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3D rotation invariants based on orthogonal Gaussian–Hermite moments are proposed in this paper. We

present an elegant and easy theoretical derivation of them. At the same time we prove by experiments that

the Gaussian–Hermite invariants have better numerical stability than the traditional invariants composed of

geometric moments.
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1. Introduction

Pattern classification and object recognition play vital roles in

image processing and computer vision. Generally, recognition is

achieved by seeking descriptors that can represent the object regard-

less of certain transformations and/or deformations. Moment invari-

ants were proved to be very powerful tools for feature representation

and it has been demonstrated many times that moment invariants

perform effectively in object recognition [1].

So far, various kinds of moment invariants to spatial transforma-

tions of the object have been proposed. Among all transformations

that have been studied in this context, rotation plays a central role.

Being a part of rigid-body transformation, object rotation is present

almost in all applications, even if the imaging system is well set up

and the experiment has been prepared in a laboratory. On the other

hand, rotation is not trivial to handle mathematically, unlike for in-

stance translation and scaling. For these two reasons, invariants to

rotation have been in focus of researchers since the beginning.

With the rapid progress of applied mathematics, computer sci-

ence and sensor technology, 3D imaging comes into engineering and

practice due to its more flexible and precise descriptions of 3D ob-

jects. Undoubtedly, developing rotation invariants for 3D images has

become a hot topic in the computer vision community. However, 3D

rotation is more difficult to handle than its 2D counterpart, since it

has three independent parameters. That is probably why only few

papers on 3D rotation moment invariants have appeared so far. The

first attempts to derive 3D rotation moment invariants are relatively

old. Sadjadi and Hall [2] explored ternary quadratics extensively and
✩ This paper has been recommended for acceptance by Andrea Torsello.
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erived three translation, rotation and scaling (TRS) moment invari-

nts. Guo [3] proved the results of Sadjadi and Hall in the different

ay and he derived more invariants to translation and rotation in 3D

pace. Cyganski and Orr [4] applied tensor theory to derive 3D rotation

nvariants. This method was also mentioned by Reiss [5], who used

nvariant image features to recognize planar objects. Xu and Li [6]

eveloped the invariants in both 2D and 3D space based on geomet-

ic primitives, such as distance, area, and volume. Galvez and Canton

7] employed normalization approach. The object is transformed into

he coordinates given by eigenvectors of the second-order moment

atrix and its transformed moments are taken as invariants. A mod-

fication of this method appeared in [8], where a slightly different

oment matrix is used for normalization. Another method to derive

D rotation invariants is based on complex moments [9,10]. Recently,

uk and Flusser [11] proposed an automatic algorithm to generate 3D

otation invariants from geometric moments up to an arbitrary order.

Although moments are probably the most popular 3D shape de-

criptors, it should be mentioned that they are not the only features

roviding rotation invariance. For example, Kakarala and Mao [12]

sed the bispectrum well-known from statistics for feature compu-

ation. Kazhdan [13] used an analogy of phase correlation based on

pherical harmonics for comparison of two objects. In this particular

ase it was used for registration, but can be also utilized for recogni-

ion. In [14], the authors used amplitude coefficients as the features.

ehr [15] used the power spectrum and bispectrum computed from

tensor function describing an object composed of patches. In [16],

he same author employed local binary patterns and in [17] he used

ocal spherical histograms of oriented gradients.

In comparison with traditional geometric or complex moments,

he outstanding advantage of orthogonal moments is their better nu-

erical stability, limited range of values, and existing recurrent rela-

ions for their calculation. Hence, several authors have tried to derive

he 2D invariants from orthogonal moments. In 3D, however, the

http://dx.doi.org/10.1016/j.patrec.2014.11.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.11.014&domain=pdf
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Fig. 1. Non-coefficient basis functions of the 8th order with different σ .
ituation is more difficult than in 2D, but one can still expect that 3D

rthogonal moments preserve their favorable numerical properties.

here exist polynomials orthogonal inside a unit ball and others that

re orthogonal on a unit cube. Seemingly, the polynomials defined

n a unit ball are more convenient for deriving rotation invariants

ecause the ball is mapped onto itself and the polynomials are trans-

ormed relatively easily under rotation. This approach was used by

anterakis [18] who employed 3D Zernike moments.

