6 we display several of our results together with the PSFs calculated

from the gyroscope data. All results were computed with the signal-to-noise

parameter Φ set to 0.01. This value was determined experimentally to provide

the best looking results. The original intention was to set Φ proportionally to

ISO value extracted from EXIF data of a photo, which should determine the

amount of noise present in the image. However, we found the dependency of Φ on

ISO negligible. This behavior can be explained by the denoising step performed

internally by the camera module.

6.5.2 Space-variant implementation

Performance of the space-invariant implementation (as seen in Fig. 6.6) is by no

means consistent. Deconvolved images are impaired by visual anomalies wors-

ening its appearance. Most often these anomalies manifest as ringing artifacts

surrounding sharp edges in the picture, as demonstrated in Fig. 6.7.

The main cause is the space-variant nature of the blur that was not considered

so far. The space-variant PSFs are particularly noticeable when rotation around
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(a) captured image (b) reconstructed image (c) PSF

Figure 6.6 Examples of space-invariant deconvolution on the smartphone.

the z axis is significant. Smartphones are equipped with wide-angle lenses with

a field of view of approximately 60◦. This means that camera projection causes

rotation around the x and y axes to produce strongly space-variant blur in parts

close to image borders. Using relationships in (6.15) and (6.16) allows us to

render a correct PSF at every pixel of the image. However to perform image

deblurring with space-variant PSFs would be computationally expensive since

we cannot use the Wiener filter. Instead we break the image into overlapping
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(a) captured image (b) reconstructed image (c) PSF

Figure 6.7 An example of reconstruction artifacts in the space-invariant
implementation due to space-variant nature of degradation.

patches and generate one PSF in every patch using (6.16) at the center of the

patch. An example of dividing the image into 6 × 8 patches with 25% overlap

and generating the corresponding PSFs is in Fig. 6.9. In every patch we apply

the Wiener filter (including edge tapering and normalization) as described in the

space-invariant implementation in Sec. 6.5.1. Due to patch overlaps, we blend the

reconstructed patches by weighting them with appropriate Hamming windows

which produces the final image without noticeable seams between patches; see

Fig. 6.12(d).

Another reason for space-variant blur, which is not connected with camera

motion, but inherent to the camera hardware design, is the shutter mechanism.

Contrary to systems with a mechanical shutter, CMOS sensors in cheep cameras

are continuously illuminated. The readout from the CMOS sensor takes several

tens of milliseconds, which results in a picture not taken at a single moment, but

with a slight time delay between the first and last pixel row. This process, called

rolling shutter, is therefore another cause of the blur variance as the PSF depends

on the vertical position in the image. The correct approach to PSF estimation is

thus shifting the inertial sensor data in time according to the vertical position in

the image. An example in Fig. 6.8 illustrates the rolling shutter effect. We took a

snapshot of a LCD screen displaying a grid of white points on black background.

Due to camera motion, the points appear as streaks on the captured image. To

accurately model the PSFs at every position, it is necessary to shift the exposure-

time window, in which the gyroscope data are fetched. Let us assume that we

know the precise moment when the camera exposure starts. At the top row of

the image there is no delay between the exposure start and the time when we

start reading gyroscope data. As we move down towards the bottom rows, the

delay increases as these rows are exposed later. As illustrated in Fig. 6.8 for the

particular testing device, the delay between reading the first row and the last

row of the image is around 60ms.

6.6 Evaluation

Removal of camera shake based on gyroscope data as proposed in the previous

section should perform better than fully blind deconvolution methods discussed
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Figure 6.8 A snapshot (exposure time 1/14s) of point grid displayed on a LCD screen
showing the rolling shutter effect. The middle column shows a series of blur kernels
rendered using data from the gyroscope sensor shifted in time. Blurs were created
from sensor data starting 0–60 ms after a synchronization timestamp.

Figure 6.9 Patch-based space-variant reconstruction: The input image is divided into
6× 8 patches with 25% overlap. In the center of every patch, we estimate the
corresponding PSF using data from smartphone gyroscopes.
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(a) captured image (b) recon. with gyroscope (c) recon. with blind method

Figure 6.10 Comparison of reconstruction methods: (a) input blurred image; (b)
estimated sharp image and PSF with our smartphone application using gyroscope
data; (c) state-of-the-art blind deconvolution method proposed by Xu et al. in [13].

in Sec. 6.3.1. To illustrate algorithm’s performance, we compare the outcome of

the proposed smartphone application in Fig. 6.10(b) with the state-of-the-art

single-channel blind deconvolution in Fig. 6.10(c) proposed by Xu et al. in [13].

