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Summary

In our paper, we present a performance evaluation of image
segmentation algorithms on microscopic image data. In spite
of the existence of many algorithms for image data partition-
ing, there is no universal and ‘the best’ method yet. Moreover,
images of microscopic samples can be of various character
and quality which can negatively influence the performance
of image segmentation algorithms. Thus, the issue of select-
ing suitable method for a given set of image data is of big
interest. We carried out a large number of experiments with a
variety of segmentation methods to evaluate the behaviour
of individual approaches on the testing set of microscopic
images (cross-section images taken in three different modali-
ties from the field of art restoration). The segmentation results
were assessed by several indices used for measuring the out-
put quality of image segmentation algorithms. In the end, the
benefit of segmentation combination approach is studied and
applicability of achieved results on another representatives of
microscopic data category – biological samples – is shown.

Lay description

The image segmentation is one of several parts of image anal-
ysis process. Its role is to partition an image to meaningful
nonoverlapping regions – segments – which serve as an input
to following stages of the analysis. There is plenty of different
approaches addressing this issue and although many of them
deliver high-quality results, there is no universal segmenta-
tion method which would outperform the others on any kind of
data. Thus, there is always a dilemma which method to choose
for segmentation of given data set. In our paper we compare
performance of many segmentation methods on data set of
microscopic images. We give suggestions on which method to
use under which circumstances and we show that combina-
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tion of several methods outperforms even the best one from
the studied set. The findings are supported by large number of
experiments and statistical testing.

Introduction

The fundamental objective of image segmentation is to parti-
tion the input image into meaningful nonoverlapping regions
– segments – for further analysis or visualization. There is a
variety of approaches addressing this task, exploiting various
image properties to achieve the given goal. They span from
low-level techniques using intensity thresholds, edge trac-
ing or region growing (RG), over graph-based and statisti-
cal approaches, to model-based algorithms and other higher
level methods (see e.g. Pal & Pal, 1993 or Dey et al., 2010
for surveys, the latter from optical remote sensing perspec-
tive). Survey (Freixenet et al., 2002) presents also quantitative
comparison next to the review of segmentation techniques
which integrate boundary and region information. Recently,
the combination-based solution has been introduced, where
the final partition is formed using a combination of results of
several segmentation methods and thus inhibiting their short-
comings.

Despite the longtime effort to develop high-quality segmen-
tation algorithms, there has not been any universal segmen-
tation method proposed. Under these circumstances, there is a
dilemma which method to choose for given particular data set
and whether the combination of segmentation results would
be beneficial. Our article tries to answer these questions for
defined category of image processing data set of images of
microscopic samples (see Fig. 1), moreover taken in different
modalities (visible spectrum (VIS), ultraviolet spectrum (UV)
and scanning electron microscope (SEM)). From the image
processing point of view, the origin of the samples often does
not play an important role. The factual meaning of particular
intensity levels can be irrelevant for the segmentation algo-
rithm.

We limit our study to the microscopic image data that con-
tain the sample located in the inner part of the image, mostly
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Fig. 1. The images of the cross-section samples are acquired in three modalities – visible spectrum (VIS), ultraviolet spectrum (UV) and scanning electron
microscope (SEM). Image courtesy of ALMA, Prague.

not reaching to the top and bottom image borders. The data
may come from an analysis of painting materials used in art
restoration (Fig. 1), which is the case of the data set used in our
evaluation. They can be samples of various biological mate-
rials, such as tissues, cells, or other biological structures. The
task at hand can be seen as the two-target problem where an
image has to be labelled with either foreground or background
label and where the foreground is usually the inner part of the
image and the background is separated and/or removed. The
problem can be viewed as image binarization, too.

At first glance it might seem to be a simple task solvable by
means of basic thresholding, however the situation is often
more complex. Due to the setting of data collection process,
acquired images are often unfit to the chosen segmentation
method and following complications are usually inevitable
– surroundings of analysed samples can be semitransparent,
with nonuniform cutting-plane and various debris, to name a
few examples. High number of samples can negatively influ-
ence precision of sample scanning in terms of noise level and
blurring.

The objective of the paper is to evaluate the noninteractive
segmentation methods in terms of their accuracy, assessed by
several indices used for measuring the output quality of image
segmentation algorithms. Furthermore, efficiency of combi-
nation of segmentation results is addressed, too. Finally, the
applicability of the achieved conclusions is demonstrated on
different data set – the biological samples. Sections segmenta-
tion algorithms and quality indices introduces the participat-
ing methods and indices. The full explanation of the analysed
methods is out of the scope of our paper. If necessary, please
consult given references. Section algorithms evaluation forms
the key part of this paper with evaluation and comparison
of the image segmentation algorithms. Insight into their per-
formance and guidelines for their use are given there. Also
application of the obtained results to different data set is shown.
Section combination of image segmentation methods presents
exploitation of the results for achieving even better segmenta-
tion output via combination approach. The paper is concluded
in conclusion Section.

Segmentation algorithms and quality indices

First, a survey of the image segmentation algorithms analysed
in this paper (i.e. studied set) is presented. The second part
focuses on indices used for measuring the output quality of
the image segmentation algorithms. The abbreviations are
assigned to each method and index for future references and
their list is presented in Table 1.

Segmentation algorithms

There is a variety of segmentation methods available to be
used to solve the image segmentation problem which differ
in many ways (see e.g. Pal & Pal, 1993, Dey et al., 2010 or
Freixenet et al., 2002 for surveys). The algorithms in our study
are selected with respect to the following criteria. Methods
with different fundamentals are considered to provide a diver-
sity. The performance and computational (time) efficiency are
taken into account with preference for short execution time.
Finally, the public availability of the implementation and thus
related popularity of the segmentation method are considered
too. Last criterion is also important because it can be expected
that potential users of image segmentation algorithms would
choose exactly such popular methods. There exists a lot more
segmentation algorithms (e.g. Grady, 2006; Malcolm et al.,
2007; Arbelaez et al., 2011) but inclusion of each of them is
beyond the scope of this paper.

The selected algorithms can be divided into groups accord-
ing to their fundamental approach to solve the image segmen-
tation problem. The following paragraphs briefly describe the
groups and particular algorithms.

Thresholding. Thresholding is probably the most popular
method for image segmentation. The aim is to find an optimum
threshold which separates the input image to two distinct
groups of pixels by their intensity. Plenty of different methods
for threshold detection exist and many of them are selected to
participate in the evaluation.
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Table 1. List of image segmentation methods in studied set and of quality indices used for their comparison. The abbreviations widely used in text are in
the first column.

Segmentation methods

IMJ_* Various thresholding methods from ImageJ (Huang & Wang, 1995; Prewitt & Mendelsohn, 1966; Ridler &
Calvard, 1978; Li & Tam, 1998; Kapur et al., 1985; Kittler & Illingworth, 1986; Tsai, 1985; Otsu, 1975;
Doyle, 1962; Shanbhag, 1994; Zack et al., 1977; Yen et al., 1995)

HT_* Various thresholding methods from HistThresh (Rosenfeld & De La Torre, 1983; Glasbey, 1993; Otsu, 1975;
Ridler & Calvard, 1978; Prewitt & Mendelsohn, 1966; Dempster et al., 1977; Kittler & Illingworth, 1986;
Tsai, 1985)

TNC Tao’s thresholding method (Tao et al., 2008)
RG Region growing (Pratt, 2007)
KM K-means clustering (MacQueen, 1967)
MS Mean Shift algorithm (Comaniciu & Meer, 2002)
GC_FH Felzenszwalb’s method (Felzenszwalb & Huttenlocher, 2004)
GC_R GrabCut (Rother et al., 2004)
GC_CV Daněk’s optimization of Chan-Vese (Daněk, 2012; Chan & Vese, 2001)
GC_RD Daněk’s optimization of Rousson–Deriche (Daněk, 2012; Rousson & Deriche, 2002)
MNC Multiscale normalized cut (Cour et al., 2005)

Quality indices

HD Hamming distance (Hamming, 1950)
BHD Boundary Hamming distance (Kohli et al., 2009)
RI Rand index (Rand, 1971)
ARI Adjusted Rand index (Hubert & Arabie, 1985)
DC Dice coefficient (Dice, 1945)
FMI Fowlkes–Mallows index (Fowlkes & Mallows, 1983)
NMI Normalized mutual information (Strehl & Ghosh, 2003)
VI Variation of information (Meilă, 2007)
HAUSD Hausdorff distance (Sluimer et al., 2005)
MASD Mean absolute surface distance (Sluimer et al., 2005)

The methods of the Auto Threshold plugin1 for ImageJ
software package2 are included. Namely Huang method
(IMJ_HUANG) (Huang & Wang, 1995) which minimizes the
measures of background/foreground fuzziness, Intermodes
(IMJ_IM) (Prewitt & Mendelsohn, 1966) with iterative his-
togram smoothing, Isodata (IMJ_ISO) (Ridler & Calvard, 1978)
and its variation (IMJ_DEF) which iteratively update the
threshold according to background and foreground intensity
means, Li’s method (IMJ_LI) (Li & Tam, 1998) for cross en-
tropy minimization, Kapur–Sahoo–Wong maximum entropy
method (IMJ_MAXENT) (Kapur et al., 1985), mean of the grey
levels as threshold (IMJ_MEAN), iterative version of minimum
error thresholding (IMJ_IME) (Kittler & Illingworth, 1986),
minimum method (IMJ_MIN) (Prewitt & Mendelsohn, 1966),
moment-preserving method (IMJ_MOM) (Tsai, 1985), Otsu’s
method (IMJ_OTSU) (Otsu, 1975) for minimizing the intra-
class variance, percentile method (IMJ_PER) (Doyle, 1962),
method using Renyi’s entropy (IMJ_RENYI) (Kapur et al.,
1985), Shanbhag’s extension (IMJ_SB) (Shanbhag, 1994) to
Kapur’s maximum entropy method, geometric Triangle algo-
rithm (IMJ_TRIANGLE) (Zack et al., 1977) and Yen’s method

1 http://fiji.sc/Auto_Threshold
2 http://rsbweb.nih.gov/ij/

(IMJ_YEN) (Yen et al., 1995) based on a maximum correlation
criterion.