In this paper, we propose rotation 3D invariants from Gaussian–

ermite moments. To derive them, we used an approach that we

lready successfully applied in 2D [19]. We prove that the transfor-

ation of Gaussian–Hermite moments under rotation can be deduced

ndirectly, without explicit investigation of this transformation. Un-

er our knowledge, Gaussian–Hermite polynomials are the only ones

ffering this possibility. Hence, we prove in the paper that the rotation

nvariants from Gaussian–Hermite moments have the same forms as

hose of rotation invariants from geometric moments in 3D space.

his is an important conclusion because it allows us to reduce rotation

nvariant derivation from Gaussian–Hermite moments to that from

eometric moments in 3D space, which are much easier to develop

ut we still benefit from the numerical stability of Gaussian–Hermite

oments.

The core idea of the paper and its main theoretical achievement

xpressed by Theorem 1 is similar to that presented in [19] for a 2D

ase. It should be, however, stressed that the transition from 2D to 3D

s not generally straightforward and easy. The rotation in 3D has three

egrees of freedom comparing to a single parameter of a 2D rotation.

ence, any 3D mathematical objects and structures somehow related

o rotation are far more rich than in 2D. Another difference that also

akes the 3D problem more complicated is that rotation in 3D is not

ommutative. These are the reasons why the generalization from 2D

o 3D cannot be done automatically but should always be carefully

tudied. Such studies sometimes discover an analogy with 2D (which

s the case of this paper) and sometimes end up with different results.

The rest of the paper is organized as follows. Section 2 gives a gen-

ral introduction to 3D rotation. The latest achievement about rota-

ion invariants from geometric moments in 3D space is also recalled in

his section. Section 3 reviews Gaussian–Hermite moments and gives

wo theorems according to which we can use the formations of ge-

metric invariants to build rotation invariants of Gaussian–Hermite

oments. Numerical experiments are presented in Section 4. Finally,

ection 5 concludes the paper.

. 3D rotation and its invariants

To describe a rotation in 3D space, we use extrinsic Tait–Bryan

ngle convention (z − y − x) [20]. We consider the rotation along z

xis by angle α, along y axis by angle −β , and along x axis by angle γ .

ence, a general 3D rotation can be directly represented by a matrix

ultiplication

= Rx(γ )Ry(−β)Rz(α). (1)

ny rotation in 3D space can be decomposed into three successive

otations as defined by Eq. (1). Thanks to this, it is sufficient to consider

lementary rotations along the axes only.

In 3D space, geometric central moment of order (p + q + r) is de-

ned

pqr =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x − xc)

p(y − yc)
q(z − zc)

rf (x, y, z)dxdydz, (2)

here the centroid of the image f (x, y, z) is calculated by xc =
100/m000, yc = m010/m000, and zc = m001/m000. Recently, Suk and

lusser [11] proposed and implemented an automatic method for

enerating 3D rotation invariants from geometric moments. Their

omplete results are summarized in [21]. A list of 1185 irreducible

otation invariants in 3D space is available there. These invariants are
uilt up from the moments of order 2 up to order 16. 3D rotation

nvariants of geometric moments are potential tools for the applica-

ions, such as object recognition and image retrieval. However, poor

umerical stability exposes when the order of the invariant increases

o a certain number. Hence, it is necessary to develop 3D rotation in-

ariants based on orthogonal moments, which generally have better

umerical stability than geometric moments.

. 3D rotation invariants from Gaussian–Hermite moments

.1. Gaussian–Hermite moments

The pth degree Hermite polynomial is defined by

p(x) = (−1)pexp(x2)
dp

dxp
exp(−x2). (3)

ermite polynomials can be efficiently computed by the following

-term recurrence relation:

p+1(x) = 2xHp(x)− 2pHp−1(x) for p ≥ 1, (4)

ith the initial conditions H0(x) = 1 and H1(x) = 2x. Hermite poly-

omials are orthogonal on (−∞, ∞) with a Gaussian weight function

∞

−∞
Hp(x)Hq(x)exp (−x2)dx = 2pp!