Xu’s method apart from being far more computationally demanding, is unable

to estimate the correct blurs in most of the test images we have taken with the

smartphone.

The angular speed estimated by gyroscopes is obviously not absolutely pre-

cise. To quantify the effect of gyroscope additive noise, we have conducted the

following synthetic experiment. A test image was synthetically convolved with a

PSF that was rendered using some gyroscope samples recorded previously with

our mobile application and an additive noise (SNR = 40 dB) was added to the

image. The generated blurred image imitated a photo that one typically acquires

with the smartphone. We then tried to deblur the image using the same gyro-

scope samples but this time corrupted by additive noise to simulate errors in

sensor measurement. PSNR = 10 log10(|Ω|2552/‖u− û‖2)(dB) of the results as a

function of noise standard deviation (rad/s) in gyroscope samples is summarized

in Fig. 6.11. The graph clearly shows that the performance of deblurring quickly

deteriorates as the noise level increases. Note that a fall of 1 dB in PSNR has a

dramatic visual effect on the image quality. The gyroscope noise level typically

encountered in motion sensors inside mobile devices (in our case Samsung Galaxy

S II) is 0.007 rad/s for our sampling rate, which is depicted by the vertical dashed

line in the graph. We can see that this noise level is associated with a relatively

small drop in PSNR, which is one of the reasons for satisfactory performance of

the proposed smartphone application.

In Fig. 6.12 we demonstrate the performance of the space-variant implementa-

tion from Sec. 6.5.2. The smartphone implementation divides the acquired image

in Fig. 6.12(a) into 6×8 patches of size 384×384 pixels with 25% overlap. PSFs
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Figure 6.11 PSNR of the original and deblurred image as a function of additive
gyroscope noise: Gaussian noise of standard deviation 0 to 0.1 rad/s was added to
gyroscope samples (angular velocity in rad/s). The deconvolution algorithm was then
applied using computed blur kernels based on these altered gyroscope measurements.
The graph shows mean values of 50 realizations for each of the noise levels.

generated from gyroscope data in every patch are illustrated in Fig. 6.12(c). The

reconstruction of the sharp image (Fig. 6.12(d)) takes about 7 seconds on the

testing device. For comparison we also show the space-invariant implementation

in Fig. 6.12(b), which assumes only one PSF generated for the center of the im-

age. In this particular case, the space-variant nature of PSFs was profound and

therefore the image shows noticeable ringing artifacts.

6.7 Conclusions

The first half of this chapter gives an overview of current trends in blind decon-

volution methodology using Bayesian inference. Image deblurring is inherently

an ill-posed problem and we need to search for techniques that make it better

posed. In general, there are two ways to achieve this. We must include priors,

which penalize inappropriate images and incorrect blur kernels, or we use addi-

tional information from other sources, such as multiple images of the same scene,

parametric models or information from inertial sensors. Our main attention is

blur caused by camera shake, which is very common in real life and even though

space-variant it can be easily parametrized.

The second half of the chapter presents an image deblurring method that can

effectively remove blur caused by camera motion using information from inertial

sensors – gyroscopes. The proposed method is fully implemented on a smart-
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(a) captured image (b) space-invariant deblurring

(c) gyroscope generated blurs (d) space-variant deblurring

Figure 6.12 An example of space-variant reconstruction: Due to space-variant nature
of the blur, which is clearly visible in (c), the space-invariant deblurring in (b)
produces reconstruction artifacts. On the other hand, performing deconvolution
patch-wise with correct blurs gives satisfactory results.

phone device, which is to our knowledge the first attempt in this direction and

renders the method particularly appealing for end users. We have demonstrated

that the space-invariant simplification for certain camera motions is plausible,

but simultaneously we have uncovered intrinsic sources of space-variant blur.

The space-variant implementation of the deblurring algorithm solves the com-

plex camera motion and rolling shutter issues, which both can be modeled by

space-variant blur.