In addition to the plugin several other thresholding
methods from MATLAB HistThresh toolbox3 are studied4 –
concavity method by Rosenfeld (HT_CONCAV) (Rosenfeld
& De La Torre, 1983), Glasbey’s entropy method (HT_ENT)
(Glasbey, 1993), maximum likelihood via EM algorithm
(HT_MAXLIK) (Dempster et al., 1977), Intermeans
(HT_INTER) as equivalent to Otsu’s method and its iterative
version (HT_INTERI) which is equivalent to IsoData
method mentioned above. Then there is median method
(HT_MEDIAN) (Glasbey, 1993) which assumes that half of
the pixels belong to the background and other half to the
foreground, and noniterative minimum error thresholding
(HT_ME) (Kittler & Illingworth, 1986).

3 http://www.cs.tut.fi/˜ant/histthresh/
4 There are more thresholding methods in the toolbox. Most of them are the same as

in ImageJ plugin. However, we found out that their implementation often slightly

differed and so did the results of the segmentation. For this reason all methods are

included in the studied set with corresponding suffices in their abbreviations (so

there are, for example, both IMJ_MEAN and HT_MEAN in the studied set).
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Finally, a Tao’s method for image thresholding (TNC) (Tao
et al., 2008), which uses a normalized graph-cut to detect an
optimum threshold, is included in the evaluation below.

Region growing. The RG (Pratt, 2007) is another common
segmentation approach included in our selection. The algo-
rithm partitions the input image to segmented regions by
growing from the seed points (picked automatically or by the
user) to the neighbouring pixels depending on a membership
criterion such as intensity or texture similarity.

Clustering methods. The goal of clustering methods is to
group the input objects by their similarity or dissimilarity with
respect to a given criterion such as colour, spatial coordinates
etc. K-means clustering and Mean Shift (MS) algorithm are
selected representatives of this approach.

K-means clustering (MacQueen, 1967) assigns the input
objects to the clusters with the nearest means which are iter-
atively updated. The method strongly depends on the initial-
ization and favours final clusters/segments of similar spatial
extent. The MS algorithm represents more complex approach.
Comaniciu and Meer (Comaniciu & Meer, 2002) exploited the
nonparametric MS procedure for detecting multiple modes in
a feature space in order to delineate the final clusters in such
space.

Graph-based algorithms. Graph-based image segmentation
algorithms generally model the image as a graph in which the
nodes represent the pixels and the edges of the graph corre-
spond to some relation between pixels (usually their similarity
or dissimilarity). A graph partitioning method is then used to
obtain final partition and by doing so also the final segmenta-
tion of the input image.

In their paper Felzenszwalb & Huttenlocher (2004, GC_FH)
introduced the efficient greedy algorithm for partitioning an
image graph to obtain a final segmentation that is not too
coarse or too fine given a dissimilarity predicate. GrabCut
algorithm by Rother et al. (2004, GC_R) uses graph cut
optimization technique (min-cut/max-flow algorithm) to min-
imize energy function derived from an input image using inten-
sity values.5 The OpenCV6 implementation of this algorithm
is examined. The graph cut minimization (Daněk, 2012) of
both Chan–Vese active contour model for image segmentation
(GC_CV) (Chan & Vese, 2001) and Rousson–Deriche Bayesian
model (GC_RD) (Rousson & Deriche, 2002) is included. A mul-
tiscale version of normalized cut graph partitioning framework
(MNC) (Cour et al., 2005) is considered too. The multiscale
adjustment added to the original algorithm by Shi & Malik
(2000) allows to segment large images thanks to its computa-
tional efficiency.

5 Although GrabCut is user interactive algorithm, its initialization can be done au-

tomatically with no effort (see Section of the input data set and evaluation setup).

Interactivity is thus no handicap.
6 http://www.opencv.org

Quality indices

Quality indices form the second important part of the eval-
uation. In order to objectively evaluate the performance of
the image segmentation methods and quality of their results,
the quality indices (or measures) are necessary to adopt. The
pursuit of objectivity is motivated by an effort to suppress the
subjective (and still often empirical) evaluation of the segmen-
tation algorithms in the original papers.

There exist two main approaches to design an objective
measure – unsupervised evaluation and supervised evaluation.
The unsupervised quality indices do not require comparison
with any additional reference standard and their evaluation is
solely based on a given segmented image. These indices usu-
ally exploit such criteria as intraregion homogeneity, interre-
gion difference etc. For a survey of unsupervised evaluation
methods, see Zhang et al. (2008). Conversely the supervised
performance evaluation approach requires the ground truth
reference image (GT) which the actual segmented image is
compared to. The GT image is often obtained manually by
experts and reflects the optimum of the resulting segmenta-
tion. In our case the supervised evaluation is more appropriate
because of the better ability to distinguish the slight dispari-
ties between the results of various segmentation algorithms
thanks to the comparison with this ideal GT.

The following sections present quality indices used in this
paper. They are selected mainly to keep the diversity of the
final set. On top of that they are widely used in relevant pa-
pers. Each index usually favours certain properties of the seg-
mentation results and penalizes others (they are biased in this
sense). Therefore, it is important to incorporate larger set of
indices and handle their possibly different evaluation of given
segmented image in order to keep the evaluation objective as
much as possible. Only one or two indices would be insufficient
and would probably distort the results.

It is worth mentioning that there exist more quality indices
than are described in this paper. Nevertheless a lot of them are
equivalent to the ones selected, like F-measure (Rijsbergen,
1979), Jaccard index (Jaccard, 1912) or Classification accu-
racy used, for example, in Kuncheva et al. (2006). Some are
inappropriate for the task, for example, LCE and GCE (Martin
et al., 2001), which try to deal with refinements in context of
multilabel segmentation. We assume that the indices are cor-
rect, that is, their values are meaningful and not random. The
theoretical range of values is specified for each index.7 In for-
mulas I denotes segmented image for which the quality index
is computed, G T is the corresponding ground truth, F and B
subscripts denote foreground and background, respectively.

Hamming distance. Hamming distance (HD) is well-known
metric from the information theory (Hamming, 1950). Origi-
nally it counts differences between two strings. In image pro-
cessing it can be used to count the number of misclassified or

7 Extremities of the range do not necessarily have to be reached in practice.
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missegmented pixels. The distance is normalized with the total
number of pixels and therefore the range is in the interval of
0 to 1, where 0 is for absolute mismatch and 1 for equality to
the GT.

HD = 1− |IB ∩ GTF| + |IF ∩ GTB|
|I | .

Huang & Dom (1995) introduced a variation called nor-
malized HD, which can deal with multilabel and not only with
binary segmentation. However, in binary case Huang’s nor-
malized version is equivalent to plain HD.8

Boundary Hamming distance. Boundary Hamming distance
(BHD) introduced in Kohli et al. (2009) is the variation of HD
that stresses the accuracy of the segmentation result on an
object’s boundary. Kohli et al. argue that the ordinary HD
is not appropriate if the user is interested more in accurate
object boundary (and so in the accurate segmentation as well),
because a large qualitative improvement on the object border
results in only a negligible increase of the performance mea-
sure. The quality in boundary version is then evaluated by
counting the number of missegmented pixels in the region
surrounding the object boundary with the specified width. As
with the previous case, the distance is normalized and range
is between 0 and 1.

BHD = 1− |IB ∩ GTF|BOUNDARY + |IF ∩ G TB|BOUNDARY

|BOUNDARY| .

In our case it makes sense to include both the HD and its
boundary version, because even though we are interested in
fine object boundary in the resulting image the complete mis-
segmentation might happen and such case is better reflected
(and penalized) by common HD.

Rand index and adjusted Rand index. Rand index (RI) (Rand,
1971) and adjusted Rand index (ARI) (Hubert & Arabie, 1985)
are quality indices originally developed for comparing the clus-
terings. They are based on counting pairs of objects which two
clusterings agree or disagree on (which leads to what is often
called contingency table or confusion matrix). In the same
manner they can compare segmentation results to the GT.

mi j = |Ii ∩ GTj|, i, j ∈ {F, B},
m =

∑
i, j∈{F,B}

mij mi+ =
∑

j∈{F,B}
mij m+ j =

∑
i∈{F,B}

mi j ,

T = 1
2

⎡
⎣ ∑

i, j∈{F,B}
m2

ij −m

⎤
⎦ ,

P =
∑

i∈{F,B}

(
mi+

2

)
, Q =

∑
j∈{F,B}

(
m+ j

2

)
, N =

(
m
2

)
,

8 Except for the matching problem between segmented regions. See the paper Huang

& Dom (1995) for details.