√
πδpq, (5)

here δpq is the Kronecker delta. A weighted and normalized version,

hich is actually a scaled Hermite function, is usually used in practice

p̃(x; σ) = (2pp!
√

πσ)−1/2Hp(x/σ )exp(−x2/2σ 2). (6)

aussian–Hermite moment is defined with (6) being its basis func-

ion. The system (6) is not only orthogonal but also orthonormal, so it

s convenient to conduct image reconstruction from the correspond-

ng moments. However, when we multiply H̃p(x; σ) in x direction and

q̃(y; σ) in y direction, the product depends not only on the sum p + q,

ut also on the product p!q!; therefore, we must remove it from the

asis function

p̂(x; σ) = Hp(x/σ )exp(−x2/2σ 2). (7)

ig. 1 shows such non-coefficient basis functions (7) of order 8 with

ifferent σ . We call the moments with respect to the basis func-

ions (7) non-coefficient Gaussian–Hermite moments. For an image

(x, y, z) in 3D space, its non-coefficient Gaussian–Hermite moment

f order p + q + r is defined as

pqr =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ĥp(x; σ)Ĥq(y; σ)Ĥr(z; σ)f (x, y, z)dxdydz. (8)
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In general, we prefer to use the central Gaussian–Hermite moments

to achieve the translation invariance

ηpqr =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ĥp(x − xc; σ)Ĥq(y − yc; σ)Ĥr(z − zc; σ)

f (x, y, z)dxdydz. (9)

The choice of the actual σ value depends on the size of the object.

It should be chosen such that the centralized basis functions (7)

effectively cover the object.

3.2. Derivation of rotation invariants

Rotation invariants based on Gaussian–Hermite moments have

been proposed for 2D image by Yang et al. [19] who showed that

rotated Hermite polynomials are transformed in the same way as

basic monomials xpyq. Here we formulate and prove an analogical

theorem for a 3D case.

Theorem 1. Let p, q, and r be three non-negative integers. Let the coor-

dinates be rotated as (x̂ ŷ ẑ)T = R(x y z)T . Then

x̂pŷqẑr =
L(p,q,r)∑

i=1

coni

(
p, q, r, α, β, γ

)
xpi yqi zri , (10)

where L(p, q, r) is a certain number determined by p, q, r. coni represents

a constant sequence specifically related to p, q, r, α, β and γ . pi, qi, ri are

integers determined by p, q, r. Hermite polynomials are transformed in

the same way

Hp(x̂)Hq(ŷ)Hr(ẑ) =
L(p,q,r)∑

i=1

coni

(
p, q, r, α, β, γ

)
Hpi

(x)Hqi
(y)Hri

(z).

(11)

The proof of Theorem 1 can be found in Appendix A. It is easy to

prove that with the standard deviations σx = σy = σz, 3D Gaussian

functions are rotation invariants when the transformation of coordi-

nates is defined by (1). So, multiplying a 3D Gaussian function at both

sides by (11) does not violate the equality. Still, taking Theorem 1, the
Fig. 2. Two scans of
eparability and rotation invariance of Gaussian functions into ac-

ount, we can draw the central conclusion that rotation invariants of

aussian–Hermite moments have the same constructing formations

s those of rotation invariants of geometric moments in 3D space.

ore formally, this conclusion can be formulated as follows:

heorem 2. If χ is a rotation invariant in geometric moments

(
m

αβγ
p1q1r1

, m
αβγ
p2q2r2

, . . . , m
αβγ
piqiri

)
= χ

(
mp1q1r1

, mp2q2r2
, . . . , mpiqiri

)
(12)

hen χ is also a rotation invariant in Gaussian–Hermite moments, i.e.,(
ηαβγ

p1q1r1
, ηαβγ

p2q2r2
, . . . , ηαβγ

piqiri

)
= χ

(
ηp1q1r1

, ηp2q2r2
, . . . , ηpiqiri

)
. (13)

he proof of Theorem 2 is given in Appendix B.

Theorem 2 offers a straightforward efficient way of deriving ro-

ation invariants from Gaussian–Hermite moments. We just take the

xisting invariants from geometric moments and just replace the ge-

metric moments by the Gaussian–Hermite ones. The form of the

nvariants does not change at all. In this way we obtain the Gaussian–

ermite invariants “for free”, without any additional investment.