There are several topics of future research. Implementing smarter deblurring

algorithms that avoid ringing artifacts is viable and clearly a tempting improve-

ment. Gyroscope data are not precise and one can use the calculated PSFs as

an initial estimate and apply modified blind deconvolution methods to improve

their accuracy.
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We would like to thank Ondřej Šindelář for implementing the smartphone appli-

cation and generating results for this chapter. This work was supported in part

by the Grant Agency of the Czech Republic under the project 13-29225S and by

the Academy of Sciences of the Czech Republic under the project M100751201.

References

[1] Campisi P, Egiazarian K, editors. Blind Image Deconvolution, Theory and Appli-

cation. CRC Press; 2007.

[2] Rosenfeld A, Kak AC. Digital Picture Processing. 2nd ed. Orlando, FL, USA:

Academic Press, Inc.; 1982.

[3] Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algo-

rithms. Physica D. 1992;60:259–268.

[4] Sroubek F, Flusser J. Multichannel blind deconvolution of spatially misaligned

images. IEEE Transactions on Image Processing. 2005 Jul;14(7):874–883.

[5] Molina R, Mateos J, Katsaggelos AK. Blind Deconvolution Using a Variational

Approach to Parameter, Image, and Blur Estimation. IEEE Transactions on Image

Processing. 2006 Dec;15(12):3715–3727.

[6] Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT. Removing camera

shake from a single photograph. In: SIGGRAPH ’06: ACM SIGGRAPH 2006

Papers. New York, NY, USA: ACM; 2006. p. 787–794.

[7] Jia J. Single Image Motion Deblurring Using Transparency. In: Proc. IEEE

Conference on Computer Vision and Pattern Recognition CVPR ’07; 2007. p. 1–8.

[8] Shan Q, Jia J, Agarwala A. High-quality motion deblurring from a single image.

In: SIGGRAPH ’08: ACM SIGGRAPH 2008 papers. New York, NY, USA: ACM;

2008. p. 1–10.

[9] Levin A, Weiss Y, Durand F, Freeman WT. Understanding and evaluating blind

deconvolution algorithms. In: Proc. IEEE Conference on Computer Vision and

Pattern Recognition CVPR ’09; 2009. p. 1964–1971.

[10] Levin A, Weiss Y, Durand F, Freeman WT. Understanding Blind Deconvolution

Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence.

2011;33(12):2354–2367.

[11] Miskin J, MacKay DJC. Ensemble Learning for Blind Image Separation and De-

convolution. In: Girolani M, editor. Advances in Independent Component Analysis.

Springer-Verlag; 2000. p. 123–142.

[12] Galatsanos NP, Mesarovic VZ, Molina R, Katsaggelos AK. Hierarchical Bayesian

image restoration from partially known blurs. IEEE Transactions on Image Pro-

cessing. 2000;9(10):1784–1797.

[13] Xu L, Jia J. Two-phase kernel estimation for robust motion deblurring. In: Pro-

ceedings of the 11th European conference on Computer vision: Part I. ECCV’10.

Berlin, Heidelberg: Springer-Verlag; 2010. p. 157–170.

[14] Schulz TJ. Multiframe Blind Deconvolution of Astronomical Images. J Opt Soc

Am A. 1993 May;10(5):1064–1073.



References 23

[15] Harikumar G, Bresler Y. Perfect Blind Restoration of Images Blurred by Multiple

Filters: Theory and Efficient Algorithms. IEEE Trans Image Processing. 1999

Feb;8(2):202–219.

[16] Gurelli MI, Nikias CL. EVAM: An eigenvector based algorithm for multichannel

blind deconvolution of input colored signals. IEEE Trans Acous, Speech, Signal

Processing. 1995;43:134–149.

[17] Giannakis GB, Heath RW. Blind identification of Multichannel FIR Blurs and

Perfect Image Restoration. IEEE Trans Image Processing. 2000 Nov;9(11):1877–

1896.

[18] Pai HT, Bovik AC. On eigenstructure-based direct multichannel blind image

restoration. IEEE Trans Image Processing. 2001 Oct;10(10):1434–1446.

[19] Pillai SU, Liang B. Blind Image Deconvolution Using a Robust GCD Approach.

IEEE Trans Image Processing. 1999 Feb;8(2):295–301.
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