RI = N + 2T − P − Q
N

.

The adjusted Rand index corrects the original RI for chance
agreement between two clusterings by normalizing RI with
its expected value. The range of RI (values between 0 and
1, where 0 is for absolute noncompliance with GT) is thus
corrected to the interval of −1 and 1. It is questionable if this
correction stays practical in the area of image segmentation
where assumptions do not have to hold, but experimental
results (Vinh et al., 2009) show that it is worth considering.

ARI = 2(NT − PQ)
N(P + Q )− 2PQ

.

The RI and ARI are also in some sense equivalent to other
well-known criteria like Cohen’s Kappa statistic (Cohen, 1960;
Warrens, 2008) or Mirkin’s metric (Mirkin, 1996), which is
another adjusted form of RI (Meilă, 2007).

Dice coefficient. Dice coefficient (DC) (Dice, 1945) is popular
quality index for evaluating the results of image segmentation,
especially in the medical imaging domain. Its range is again
from 0 to 1 (1 for perfect match with GT).

DC = 2|IF ∩ GT F |
|IF | + |GT F | .

Other indices are equivalent to Dice coefficient, for example,
Jaccard index (Jaccard, 1912) and in binary case the popular
F-measure (Rijsbergen, 1979).

Fowlkes–Mallows index. Fowlkes–Mallows index (FMI)
(Fowlkes & Mallows, 1983) is another index based on the
contingency table. It has different properties than both RI and
ARI mentioned earlier. It handles the independent clusterings
in a better way and behaves stably in the presence of noise (see
the original paper). As with the RI the range of this index is
between 0 and 1. The smaller the degree of missegmentation
is, the closer the index is to 1.

W1 = T∑
i∈{F,B} |Ii |(|Ii | − 1)/2

,

W2 = T∑
j∈{F,B} |GT j |(|GT j | − 1)/2

,

FMI =
√

W1 W2.

Normalized mutual information. Mutual information is
information theoretic index which measures the amount of
mutually shared information between two random variables
(i.e. partitions or segmented images in our case). The more
the segmented result resembles the GT, the more information
is shared. Since the mutual information has no argument-
independent upper bound, Strehl & Ghosh (2003) normalized
it using the geometric mean of the entropies. The normalized

C© 2014 The Authors
Journal of Microscopy C© 2014 Royal Microscopical Society, 0, 1–21
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version (NMI) thus ranges from 0 to 1 with 1 for equality to
the GT.

NMI = MI (I, GT)√
H (I )H (GT)

,

where MI(I,GT) denotes the mutual information between I
and GT, and H (I ) denotes the entropy of I.

Variation of information. The variation of information
(VI) (Meilă, 2007) is distance metric derived from the mutual
information. Contrary to the mutual information it measures
the amount of information (or entropy) which is not shared
between two random variables. It would seem that VI is only
a complement of NMI and their results would be equivalent.
Comparison of the results however shows that they may dif-
fer, so both indices are used in evaluation. The nonnormalized
version of VI is used with values 0 for absolute match to the
GT and positive values for the opposite.

VI = H (I )+ H (GT)− 2MI (I, GT).

Hausdorff distance and mean absolute surface distance. Two
last indices take the boundary of the segmented foreground
into account. Hausdorff distance (HAUSD) measures the
largest minimal distance between two boundaries. Mean abso-
lute surface distance (MASD) measures the average minimal
distance between two boundaries (e.g. Sluimer et al., 2005).
Both indices are symmetric and their values approach 0 with
increasing resemblance between the segmented image and the
GT. Both are directly connected to the distance distribution
signature (Huang & Dom, 1995).

dmin(x, Bj ) = min
{

d E (x, y)|y ∈ Bj
}

,

where d E (x, y) denotes the Euclidean distance between points
x and y, Bj denotes set of boundary points of either I or GT. So
dmin(x, Bj ) is the minimum distance of a point x (for example
on boundary Bi ) to boundary Bj .

h(BI , BGT) = max
{

dmin(x, BGT)|x ∈ BI
}
,

HAUSD = max
{

h(BI , BGT), h(BGT, BI )
}
,

MASD = 1
2

[
d̄min(BI , BGT)+ d̄min(BGT, BI )

]
,

where d̄min(BI , BGT) denotes average (minimum) distance
from all points x from BI to BGT .

Algorithms evaluation

The study of image segmentation algorithms performance is
presented in this section. First, few remarks connected to the
input data set and experimental setup are made. They are nec-
essary to correctly interpret the results. Then the evaluation
is carried out which mainly consists of answering two impor-
tant questions – whether there is such segmentation method
that would outperform the others in the studied set, and (if

not) whether it is possible to choose method that is sufficiently
good in the majority of cases. In the following part (Section
discussion of the achieved results) the results are analysed
in more detail and the generally applicable recommendations
concerning the performance of the algorithms are proposed.
Finally, the applicability is shown on different but related data
set, that is, microscopic biological images.

The input data set and evaluation setup

The algorithms for image segmentation in this paper are eval-
uated on a data set of the cross-section images of the art-
works. They originate from the painting restoration process
in which the minute samples are taken away from the art-
work, embedded in polyester resin, grounded at a right angle
to a surface plane and ground to expose the painting layers.
Afterwards the samples are captured in three modalities – vis-
ible (VIS) and ultraviolet (UV), complemented with a study
under scanning electron microscope (SEM). The microscope
Olympus BX-60 (Olympus, Tokyo, Japan) equipped with dig-
ital camera Olympus DP70 is used for acquisition of VIS and
UV images. In case of UV the radiation of 330–380 nm is
produced by Hg discharge tube. SEM images are acquired
by Philips XL30 CP scanning electron microscope (Philips,
Amsterdam, Netherlands) at working voltage 25 kV with the
use of Robinson detector of back-scattered electrons. The typ-
ical magnification is between 100× and 320×. The images
come from the Academic Materials Research Laboratory of
Painted Artworks (ALMA),9 where they help the art restor-
ers to choose the proper materials and appropriate technique
for the very restoration. The images do not always form the
triplet (SEM modality is often missing). There are 148 VIS im-
ages, 148 UV images and 89 SEM images. The SEM images are
greyscale, the other two modalities are in RGB colourspace.
This also permits to evaluate the performance of the image
segmentation algorithms in different colourspaces (or their
subspaces) like LUV or LAB (Pratt, 2007)10.

Some of the artefacts, which are present in the cross-section
images and make their segmentation difficult, can be dimin-
ished. The polyester resin, which the minute sample is embed-
ded in, has to be ground by fine sandpaper to expose the paint-
ing layers. The grinding produces the artefacts in the captured
image in the form of omnipresent parallel lines which have
undesired impact on outcome of specific image segmentation
methods. The method for removal of such artefacts is based on
the Fourier transform and makes use of the distinct properties
of the artefacts. For details see (Beneš et al., 2011). The removal
of the artefacts may improve the performance of the image seg-
mentation methods evaluated in this paper (see Fig. 2). A study

9 http://www.alma-lab.cz
10 Naturally this applies only to UV and VIS images. SEM images are processed as

greyscale. Also not every colourspace or its subspace is used for every segmentation

method. Only those with meaningful results are included in the studied set.
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Fig. 2. The background artefacts might influence the outcome of the segmentation algorithm. In (A) there is an image with the artefacts, in (B) the
image is after enhancement (artefacts are removed). (C) and (D) illustrate the influence of artefacts (non)presence on segmentation method. Image in (A)
courtesy of ALMA, Prague.

was conducted to find out which segmentation methods from
the set are liable to grinding artefacts. In case of such methods
the preprocessed images with suppressed artefacts are used as
input for segmentation. This ensures that the segmentation
results are not influenced by the presence of artefacts.

Next remark regarding the input data set concerns GT
images as the reference standard for the evaluation of the
image segmentation algorithms performance. They were ob-
tained manually for each image in the input data set. The
delineation of the sample boundary (i.e., the foreground) is a
troublesome process even for the art restorer because of the dif-
ficulties mentioned earlier. The object boundary is not always
clear. Sometimes the top or the bottom material layer is not
even visible because the lack of contrast to the background.
However, the final binary masks produced in cooperation with
ALMA represent suitable reference standard.

The second group of remarks is dedicated to the algorithms’
parameters setting and their initialization. The behaviour and
so the output of the selected image segmentation algorithms
can be considerably influenced by various setting of their
input parameters. The parameters of some methods are plainly
interpretable and as such they can be adjusted appropriately
to obtain the best results. For the rest the experiments with
different sets of parameters were performed and the parame-
ter set with the best output was selected. The same goes for

the parameter of BHD quality index, which is the only quality
index with parameter.

The second issue is the initialization of some segmentation
methods. For example the RG demands the indication of the
initial seed points. Considering the properties of the images
the pixels with the most typical intensity on the border of
the image (i.e. the mode) can be taken as the seed points.
The algorithm then groups the pixels similar to the seeds by
intensity with given tolerance (given as a parameter and added
to the abbreviation, e.g. RG_25; there are 7 different param-
eters used in the studied set). The Grabcut algorithm requires
user initialization in the form a rectangle with a potential fore-
ground inside. This task is done automatically in our case and
the rectangle is set to cover the most of the image except for
the narrow band of pixels around the image border.