or example, I1 = μ200 + μ020 + μ002 and I2 = μ2
200 + μ2

020 + μ2
002 +

μ2
110 + 2μ2

101 + 2μ2
011 are the first two rotation invariants from

11,21]. According to Theorem 2, we replace every geometric moment

y the corresponding Gaussian–Hermite moment in these invariants

nd then we obtain three rotation invariants of Gaussian–Hermite

oments. For example, the first rotation invariant from Gaussian–

ermite moments is 
1 = η200 + η020 + η002. It is possible to use

ll invariants presented in [21] to build the invariants of Gaussian–

ermite moments. Obviously, we can easily obtain totally 1185 rota-

ion invariants of orthogonal Gaussian–Hermite moments. Hence, we

ound an efficient and elegant way of deriving orthogonal moment

nvariants in 3D of any orders based on Gaussian–Hermite moments.

his forms the major theoretical contribution of the paper. In the

ext section, we demonstrate the invariance property both on artifi-

ial and real data and, namely, show the better numerical stability of

aussian–Hermite invariants.
a teddy bear.
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Fig. 3. The values of five selected invariants of the teddy bear. The MREs of the invari-

ants over six rotations are 3.8%, 3.8%, 3.6%, 3.5%, and 2.9%, respectively.
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. Numerical experiments

In this section, we will test the proposed invariants numerically.

e construct rotation invariants of Gaussian–Hermite moments from

1 to 
1185 according to those of geometric moments from I1 to I1185

isted in [21]. The experiments are designed to verify rotation invari-

nce and evaluate the numerical stability of the proposed invariants.

.1. Verification of invariance on synthetic images

This experiment was designed to verify the rotation invariance

f the proposed invariants. We used 100 objects from the Princeton

hape Benchmark (PSB) [22]. For each shape we rasterized this mesh

odel and inscribed it into 200 × 200 × 200 volume, which was taken
ig. 4. The reconstruction of a volumetric image by both geometric moments (error 7336) a

87, 87, 87).
s the original image. This original image has only two values in its

oxels: 1 for the voxels of the object and 0 for those of the back-

round. Five random rotations of the original image were generated

nd the first 42 Gaussian–Hermite invariants were calculated for both

riginal image and its rotated versions. To evaluate quantitatively the

nvariance, we used mean relative error (MRE) to measure the com-

utational error of the ith invariant. The MRE of the ith invariant is

efined as

REi = 1

N

N∑
j=1

∣∣∣∣∣

j
i
− 
i


i

∣∣∣∣∣ × 100%, (14)

here 
i and 

j
i

are the ith invariants of the original image and

he jth rotated version, respectively. N is the number of rotated ver-

ions. Consequently, we found the maximum MRE (MMRE) for each

bject. MMREs of 85 objects are below 1% and that of 10 objects be-

ween 1% and 2%. In the remaining five cases, the invariant value in

he denominator is so close to zero that the MMRE is higher. Any-

ay, this experiment exhaustively demonstrated a desirable rotation

nvariance.

.2. Verification of invariance on real images

We carried out a similar experiment in more challenging condi-

ions – we used real 3D object and its real rotations in the space. We

ook a teddy bear and scanned it by means of Kinect device, then

e repeated this process five times with different orientations of the

eddy bear in the space. Hence, we obtained six 3D scans differing

rom each other by rotation and also slightly by scale, quality of de-

ails and perhaps by some random errors (see Fig. 2 for two sample

cans). When using Kinect, one has to scan the object from several

iews and Kinect software then produces a triangulated surface of

he object. We converted each teddy bear figure into 3D volumet-

ic representation of the size approximately 150 × 150 × 150 voxels.

hen we calculated the 14 invariants from 
1 to 
14 of each scan.

n Fig. 3 we show five randomly selected invariants computed from

he different scans. As can be seen from this figure, the values of the

nvariants have only slight variance (check the MRE values in the fig-

re caption), which demonstrates the desirable invariance in a real
nd Gaussian–Hermite moments (error 29) using moments of orders from (0, 0, 0) to
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Fig. 5. The volumetric versions of the objects from PSB. (a), (b) The bottles, (c), (d) the fighter jets.
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environment. The behavior of the other nine invariants is basically

the same.

Comparing to the simulated case, now the MREs of individual

invariants are about 10 times higher (but still safely below 5%). This

does not contradict the theory but rather illustrates the problems we

face when using real data acquired by a non-ideal scanner.