Finally, the aim is to obtain the final masks without small
noisy regions in the background and with the smooth border
of the foreground. Hence, the resulting binary masks after the
segmentation are slightly postprocessed using mathematical
morphology.

Single best segmentation method

The goal of this subsection is to find out whether there is
such image segmentation method in studied group of methods
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that solely outperforms the others in processing the input
images in terms of quality. That means if there is method
which gives better segmentation result for significant major-
ity of images (or for each image in extreme case) in the data
set than every other method in the group. If so, use of such
method would be of general preference to solve background
removal problem of similar data.

To study prevalence of any method first we need to denote
the best segmentation algorithm for every image in input data
set separately (see algorithm 1 for pseudocode). Ten quality
indices (described in section quality indices) have to be com-
puted for every such image and every segmentation algorithm.
Then the algorithm with the best result may be picked by each
index for each image. It is the algorithm with the best corre-
spondence to the respective GT, so the algorithm with maxi-
mum (or minimum) index value is picked. After this, there are
10 possibly different segmentation methods selected by each
quality index for every image. To obtain single decision for ev-
ery image some combination rule has to be applied. Since the
quality indices can be interpreted as 10 different voters, voting
rules can be successfully used in this situation. In our case the
relative majority rule is considered. It means that for every
image the segmentation method which is the most frequently
selected as the best one by individual indices is the best segmen-
tation method for the particular image overall. This gives us
the best segmentation method for every image in input data set.

Algorithm 1. Denotes the best segmentation algorithm for an
image

Require: image I
for all Q from the set of quality indices do

result← empty vector
for all M from the set of segmentation methods do

compute Q on the result of M on I to obtain
value valQ

result(M)← valQ

end for
MQ ← arg ma x

M
{result(M)} {or min depending on

the index}
end for
apply majority vote on all MQ to obtain MBEST

return MBEST

It would be useful to verify that the best segmentation
method selected by quality indices according to the described
procedure is also visually the best segmentation method from
the set available for each image. Therefore visual comparison
of all the segmentation results for every image was performed
with extra focus on cases where the result of the selected best
method was not too close to the GT (we need to verify that there
is no better result available). The analysis leads to conclusion
that the quality indices behave correctly in a vast majority of
cases. The selected result is either one of the many proper ones
or it is the only viable output. If there is no satisfactory result

of any segmentation method, then the one visually most plau-
sible is often selected. However, there are some cases where
the indices (or majority vote) do not decide entirely correctly.
The selected result is not visually the best available though it
is very similar to it. In such cases the decision of the indices is
usually far from being unanimous. Each index may favours a
different method and final decision using majority vote would
be supported by small number of indices.

In any case, we have the best segmentation method de-
noted for every image in input data set. The key conclusion of
this section is based on a distribution of segmentation meth-
ods among the best methods selected by quality indices and
voting for each image. In this section we focus only on the
most frequent segmentation methods which have potential
to be the best. Deeper analysis with additional material is
given in the Appendix. The results are presented separately for
each modality. They naturally differ due to distinct character
of those modalities and their input images. This gives us
opportunity to study performance of the algorithms in
different conditions.

The two most frequent segmentation methods in SEM
modality are Felzenszwalb’s method (GC_FH) and RG (with
parameter equal to 5 – RG_5) with 12 occurrences out of 89
possible (number of SEM images in total) each among the best
methods. The situation in UV modality is rather different. MS
is clearly the most successful method. It is better than any
other method in 34 cases out of 148 (the total number of UV
or VIS images). In VIS modality, MS stays the most frequent
among the best methods for each image with 40 occurrences
out of 148 possible. Nevertheless, the most frequent segmen-
tation methods outperform the others only in fraction of cases
(13–27% depending on modality).

Based on these facts we can say that there is no segmentation
method which significantly outperforms the other segmenta-
tion algorithms in the set. The use of the most frequent method
mentioned in previous paragraph (e.g. MS for UV modality) for
background removal in images similar to those in our data set
is not sufficient for achieving perfect results (see Fig. 3 for
example of an image where the best method does not per-
form that well). It is important to keep in mind that potential
user usually does not have the GT images, so he cannot select
the individual best method for every sole image. Additional
conclusions can be made from the results. MS, GC_FH, GC_R
and MNC often perform well. But also more straightforward
approaches such as RG or thresholding can be used to achieve
good results (see the Appendix for reasoning).

Best average segmentation methods

The evaluation in the previous section is not entirely fair. The
focus was on finding a segmentation method which was the
best for significant majority of images. There was no such
method in the studied set. However, what if there is a method
which is good enough (and not necessarily the best) for vast
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Fig. 3. Demonstration that the selected best method is not perfect for all images. The image in (A) is better segmented by RG with parameter 25 (RG_25,
in D) than MS (in C) which is the best method in VIS modality. RG does not perform nearly that well overall. In (B) there is a GT image for reference. Image
in (A) courtesy of ALMA, Prague.

majority of the images. We look for method which is compa-
rable to the best method in case of easy to segment images
(majority methods can segment this image with satisfactory
results) and does not completely fail in case of worse images
(where most of the methods fail), that is, the best average seg-
mentation method. Such method (if found) could be used as
number one choice to solve the image segmentation problem.

The starting point for the evaluation is the same as in
the previous section. The values of 10 quality indices are
computed for each image and segmentation method. How-
ever, following steps differ from the previous procedure (see
Algorithm 2). There are so many values as there are images
for every pair of quality index and image segmentation

method. Median of these values is the average performance
of segmentation method according to the respective index.
The best average method is thus the method with the highest
median (or the lowest depending on the index). Finally, the
majority rule denotes the best average segmentation method
as a consensus of all quality indices. The median is preferred
over the mean because vectors of numbers often contain sev-
eral outliers which would distort the results inappropriately.11

11 Outlier means that segmentation method segments some image exceptionally well

or poorly. Outlier is the value of the quality index for such image. We are interested

in average performance which has to be stable despite the outliers. That is why the

median is more suitable for the task.
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Table 2. Table with median values and interquartile ranges in brackets (both rounded to two decimal places) of all 10 quality indices for several selected
segmentation methods in SEM modality. Median value is the average performance of a segmentation method on a set of images according to a quality
index. There are the six most successful methods, several representative methods in the middle and the two worst methods according to evaluation in
Section best average segmentation methods (in this order). SEM modality is chosen for demonstration due to bigger variance in indices values for different
methods in different places of the ranked list than it is in other two modalities.

Quality indices

Segmentation BHD HD RI ARI VI
methods [0,1] [0,1] [0,1] [−1, 1] [0, . . . )

GC_RD 0.84 (0.12) 0.98 (0.03) 0.96 (0.06) 0.90 (0.15) 0.29 (0.31)
GC_FH 0.82 (0.13) 0.98 (0.03) 0.96 (0.06) 0.90 (0.20) 0.28 (0.24)
MS 0.82 (0.14) 0.97 (0.04) 0.95 (0.08) 0.88 (0.23) 0.33 (0.34)
GC_CV 0.84 (0.14) 0.97 (0.06) 0.95 (0.11) 0.88 (0.31) 0.32 (0.37)
IMJ_IME 0.81 (0.14) 0.97 (0.04) 0.94 (0.07) 0.89 (0.20) 0.32 (0.31)
RG_10 0.82 (0.15) 0.97 (0.05) 0.94 (0.10) 0.87 (0.23) 0.33 (0.38)
IMJ_TRIANGLE 0.77 (0.18) 0.97 (0.09) 0.93 (0.15) 0.86 (0.39) 0.39 (0.47)
GC_R 0.73 (0.22) 0.96 (0.10) 0.93 (0.17) 0.82 (0.41) 0.37 (0.45)
KM 0.63 (0.17) 0.87 (0.20) 0.78 (0.27) 0.40 (0.55) 0.77 (0.57)
IMJ_OTSU 0.61 (0.17) 0.84 (0.18) 0.74 (0.24) 0.38 (0.53) 0.82 (0.48)
TNC 0.49 (0.29) 0.81 (0.28) 0.70 (0.34) 0.01 (0.84) 0.81 (0.55)
RG_70 0.49 (0.09) 0.75 (0.19) 0.64 (0.17) 0.02 (0.19) 0.93 (0.28)
MNC 0.50 (0.05) 0.57 (0.17) 0.51 (0.05) 0.01 (0.09) 1.66 (0.35)
IMJ_SB 0.46 (0.04) 0.70 (0.19) 0.58 (0.12) 0.00 (0.00) 0.88 (0.24)

FMI DC NMI HAUSD MASD
[0, 1] [0, 1] [0, 1] [0, . . . ) [0, . . . )

GC_RD 0.96 (0.05) 0.97 (0.07) 0.82 (0.22) 40.31 (65.19) 4.57 (8.03)
GC_FH 0.96 (0.04) 0.96 (0.10) 0.83 (0.26) 32.60 (54.43) 4.43 (7.28)
MS 0.96 (0.07) 0.95 (0.11) 0.81 (0.23) 45.50 (68.99) 5.71 (10.63)
GC_CV 0.96 (0.08) 0.94 (0.16) 0.79 (0.33) 53.48 (71.93) 5.79 (13.93)
IMJ_IME 0.96 (0.06) 0.95 (0.09) 0.80 (0.25) 48.71 (94.05) 5.82 (11.98)
RG_10 0.95 (0.08) 0.95 (0.10) 0.78 (0.26) 57.24 (97.56) 6.40 (12.15)
IMJ_TRIANGLE 0.95 (0.10) 0.93 (0.26) 0.77 (0.38) 54.58 (127.65) 7.00 (22.40)
GC_R 0.94 (0.11) 0.92 (0.16) 0.74 (0.37) 56.04 (71.01) 7.98 (21.90)
KM 0.85 (0.17) 0.62 (0.46) 0.39 (0.43) 118.17 (177.56) 29.42 (47.81)
IMJ_OTSU 0.82 (0.16) 0.60 (0.48) 0.36 (0.40) 124.39 (192.89) 34.48 (58.20)
TNC 0.81 (0.19) 0.12 (0.89) 0.05 (0.71) 361.82 (449.15) 111.70 (129.26)
RG_70 0.78 (0.11) 0.11 (0.37) 0.08 (0.20) 370.18 (333.21) 98.91 (82.07)
MNC 0.59 (0.09) 0.39 (0.31) 0.02 (0.11) 197.50 (75.12) 63.94 (23.54)
IMJ_SB 0.76 (0.10) 0.00 (0.01) 0.01 (0.02) 523.64 (181.98) 144.72 (41.20)

Table 2 shows median values for each quality index and sev-
eral selected segmentation methods in SEM modality.

Algorithm 2. Denotes the best average segmentation algo-
rithm overall

for all Q from the set of quality indices do
result, medians← empty vectors
for all M from the set of segmentation methods do

for all I from the set of input images do
compute Q on the result of M on I to obtain value
valQ

result(M, I )← valQ

end for
medians(M)← median

I
{result(M, I )}

end for
MQ ← arg ma x

M
{med i ans(M)} {or min depending to

the index}
end for
apply majority vote on all MQ to obtain MBESTAVG

return MBESTAVG

Felzenszwalb’s method (GC_FH) and Rousson–Deriche
approach (GC_RD) are the two best average methods for SEM
modality (they were selected equally by the indices). If we
look on the problem of finding the best average segmentation
method even in more detail and consider first five methods
for each quality index (assuming that the lists for each index
are sorted by median values, thus by performance), we can
see that GC_FH and GC_RD occupy the first two positions of
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Table 3. Lists with first five segmentation methods (rows) according to every quality index (columns) in SEM modality. Lists are sorted by median values,
thus by average performance of segmentation methods.

Quality indices

BHD HD RI ARI VI FMI DC NMI HAUSD MASD

GC_RD GC_RD GC_RD GC_RD GC_FH GC_FH GC_RD GC_FH GC_FH GC_FH
GC_CV GC_FH GC_FH GC_FH GC_RD GC_RD GC_FH GC_RD GC_RD GC_RD
RG_15 MS MS IMJ_IME GC_CV GC_CV IMJ_IME MS MS MS
RG_10 GC_CV GC_CV GC_CV IMJ_IME MS MS IMJ_IME IMJ_IME GC_CV
MS IMJ_IME IMJ_IME MS RG_10 IMJ_IME RG_10 GC_CV GC_CV IMJ_IME

almost every list (there is only one exception) in SEM modality
(see Table 3). Considering the median values there is a notice-
able gap between these two and next methods in the list. This
second cluster is formed by Chan–Vese approach (GC_CV), MS
and minimum error thresholding (IMJ_IME). Apart from them
there are several occurrences of RG with parameters 10 and
15 on lower positions. MS holds its superiority in UV modality
even as the best average method. It is first for 9 out of 10 qual-
ity indices (only HAUSD votes for GC_FH) with substantial
performance gap from the second position which is occupied
almost only by GC_FH (except for HAUSD naturally). Two
colourspace versions of multiscale normalized cut (MNC, RGB
and greyscale) fill the third and the fourth position. The last
one with other noticeable loss in performance is mainly RG
with parameter 25 (RG_25). There are sporadic occurrences
of other methods from studied set on lower positions, but noth-
ing of importance. The result in VIS modality is not so clear.
Majority vote denotes MS to be the best average method, since
five quality indices vote for it. Nonetheless four indices are for
MNC (in RGB) and one for GC_FH. The rest of the first five
positions is shared by plenty of different methods including
thresholding, RG, K-means etc. The conclusion is that there
exist four very good methods which can be used as number
one choice depending on the modality. It is GC_FH and GC_RD
for SEM, MS for both UV and VIS modality, in the latter case
supported by MNC (in RGB).

The evaluation of previous paragraph can be done more
rigorously with the removal of the following shortcoming in
addition. The choice of the best average method (and four
runners up) was based on the position within ten sorted list
coming from ten quality indices. Unfortunately the situation
when one method was chosen as the best one by several indices
and given a lower rank by others was not taken into account
because only first five positions were considered. Therefore,
the results could be little bit inaccurate. This drawback can be
amend by exploiting the information about performance of all
the methods from all the indices, that is, by processing com-
plete sorted lists of indices’ values. The goal is to combine all
ranked lists to the single ordering which would express input
preferences in the best way. This is called a rank aggregation
problem and is extensively studied in different fields (elections,
web search etc.). See, for example, Dwork et al. (2001) in

context of web searching. We use RankAggreg package (Pi-
hur et al., 2009) for R statistical software12 for our evalua-
tion. It implements optimization techniques necessary to pro-
duce final ranked list.13 The rank aggregation algorithm from
the RankAggreg package minimizes the objective function to
obtain final ranked list δ∗

δ∗ = arg mi n
δ

m∑
i=1

d (δ, L i ) ,

where L i is i th input list and d is a distance function. Spear-
man distance is used as a distance function d because it suits
our problem better than Kendall’s tau distance (see Pihur et al.,
2009, for more details on problems). Spearman distance is
equal to the summation of the absolute differences between
the ranks (positions) of all unique segmentation methods from
two ordered lists.

d (L i , L j ) =
∑

t∈L i∪L j

∣∣r L i (t)− r L j (t)
∣∣ ,

where r L i (t) is the position of method t in a list L i . Finally,
the Cross-Entropy Monte Carlo algorithm is selected for min-
imization (see the mentioned paper for details). As a result
there is one list of image segmentation methods sorted by their
performance (according to quality indices) for each modality.
This list represents consensus of ten input lists as individual
voters with preferences.

It is impossible in this limited space to deeply analyse posi-
tions of every segmentation method in the final lists. Hence we
focus only on several prominent methods, interesting results
and general position of different approaches (comprehensive
analysis is given below in Section discussion of the achieved
results). The complete lists are appended in Table 4. Rousson–
Deriche approach (GC_RD) and Felzenszwalb’s method
(GC_FH) stay the best average methods in SEM modality with

12 http://www.r-project.org.
13 Optimization is unavoidable because due to amount of data (10 relatively long

lists) the exact solution cannot be computed in feasible time. However, exact solution

can be computed for short input lists and they more or less match the corresponding

part of presented optimization results. Unfortunately implemented optimization al-

gorithms do not necessarily find a global optimum and can get stuck in a local one.

The scripts were therefore executed many times to obtain as best solution as possible.
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Table 4. Final lists of segmentation methods sorted according to their average performance (the best in the first place) in all three modalities.

SEM GC_RD, GC_FH, MS, GC_CV, IMJ_IME, RG_10, RG_15, HT_ME,IMJ_TRIANGLE,
IMJ_MEAN, HT_MEAN, HT_IME, GC_R, IMJ_HUANG, RG_20, IMJ_LI, RG_5, RG_25,
KM, HT_INTER, HT_INTERI, IMJ_DEF, HT_CONCAV, IMJ_ISO, IMJ_OTSU, RG_50,
HT_MOM, IMJ_MOM, IMJ_PER, HT_IM, TNC, IMJ_IM, HT_MEDIAN, IMJ_RENYI,
RG_70, IMJ_YEN, HT_MIN, HT_MAXLIK, HT_ENT, IMJ_MAXENT, IMJ_MIN, MNC,
IMJ_SB

UV MS, GC_FH, MNC_GRAY, MNC_RGB, RG_20, GC_R_LAB(AB), RG_25,GC_CV,
RG_15, IMJ_TRIANGLE, KM_LAB(AB), HT_MEAN, IMJ_HUANG, RG_50, TNC,
GC_R_LAB, IMJ_LI, IMJ_MEAN, RG_10, KM_GRAY, KM_LAB, RG_70, HT_INTER,
HT_ME, HT_INTERI, IMJ_DEF, KM_RGB, MNC_LAB(AB), IMJ_OTSU, GC_R_LAB(L),
HT_CONCAV, IMJ_ISO, MNC_LUV(L), HT_MOM, GC_RD, IMJ_MOM, HT_IM,
HT_MAXLIK, IMJ_IM, GC_R_RGB, HT_MIN, IMJ_YEN, IMJ_MIN, IMJ_RENYI,HT_ENT,
IMJ_MAXENT, IMJ_IME, RG_5, HT_IME, IMJ_PER, HT_MEDIAN, IMJ_SB