4.3. Image reconstruction

This experiment illustrates the major result of the paper. We show

that Gaussian–Hermite moments demonstrate better image repre-

sentation ability than the geometric moments. All polynomial bases

of the same order are theoretically equivalent – knowing the coor-

dinates (moments) in one of them, we can calculate the moments in

the others. This works in theory but in numerical implementation we

face different properties of different polynomial systems that affect

their representation ability. The quality of image representation is

best measured by a reconstruction error.
The direct reconstruction from the geometric moments can be

omputed approximately up to 10 × 10 × 10 voxels only, then the

ernel functions xpyqzr lose their precision and the whole algorithm

ollapses. To overcome this, the reconstruction through the Fourier

ransformation is commonly used

(u, v, w) =
∞∑

p=0

∞∑
q=0

∞∑
r=0

(−2π i)p+q+r

p!q!r!

( u

N

)p ( v

N

)q (w

N

)r

mpqr. (15)

n practice, the infinite series must be truncated. We can compute

he Fourier transformation from the moments by (15) and then ob-

ain the original image by inverse Fourier transformation. The main

roblem of this method is that the power series is only an approxi-

ation of the exponential kernel of the Fourier transformation. Even

f we take relatively high number of moments, the error of this ap-

roximation (namely of the high-frequency parts) is still significant.

econstruction from Gaussian–Hermite moments can be performed

irectly thanks to the orthogonality:
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Fig. 6. The noisy (15 dB) versions of the objects from PSB. (a), (b) The bottles, (c), (d) the fighter jets.
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s

(x, y, z) = π− 3
4 σ− 3

2

∞∑
p=0

∞∑
q=0

∞∑
r=0

(2p+q+rp!q!r!)−
1
2 ηpqrH̃p(x; σ)

H̃q(y; σ)H̃r(z; σ) x, y, z = 0, 1, 2, . . . , N − 1. (16)

n discrete case, it is suitable to truncate the infinite series so the

umber of moments equals the number of voxels or even more, when

hey are not precise.

Hence, there is neither an ill-conditioned problem nor inaccurate

se of Fourier transformation. As we can see in the experiment, this

esults in much better reconstruction. We used a binary volumetric

mage of the size 100 × 100 × 100 voxels of an insect (see Fig. 4a) from

he Princeton database. We calculated both geometric and Gaussian–

ermite moments of it up to the order 87. This is the maximum

chievable order for geometric moments; higher-order moments are

ubject of floating-point overflow. Gaussian–Hermite moments could

e calculated up to higher orders but we used the same order as for

eometric moments to keep the comparison unbiased. The recon-
truction from geometric moments via Fourier transformation is of a

oor quality with all fine details degraded (see Fig. 4b). On the other

and, the reconstruction from Gaussian–Hermite moments contains

lmost all fine parts such as the claws, the feelers, and the butt quite

ividly apparent, see Fig. 4c. The reconstruction quality can be quan-

ified by the number of different voxels between the reconstructed

mage and the original. The error of the reconstruction from geo-

etric moments is 7336, while Gaussian–Hermite moments yield

lmost negligible error equal to 29. This result clearly demonstrates

hat Gaussian–Hermite moments provide significantly better image

epresentation than geometric moments in 3D case. Hence, 3D invari-

nts based on Gaussian–Hermite moments have better discrimination

bility than 3D geometric invariants.

.4. Object recognition

In this experiment we demonstrate that the better numerical

tability of the Gaussian–Hermite moments actually increases the
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Fig. 7. The success rate of the recognition. (a) The bottles, (b) the fighter jets. Legend: −◦− geometric moments, −×− Gaussian–Hermite moments.
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recognition power of the respective invariants in some cases. We

again used the objects from the Princeton Shape Benchmark [22].

To demonstrate the phenomenon, we selected several pairs of ob-

jects that are visually very similar to each other (see Fig. 5 for two

examples). For each object we generated 90 “shaky” instances by

adding a zero-mean Gaussian noise to the coordinates of the triangle

vertices of the object surface (see Fig. 6). The amount of the noise

was measured by the signal-to-noise ratio (SNR), defined in this case

as

SNR = 10 log
(
σ 2

s /σ 2
n

)
, (17)

where σs is the standard deviation of the object coordinates and σn

is the standard deviation of the noise. We used SNRs from 55dB to

10dB, so we had nine degraded instances on each noise level. Now

we let the algorithm to recognize the shaky objects by means of the

geometric invariants I1181, I1182, I1183, I1184, and I1185 [21] and by

the corresponding Gaussian–Hermite invariants 
1181, 
1182, 
1183,


1184, and
1185. We intentionally used these higher-order invariants

(from 13th to 16th order) because low-order invariants either cannot

distinguish similar objects or, if they can, they do not suffer by the

loss of precision in case of geometric moments.

The success curves of the objects from Fig. 5 are shown in Fig. 7. If

the noise is mild, both invariants can recognize the objects perfectly.

On medium levels of noise, the performance of the Gaussian–Hermite

invariants dominates. The explanation is in numerical stability – ge-

ometric moments of orders 13–16 lose the precision due to the ne-

cessity of working with very high values while Gaussian–Hermite

moments can be computed in a stable way with much less precision

loss. For a heavy noise 10dB, the shaky objects are so similar that the

performance of both methods decreases. However, the performance

of the Gaussian–Hermite invariants is still in the range 65–90% while

that of the geometric invariants drops to 50%, which is in the case of

two classes equal to a random decision. This experiment clearly illus-

trates the advantage of Gaussian–Hermite invariants when recogniz-

ing similar objects. If the objects (classes) are significantly different,

they can be discriminated by low-order invariants and the described

effect does not show up.

5. Conclusion

In this paper, we proposed an approach to developing 3D rota-

tion invariants based on orthogonal Gaussian–Hermite moments. We

have found an important rotation property of Hermite polynomi-
ls and used it to construct the invariants. The rotation invariants of

aussian–Hermite moments in 3D space have the same formations as

hose of geometric rotation invariants. This is a significant theoretical

esult, because it offers the solution to the problem of developing 3D

otation invariants from Gaussian–Hermite moments both theoreti-

ally and practically. With this result, we can construct the rotation

nvariants of Gaussian–Hermite moments from the existing geomet-

ic rotation invariants. It is no longer necessary to derive rotation

nvariants based on Hermite polynomials or basis functions directly

from scratch”.

The actual calculation of the Gaussian–Hermite moments is then

erformed by means of recurrent relations, which avoids the unsta-

le calculation of geometric moments. Experimental results on both

ynthetic and real data verified the rotation invariance of Gaussian–

ermite invariants. At the same time, the superior numerical sta-

ility of Gaussian–Hermite moments and invariants was confirmed

ompared to traditional invariants from geometric moments by ex-

eriments with object reconstruction and with recognition of noisy

hapes.
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ppendix A. Proof of Theorem 1

Suppose the original coordinates are (x, y, z). After the rotation

long z axis by angle α, the transitional coordinates (x̃, ỹ, z̃)are deter-

ined by

x̃ ỹ z̃
)T = Rz(α)(x y z)T . (A.1)

he subsequent rotation along y axis by angle −β creates the transi-

ional coordinates (x̄, ȳ, z̄), which can be calculated from the previous

oordinates (x̃, ỹ, z̃) as

http://dx.doi.org/10.13039/501100001824
http://dx.doi.org/10.13039/501100001667
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x̄ ȳ z̄
)T = Ry(−β)

(
x̃ ỹ z̃

)T
. (A.2)

he third rotation along x axis by angle γ produces the coordinates

x̂, ŷ, ẑ)

x̂ ŷ ẑ
)T = Rx(γ )

(
x̄ ȳ z̄

)T
. (A.3)

ccording to (A.3) and Theorem 1 in [19] we have

ˆpŷqẑr = x̄p(ȳ cos γ − z̄ sin γ )q(ȳ sin γ + z̄ cos γ )r

=
q+r∑
s=0

k(s, q, r, γ )x̄pȳq+r−sz̄s, (A.4)

nd

p(x̂)Hq(ŷ)Hr(ẑ) = Hp(x̄)Hq(ȳ cos γ − z̄ sin γ )Hr(ȳ sin γ + z̄ cos γ )

=
q+r∑
s=0

k
(
s, q, r, γ

)
Hp(x̄)Hq+r−s(ȳ)Hs(z̄). (A.5)

ubstituting (A.2) into (A.4) and (A.5), (A.4) can be further expanded

s
q+r

s=0

k(s, q, r, γ )(x̃ cos β + z̃ sin β)p(−x̃ sin β + z̃ cos β)sỹq+r−s

=
q+r∑
s=0

k(s, q, r, γ )
p+s∑
t=0

k(t, p, s,−β)x̃p+s−t ỹq+r−sz̃t (A.6)

nd (A.5) is also expanded as

q+r

s=0

k(s, q, r, γ )Hp(x̃ cos β + z̃ sin β)Hs(−x̃ sin β + z̃ cos β)Hq+r−s(ỹ)