VIS MS, MNC_RGB, KM_RGB, IMJ_OTSU, IMJ_ISO, IMJ_DEF, IMJ_HUANG,HT_INTERI,
TNC, MNC_LUV(L), GC_CV, HT_INTER, KM_LAB, KM_GRAY, IMJ_MEAN,IMJ_MOM,
IMJ_IME, HT_MEAN, HT_MOM, IMJ_IM, RG_70, RG_50, IMJ_LI,MNC_GRAY,
HT_IM, IMJ_RENYI, GC_FH, IMJ_MIN, HT_MAXLIK, HT_MIN,GC_R_LUV(UV),
IMJ_YEN, KM_LAB(AB), RG_25, MNC_LAB(AB), RG_20, HT_ENT,GC_R_LUV(L),
RG_15, IMJ_TRIANGLE, GC_RD, HT_CONCAV, HT_ME, IMJ_PER,IMJ_MAXENT,
HT_MEDIAN, RG_10, HT_IME, RG_5, IMJ_SB

that GC_RD is the best one. This result is little bit surprising,
because GC_RD was not so successful as the best method
overall (in previous Section single best segmentation method)
and nothing indicated that it would outperform the others on
average. MS algorithm MS and Chan–Vese approach (GC_CV)
follow the two. Iterated and normal version of minimum error
thresholding is very successful (both ImageJ and HistThresh,
i.e. IMJ_IME, HT_IME and HT_ME), as well as Triangle and
Mean approaches (IMJ_TRIANGLE and IMJ_MEAN). RG with
parameters 10 and 15 occupies position 6 and 7 in the list,
other parameters are scattered in the middle. From already
mentioned methods K-means (KM) and GrabCut (GC_R)
rather disappoint with its results and multiscale normalized
cut (MNC) completely fails with the last but one position.

MS is the best average algorithm in UV modality, which only
confirms its dominance. It is followed by GC_FH and greyscale
and RGB versions of MNC, which is very opposite from SEM
modality, where greyscale version fails. Parameters 15, 20
and 25 of RG are suitable for UV modality as they are placed in
top 10 also with GC_CV method. IMJ_TRIANGLE, IMJ_MEAN,
IMJ_HUANG and IMJ_LI are the most useful thresholding
methods. Several colourspace alternatives of KM are ranked
in the top half. Contrary to SEM modality GC_RD method is
not very good as it is ranked in bottom half of the list. The
least successful method is Shanbhag (IMJ_SB) approach to
thresholding. It is interesting that this method was voted as
the best one overall for one image (previous Section single best
segmentation method) despite its uselessness on average.

MS is the best average algorithm also in VIS modality, but
otherwise the situation differs a lot compared to previous two
modalities. In the second and third place there are RGB version

of MNC and RGB version of KM algorithm. Apart from them
top 10 consists further from thresholding methods, IMJ_OTSU,
IMJ_ISO, IMJ_HUANG and Tao’s thresholding method (TNC)
to name several. GC_CV algorithm produces satisfactory re-
sults. GC_FH, GC_R or GC_RD do not perform very well. Con-
cerning RG approach its results are generally worse than
in the previous two modalities. However, higher values of
parameter like 50 or 70 are definitely better than smaller ones.
IMJ_SB thresholding is again the worst segmentation method
on average.

The evaluation in this section delivers very interesting re-
sults. The most important is the construction of lists of segmen-
tation methods sorted by algorithms’ performance according
to 10 selected quality indices. The ordering allows the future
user to pick the suitable segmentation method for his prob-
lem and character of data (which are represented by differ-
ent modalities in this paper). The lists also provide an insight
to performance of different segmentation methods and their
comparison. The conclusions about the performance depend
on the specific modality, but generally some resume can be
made. MS algorithm performs very well in all three modal-
ities and can be declared the best average method overall.
Felzenszwalb’s method, Rousson–Deriche and Chan–Vese ap-
proaches, and multiscale normalized cut may deliver excellent
results as well. RG is not a bad choice either, but its perfor-
mance depend on the chosen parameter. Thresholding can
be good alternative too, but the choice of specific algorithm
has to respect the properties of data. Segmentation methods
which take place at the end of the lists perform badly on av-
erage, however that does not necessarily mean that they per-
form badly on every image (for example see Fig. 3, where RG
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outperforms the best method on average – MS. RG_25 is
ranked in the bottom half). Furthermore, they may provide
important diversity for segmentation fusion/combination or
other processing (Section combination of image segmentation
methods). More discussion and conclusions are presented in
Section discussion of the achieved results.

One remark concerning correctness of the above evaluation
has to be made before closing this section. The comparison does
not take into account the absolute values of quality indices. So
it is possible that the best average segmentation method is cer-
tainly better than the rest of the methods in the studied set, but
absolutely its performance is poor with useless results. How-
ever, it is not the case. The segmentation methods at the top of
the lists obtained relatively high values from the quality indices
(and vice versa for the methods at the bottom). See Table 2 for
reference in case of SEM modality. The further evaluation was
performed to support this conclusion more precisely. The out-
put of segmentation method on one image was marked good if
its index value was above specified threshold (and bad if it was
below another). Afterwards all the methods were ranked ac-
cording to the number of their occurrences in a set of good out-
puts and a set of bad outputs. The results of this evaluation did
not differ much with the results of this section described above.

Discussion of the achieved results

In this section, deeper analysis of the evaluations and their
results is presented. We will use it to make recommendations
for the application of studied image segmentation methods
in different situations, that is, for different (but still related –
microscopic) data. First, the distinct features of each modality
(SEM, UV and VIS as shown in Fig. 1) are examined in more
detail. Then the performance of each segmentation approach
and its connection to input images (or modality) is evaluated
to make clear in which situations which image segmentation
methods perform the best.

SEM modality images are products of scanning electron
microscope. This technique enables to study chemical contrast
of different materials. In the image it is expressed by varying
texture of the cross-section in contrast to relatively homoge-
neous background. Thus, the boundary edges between the
cross-section as foreground object and the background are
usually sharp and clear. The cross-section has generally dif-
ferent intensity values than the background. All this could
make the segmentation quite easy. However, in case of our
data set the task is sometimes complicated with the artefacts
induced by scanning microscope, and certain materials used
in the paintings do not have sufficient contrast response so the
boundary edge is not sharp enough.

UV modality is similar to SEM in that the background is
homogeneous. UV light reveals a possible fluorescent prop-
erty of certain materials. Such materials have bright response
(typically green, turquoise or blue) in the image. Nonfluo-
rescent materials are on the other hand often dark and they

blend with the background which is dark by definition due
to absence of fluorescent property of polyester resin. Another
problem is that the nonsurface parts of the cross-section can
shine through transparent resin and form blurred shadows
on the borders of the cross-section. Satisfactory background
removal can therefore be quite challenging.

VIS modality captures optical properties in visible spectrum.
The sharpness of cross-section boundary varies from high con-
trast edge to fluent transition to background depending on the
material colour. The transparency of polyester also remains a
problem in VIS modality. The difficulty of background removal
is thus similar to UV modality in this aspect. In addition, the
background is not uniform. The lighting can be reflected un-
evenly and there can be lot of different artefacts like air bubbles
which are not visible in other modalities. Also grinding arte-
facts may be a problem as was mentioned before. Figure 4 gives
examples of distinct properties of VIS images.

To summarize key properties of the modalities SEM modality
generally represents microscopic images with sharp and con-
trast boundary edges, relatively homogeneous background
and often clear separation of object and background inten-
sity values. UV modality images have uniform background,
but unclear boundary edges between background and certain
(nonfluorescent in our case) parts of the foreground object,
also transparency of the resin is the problem. VIS images are
similar to UV in problems with unclear boundary edges and
transparency of the resin. Difference is in more problematic
background which is not uniform and contains artefacts.

Discussion about the usability of studied segmentation
methods starts with simpler approaches, that is, RG, thresh-
olding and K-means.14 RG generally delivers satisfactory
results when there is relatively homogeneous background
and boundary between desired segmented object and back-
ground is apparent. In our case it is demonstrated on SEM and
UV modalities where the background surrounding the cross-
section is more or less uniform. Tolerance to nonuniformity is
given by parameter. The smaller values of parameter are suf-
ficient for images in SEM, whereas slightly higher values are
required for UV to compensate the transparency mentioned
above. RG is then placed in top 10 of the best average meth-
ods. VIS modality is different. The background there is more
variable in such way that it almost prohibits compensation
with high parameter values (RG would easily cross the bor-
der between background and foreground object in that case).
This being said high values of parameter are more suitable
in VIS. Overall RG approach can provide satisfactory results
comparable to more complicated methods if the assumptions
of relatively uniform background and clear border are met.