=
q+r∑
s=0

k(s, q, r, γ )
p+s∑
t=0

k(t, p, s,−β)Hp+s−t(x̃)Hq+r−s(ỹ)Ht(z̃). (A.7)

fter substituting (A.1) into (A.6) and (A.7), (A.6) has the form

q+r

s=0

k(s, q, r, γ )
p+s∑
t=0

k(t, p, s,−β)(x cos α − y sin α)p+s−t

× (x sin α + y cos α)q+r−szt =
q+r∑
s=0

k(s, q, r, γ )
p+s∑
t=0

k(t, p, s,−β)

×
p+q+r−t∑

u=0

k(u, p + s − t, q + r − s, α)xp+q+r−t−uyuzt (A.8)

nd (A.7) becomes

q+r

s=0

k(s, q, r, γ )
p+s∑
t=0

k(t, p, s,−β)Hp+s−t(x cos α − y sin α)

q+r−s(x sin α + y cos α)Ht(z) =
q+r∑
s=0

k(s, q, r, γ )
p+s∑
t=0

k(t, p, s,−β)

×
p+q+r−t∑

u=0

k (u, p + s − t, q + r − s, α)Hp+q+r−t−u(x)Hu(y)Ht(z).

(A.9)

A.8) indicates a linear combination. Substantially, it can be rewritten

o

ˆpŷqẑr =
L(p,q,r)∑

i=1

coni

(
p, q, r, α, β, γ

)
xpi yqi zri . (A.10)

ikewise, (A.9) can be also rewritten to

p(x̂)Hq(ŷ)Hr(ẑ) =
L(p,q,r)∑

i=1

coni

(
p, q, r, α, β, γ

)
Hpi

(x)Hqi
(y)Hri

(z)

(A.11)
he proof of Theorem 1 has been completed.
ppendix B. Proof of Theorem 2

Suppose we have the original image f (x, y, z) defined in V and the

otated image f R(x̂, ŷ, ẑ)defined in VR. After the rotation, the geomet-

ic moment of order (p + q + r) for f R(x̂, ŷ, ẑ) is defined as

αβγ
pqr =

∫∫∫
VR

x̂pŷqẑrf R(x̂, ŷ, ẑ)dx̂dŷdẑ. (B.1)

fter the substitution (x̂ ŷ ẑ)T = R(x y z)T and considering that
R(x̂, ŷ, ẑ) = f (x, y, z) we get

αβγ
pqr =

∫∫∫
V

x̂pŷqẑrf (x, y, z)|J|dxdydz

=
L(p,q,r)∑

i=1

coni

(
p, q, r, α, β, γ

)
mpiqiri

, (B.2)

here |J| = det(RT) = 1. When σ in (7) has the same value for x, y

nd z axes, Gaussian–Hermite moments can be computed in a similar

ay

αβγ
pqr =

∫∫∫
VR

Ĥp(x̂)Ĥq(ŷ)Ĥr(ẑ)f
R(x̂, ŷ, ẑ)dx̂dŷdẑ

=
∫∫∫

V

Ĥp(x̂)Ĥq(ŷ)Ĥr(ẑ)f (x, y, z)|J|dxdydz

=
L(p,q,r)∑

i=1

coni(p, q, r, α, β, γ )ηpiqiri
. (B.3)

et χ be a rotation invariant of geometric moments that has a

orm of (12). Since it is an invariant, the angles α,β, γ are com-

letely eliminated. Therefore, according to (B.2), (B.3), and (12),

he combination χ also eliminates the angles in Gaussian–Hermite

oments,(
η

αβγ
p1q1r1

, η
αβγ
p2q2r2

, · · · , η
αβγ
piqiri

)
= χ

(
ηp1q1r1

, ηp2q2r2
, · · · , ηpiqiri

)
(B.4)

n order to obtain the translation invariance simultaneously, ηpiqiri

n (B.4) can be correspondingly replaced by ηpiqiri
, which then estab-

ishes (13). The proof of Theorem 2 has been completed.
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