Thresholding methods (not only those in the studied set)
differ in the way they find the threshold to divide pixels

14 Concerning different colourspaces RG and thresholding exploited only the

greyscale information in all three modalities. K-means was evaluated in more

colourspaces.
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Fig. 4. Set of six VIS images demonstrating different properties which cause problems for image segmentation. In (A) there is neat and relatively easy
to segment image for comparison. Other images demonstrates nonuniform illumination of the background (E and F), problematic transparency of the
polyester resin (B and C), grinding artefacts (C–F), air bubbles and defects in the background (C and F) and finally unclear boundary edge between
cross-section and background (D). Image courtesy of ALMA, Prague.

into two groups. Strictly bimodal histogram would be an
optimum situation, however such case is not very com-
mon in our input data set (and in real images neither).
Therefore, some methods are more successful in handling
nonoptimum case than others. In SEM modality where the
background pixels in histogram are easier to separate Tri-
angle (IMJ_TRIANGLE), Mean (IMJ_MEAN), and minimum

error method (IMJ_IME) are the most successful. On the
other side of spectrum there are entropy-based methods
(IMJ_MAXENT, IMJ_RENYI, IMJ_SB, HT_ENT) and several
others (HT_MAXLIK, IMJ_YEN, IMJ_MIN). In UV modality
the intensity values of the foreground often blend with those
of the background, which is difficult condition for threshold-
ing. Triangle, Huang (IMJ_HUANG), Mean and Li (IMJ_LI)
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methods handle it well on average. The spectrum of failing
methods stays the same as in SEM modality. IMJ_IME pro-
duces disappointing results too. Though the image properties
of VIS modality are similar to those of UV mostly different
thresholding methods are satisfactory in VIS. Otsu (IMJ_OTSU
and HT_INTER), IsoData (IMJ_ISO, IMJ_DEF and HT_INTERI)
and Huang are among the most successful methods. Concern-
ing Tao’s thresholding approach (TNC) it succeeds in UV and
VIS modalities, whereas it fails in SEM. Thus, it deals bet-
ter with visually hard cases with smooth transitions between
background and foreground than in cases where the inten-
sity values of the foreground object are clearly separated from
those of the background.

The results of K-means (KM) approach are highly dependent
on colourspace (or subspace) which the input data are in and
on overall colour profile of the images in different modalities.
Greyscale (the only one for SEM), LAB (plus AB subspace) and
RGB variants are analysed. KM in greyscale produces merely
mediocre results on average in all three modalities. Same thing
can be said on account of full LAB space variant (in case
of UV and VIS) with slightly better results in VIS. However,
interesting results appear concerning KM in AB subspace of
LAB and RGB. Both can perform well depending on colour
profile of the image. In UV modality where the images are
mainly darker with dominant responses in blue or green, the
AB variant is placed in top positions of the ranked list. RGB
variant performs much worse. The situation is opposite in
VIS modality. RGB variant is the third best average method
whereas AB variant takes place in two thirds of the ranked list.
It is clear that successful use of K-means depends on the overall
colour dominance of input images. Generally, its results can
be quite satisfactory.

After more straightforward approaches were analysed we
will now focus on more complex segmentation methods in the
studied set.15 Felzenszwalb’s method (GC_FH) performs very
well being the second most successful average segmentation
method in SEM and UV modalities. However, it does not per-
form that well in the remaining VIS modality. The algorithm
has apparent problems with converging to stable result when
the border of the object is unclear and background is not ho-
mogeneous (and in that sense resembles the foreground ob-
ject). In such cases the segmented result is often blank image.
Apart from that GC_FH can be excellent method for segmen-
tation which copes with other mentioned problematic image
properties appropriately. Daněk’s optimization of Chan–Vese and
Rousson–Deriche functionals is very successful for the easy to

15 From those Felzenszwalb’s method is applied to the images in original

colourspaces. That means greyscale in case of SEM modality and RGB colourspace

in case of UV and VIS. Processing in different colourspaces delivers comparable re-

sults. MS segmentation followed the original paper and LUV space is used. Daněk’s

version of Chan–Vese and Rousson–Deriche use the greyscale information. So only

the performances of multiscale normalized cut and GrabCut algorithm are analysed

in different colourspaces.

segment images with clear and sharp border between ob-
ject and surrounding background (GC_RD is the best aver-
age method in SEM, GC_CV being the fourth). Otherwise they
struggle with unclear transitions and transparency. GC_RD
fails in UV and VIS modality, GC_CV still manages to take po-
sition in top third of the average ranked list, but its results are
often dissatisfactory. The results of multiscale normalized cut
(MNC) differ with various colourspace configurations. MNC
produces very good results when the original RGB colourspace
is conserved (second place in VIS modality and fourth place in
UV modality average ranked list). Also the exploitation of only
the intensity channel (greyscale or lightness from LUV) can be
profitable in case of UV and VIS. In all other cases MNC rather
fails, especially in SEM modality. GrabCut algorithm (GC_R)
provides perhaps the worst results from group of more ad-
vanced segmentation methods and cannot be recommended
for unsupervised segmentation in similar setting. Originally,
it is based on user interaction and its power lies in additional
adjustment of initial segmentation. MS is the last algorithm
to discuss. According to the results of evaluation it is the best
average segmentation method in the studied set. It can handle
problematic image properties well and its outputs often outper-
forms the rest (see Section single best segmentation method).

With regard to the analyses above MS algorithm should be
number one choice for image segmentation of related data.
However, several other methods could perform well while re-
specting above conditions, that is, MNC, GC_CV, GC_RD or
GC_FH. Should the execution time be an issue GC_FH espe-
cially would be an excellent choice. In that situation even
plenty of thresholding methods or RG could provide good re-
sults with some limitations. Concerning three modalities it
is confirmed that SEM images are easier to segment thanks
to clear boundaries between foreground object and relatively
uniform background. Segmentation methods perform there
generally much better than in UV and VIS where the seg-
mentation is complicated by image properties. Table 5 offers
recommendations on the use of segmentation methods de-
pending on the input image properties in the context of
microscopic images.

One more evaluation was performed in addition to already
described procedures. The idea was to find out what were the
various segmentation methods sensitive to in the input images.
For each method the images could be clustered to three groups
– where the output is good, bad and the rest. If some common
features for the images in such groups could be found, it would
provide a lead on which segmentation method should be used
when such features happen to be present in an input image.
Unfortunately no common features in addition to described
properties could be found in defined groups.

Finally one remark to close the evaluation. It is important to
keep in mind that behaviour of some algorithms can be influ-
enced with parameter setting. In our evaluation parameters
are tuned to specific input data and we assume that same thing
has to be done for different data set.

C© 2014 The Authors
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Table 5. Table contains findings of the evaluation generalized to use in the context of microscopic images. Image in the left column of the table stands for
microscopic image with essentially similar properties to the images in studied data set, preferably in one of the three studied modalities (as are described
in the introduction and at the beginning of Section discussion of the achieved results). The conclusion is that MS algorithm should be number one choice
segmentation method. Use of other methods depends on the input image specific properties. Details and further results can be found in the text.

Images in general – Mean Shift algorithm would be number one choice
Image with relatively homogeneous background and apparent

boundary edge between object and background
– Region growing with appropriate parameters
– Felzenszwalb’s method (even in the case of not so clear boundary edge

and partial blending of the object and the background)
– Chan-Vese and Rousson-Deriche approaches optimized by Daněk

Image with possibly unclear boundary edges between object and
background, presence of shadows or halos around boundaries

– Multiscale normalized cut in RGB or applied to intensity/luminance
channel

Image with easier to separate histogram – Thresholding methods Triangle, Mean or minimum error thresholding
Image with more blended histogram – Thresholding methods Triangle, Huang, Otsu or IsoData

– Tao’s thresholding approach
Image with colour composition and properties similar to UV modality – K-means in AB subspace of LAB colourspace could deliver interesting

results
Image with colour composition and properties similar to VIS modality – K-means applied to whole RGB image could be good choice

Fig. 5. Mouse retina coloured with hematoxylin–eosin. Boundary of seg-
mented result by Mean Shift algorithm is depicted by red line. Courtesy of
Jan Cendelı́n, Faculty of Medicine in Pilsen.

Demonstration of evaluation results applicability on different data

In this section the applicability of evaluation results to differ-
ent data set – biological images – is shown. In Figures 5, 6
and 7 there are segmentation results of biological images. The
first figure shows the mouse retina. Specimen is coloured with
hematoxylin–eosin and captured with optical microscope in
visible spectrum. It closely resembles VIS modality of cross-
section images, because boundary edges are not clear enough
and the background contains plenty of debris. The second
figure shows transplant mouse cerebellum. Cells of the trans-
plant generate enhanced green fluorescent protein (EGFP) so
they are easily distinguishable from recipient tissue under
a fluorescent microscope. The aim is to segment whole tis-
sue (both original and transplant) from the background. The
third figure shows 2D projection of 3D rendering of an early

Fig. 6. Transplant mouse cerebellum. Boundary of segmented result by
Mean Shift algorithm is depicted by red line. Courtesy of Jan Cendelı́n,
Faculty of Medicine in Pilsen.

stage mouse heart, acquired by optical projection tomogra-
phy. The image shows fluorescence excitation and emission.
Last two figures resemble UV modality of cross-section images.
The background is homogeneous and boundary edges are not
so clear. The debris and other unwanted structures are also
present in the background. Although it is not as visible as in
the case of Figure 5, it makes segmentation problematic. The
best average segmentation method for UV and VIS modality
is applied, that is, MS algorithm. The results are depicted by
red boundary line in respective figures. Also combination of
the best three methods was generated following findings of the
next section. However, in case of these three images combi-
nation results were very similar to those of MS with negligible
differences, so they are not shown in the figures.

C© 2014 The Authors
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Fig. 7. 2D projection of 3D rendering of an early stage mouse heart.
Boundary of segmented result by Mean Shift algorithm is depicted by red
line. Courtesy of Martin Čapek, Institute of Physiology AS CR, Prague.

Combination of image segmentation methods

In Section best average segmentation methods we found (for
each data modality) the image segmentation method which
performed the best on average on input data set. The average
means that this segmentation method often offers satisfactory
results but sometimes it can fail (but not in such scale as other
methods in the studied set). Next methods in ranked list (sec-
ond, third, ...) can behave differently (and due to their different
fundamentals they often do) with failing on other images than
the best method. Therefore, it would be useful to somehow
combine the results of several segmentation methods to re-
move unfavourable results and by doing so improve the overall
performance of the segmentation process. The idea of combi-
nation comes from the classifiers domain. Kittler et al. (1998)
in their paper provided theoretical framework for combining
classifiers. Key idea is to exploit advantages of different classi-
fiers and eliminate their misclassification (sets of misclassified
patterns do not necessarily overlap). Similar concept exists in
clustering domain, that is, cluster ensemble. Different cluster-
ings of the same data set are combined to obtain final clustering
of improved quality (see Vega-Pons & Ruiz-Shulcloper, 2011,
for an extensive survey of various combination methods and
techniques). The idea of combination can be straightforwardly
extended from classification and clustering also to the prob-
lem of image segmentation, because the segmentation method
can be considered as a special kind of classifier or clustering
method. See, for example, Franek et al. (2011) and Vega-Pons
et al. (2011) for application of cluster ensembles to image seg-
mentation.

In our case we have to decide which segmentation methods
to combine and what method of combination to use. Gener-
ally it holds that the input set of methods (results, clustering
or classifiers) has to be sufficiently diverse to achieve the best
possible result of combination but at the same time if there
are frequently failing methods included the final combination
is spoiled (see e.g. Sharkey, 1996, in context of neural net-
works classification). In terms of image segmentation we need
to combine such segmentation methods which perform very
well generally, do not fail too often and their results differ
in important details (boundaries). We use evaluation results
from previous section to achieve this. The best three average
methods form the input set to combination in each modality.
They perform the best from the studied set of methods, do not
fail to often and their results are sufficiently diverse thanks
to different fundamentals of each segmentation method. The
combination of more than three methods was found dissat-
isfactory because the input results were more frequently bad
which negatively influenced the output of combination. Con-
cerning combination method the majority vote is used. There-
fore the pixel of an input image is labelled as foreground if at
least two of the three methods label it as foreground. Other-
wise it is background. We show that even such uncomplicated
combination method can achieve considerable improvement
of the image segmentation.

Results of segmentation combination are thus generated
for every image in each modality using the three best aver-
age methods. It is Rousson–Deriche approach, Felzenszwalb’s
method and MS for SEM modality, MS, Felzenszwalb’s method
and multiscale normalized cut in greyscale for UV modality,
and finally MS, multiscale normalized cut in RGB and K-means
in RGB for VIS modality (see Table 4). The aim now is to com-
pare the results of the combination to the best average method.
Again quality indices are necessary to ensure objective evalu-
ation. We compute 10 indices already used in previous evalu-
ations for every image and compare them to those of the best
average segmentation methods (Rousson–Deriche approach
for SEM and MS for UV and VIS modalities). We use statisti-
cal evaluation with hypothesis testing to determine which of
the two is better. The Wilcoxon signed-rank test (Wilcoxon,
1945) is used as good trade-off between plain sign test (which
does not consider the magnitude of differences at all) and
t-test (which considers the magnitude in much stronger way
and also the stronger assumptions have to be met). Level of
significance is set to 0.05.

Combination is statistically significantly better than the best
average method in SEM and UV modality. In VIS modality the
situation is little bit more complicated. Only 4 out of 10 indices
claim that the combination is significantly better. Conversely
two indices claim that the best average method is significantly
better. The rest stays rather undecided. Thus, it cannot be
decided which of the two approaches is better in VIS modal-
ity. If we compare combination to the second best average
method (which is multiscale normalized cut in RGB) situation

C© 2014 The Authors
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Fig. 8. Demonstration of improvement using combination of segmentation methods compared to the best average method. In each triplet in rows there
is GT mask (left column), result of the best average method (middle column, GC_RD in SEM and MS in UV and VIS) and result of combination (right
column). Last triplet corresponds to the images in Figure 3. Combination there is certainly better than MS’s result. However even better result can be
achieved with pure RG in this case as is shown in Figure 3.
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gets much clearer. Combination is significantly better in this
case. For these reasons the choice of combination approach is
appropriate even for VIS modality thanks to its robustness.

Visual evaluation was done as well to support the findings
from statistical testing. Combination pays off also from this
point of view. It is usually better than the best average methods
in SEM and UV modality. In UV the difference is even more
prominent and it is easy to see how combination of several
segmentation methods amend inaccuracies of MS algorithm
as the best average method (see Fig. 8 for examples). Perhaps
surprisingly the same holds for VIS modality. The results of
combination are often more plausible. In those cases where
MS is better than combination, the difference is often minute.
In the opposite cases difference between combination and MS is
much larger and combination resembles GT more accurately.

Conclusion is that combination of several segmentation
methods can significantly outperform use of single (even the
best average) segmentation method. This clearly holds for SEM
and UV modality but also in case of VIS it is safe to use com-
bination approach. Combination there is almost identical or
only slightly worse than the best average method in vast ma-
jority of cases and occasionally it gives much better results.
See Figure 8 for examples of the results of segmentation com-
bination.

Conclusion

In this paper the performance of several segmentation methods
on images of microscopic samples in three different modalities
was analysed. The set of 10 quality indices was used to achieve
evaluation as objective as possible. We showed that there was
no single segmentation method which significantly outper-
formed the others in the studied set. The average performance
of the methods was then evaluated with conclusion that MS
algorithm performed the best and can be considered the best
segmentation method on average. Concerning other meth-
ods in the studied set, the recommendations on their usability
in different situations were proposed. Finally, it was demon-
strated that performance of even the best average method
could be further improved by using combination of several
segmentation methods. This was confirmed with statistical
tests. Moreover, the applicability of the evaluation results on
different but related biological data was shown.
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Appendix: Additional material to Section single best
segmentation method

This appendix contains additional material to Section single
best segmentation method. Deeper analysis of distribution im-
age segmentation methods among the best methods selected
by quality indices is presented here.

The two most frequent segmentation methods in SEM
modality are Felzenszwalb’s method (GC_FH) and RG (with
parameter equal to 5 – RG_5) with 12 occurrences out of 89
possible each among the best methods. They are followed by
Mean Shift algorithm (MS) and Rousson–Deriche approach
(GC_RD). The rest is featured in Figure A1. Nineteen methods
out of 43 have zero number of occurrences. Several impor-
tant conclusions can be made based on this histogram. First
and the most important, there is no segmentation method
which clearly outperforms the others (12 occurrences for MS
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Fig. A1. Graph of number of occurrences among the best segmentation
methods for each method in SEM modality. Felzenszwalb’s method, region
growing (with parameter 5) and Mean Shift algorithm are the most suc-
cessful methods. The majority of methods has however two occurrences
at most.

Fig. A2. Graph of number of occurrences among the best segmentation
methods for each method in UV modality. Mean Shift is by far the most
successful method with colourspace versions of multiscale normalized cut,
K-means, GrabCut and Felzenszwalb’s method behind.

out of 89 are not sufficient enough). Second, RG methods
are quite successful, especially with smaller values of the pa-
rameter. Finally, thresholding algorithms do not perform well
individually (though there are 16 occurrences in total for
thresholding).

The situation in UV modality is rather different. MS is clearly
the most successful method. It is better than any other method

Fig. A3. Graph of number of occurrences among the best segmentation
methods for each method in VIS modality. Mean Shift is a method with
the most occurrences. GrabCut follows with large gap and Felzenszwalb’s
method and colourspace variations of multiscale normalized cut are be-
hind. Lots of methods have two occurrences at most.

in 34 cases out of 148 (the total number of UV images).
K-means (KM, in AB subspace of LAB colourspace), GC_FH,
GrabCut (GC_R, in RGB) and multiscale normalized cut (MNC,
in greyscale) follow with 12–14 occurrences. Half of the meth-
ods (25 out of 52 precisely) are not among the best methods
in at least one case. The rest is displayed in Figure A2. As in
SEM modality there is no clear winner which could be me-
chanically used for segmentation of UV images. MS is indeed
very successful, but it outperforms the others only in quar-
ter of cases which is not sufficient. Surprisingly, GC_RD and
Chan–Vese approach (GC_CV) fail completely with one and
zero occurrences respectively. RG does not perform that well
as in SEM modality. Thresholding methods represent only a
complement to more successful methods.

Finally, the results for VIS modality are presented. MS stays
the most frequent among the best methods for each image
with 40 occurrences out of 148 possible. Versions of GC_R
and MNC in various colourspaces and GC_FH follow with
roughly 10 occurrences. The rest can be seen in histogram
in Figure A3. Seventeen methods out of 50 are not selected as
the best method at least once. The conclusions for UV modality
hold also here. MS outperforms the other methods in lots of
cases, nevertheless not in the significant majority. GC_RD and
GC_CV approaches fail again. RG is not very successful and
where it is, the bigger parameter values are used. In contrast
to UV, thresholding methods represent alternative to more so-
phisticated methods. They are selected as the best ones for 31
images in total.

C© 2014 The Authors
Journal of Microscopy C© 2014 Royal Microscopical Society, 0, 1–21




