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1 Introduction

The Bregman divergences [1], originally developed in the context of the convex optimization,
attained in the recent decade a significant focus of information theorists. Their use in the
statistical information processing is a result of the rapid development of information geometry,
in a huge extent pioneered by Amari’s work [2]. The research focus has been given mainly to
the clustering problem, namely the k-means algorithm, where the divergences were studied as
the measures of the intraclusters distances between the centres of the clusters’ masses – the
centroids – and the points within these clusters, e.g. [3],[4]. Other application-oriented works
exploit the Bregman divergences for statistical modelling with logistic regression method [5, 6],
construction of Voronoi diagrams [7] etc.

It was not until 2008 when the functional version of the Bregman divergences was proposed
by Frigyik et al. [8]. This approach is adopted in this paper for its immense generality
allowing, unlike the previous versions, direct application of the relevant methods to a much
wider range of problems, from the real vector spaces to the spaces of functions. In our scope,
the application aims at the fusion of probability distributions in distributed systems. Similarly
to the clustering problems, the divergence serves as the minimization criterion quantifying
the dissimilarity of the consensus distribution and the group of distributions to be fused.

In order to alleviate potentially difficult understanding of the abstract mathematical ma-
chinery, explanatory “real-world” examples are provided along the way of theory exposition.

2 Bregman divergence

In this section, we introduce the Bregman divergence in a very general sense, over a vector
space equipped with a norm, that is, a Banach space. As an example at the “highest” level,
we name the Lp spaces with p ≥ 1 of probability distributions, at the “lowest” the space
of parameters Θ of these functions. We conjecture, that the results generalize for arbitrary
Fréchet space equipped with a seminorm in the ordinary sense.

The definition of the Bregman divergence relies on derivatives, which we need to define in
an appropriate general form. The Fréchet derivative is suitable.

Definition 1 (Fréchet derivative). Let X and Y be two Banach spaces and U ⊂ X open
subset of X. A function f : U → Y is Fréchet differentiable at x ∈ U if there exists a bounded
linear operator Df(x) : X → Y and a continuous function ψ : B(0, ε) → Y where B(0, ε) is
an open neighbourhood of 0 ∈ X with ψ(0) = 0, such that

f(x+ h)− f(x) = (Df(x))h+ ||h||ψ(h)

for all h ∈ V .

We say that f ∈ Cp, p = 1, 2, . . . if the pth Fréchet derivative Dpf exists and it is a
continuous function.

The Fréchet derivative keeps most of the important properties of the ordinary function
derivatives, for instance the uniqueness, linearity and the chain rule. Its main advantage is
its straightforward applicability to more complicated structures than functions, for instance
to functionals, where it allows differentiation of functionals φ with respect to a function f ,
i.e. D(φ(f)). Indeed, it still remains suitable for differentiable functions over real fields as
shows the following example.



Example 1. In function spaces, the Fréchet derivative coincides with the ordinary derivative
of functions f : R→ R. Assume t > 0, then

f(x+ th) = f(x) + (Df(x))(th) + ||th||ψ(th)

that is

(Df(x))h =
f(x+ th)− f(x)− ||th||ψ(th)

t
.

The result follows by taking limit t→ 0. This is also why ψ needs to be continuous.

Definition 2 (Bregman divergence). Let X be a Banach space and φ : X → R a strictly
convex C2 function. The Bregman divergence dφ : X ×X → R+ for all admissible x, y ∈ X
is the mapping

dφ(x, y) = φ(x)− φ(y)− (Dφ(y)) (x− y). (1)

2.1 Bregman Divergence Properties

The Bregman divergence has some well known properties. Some of them (for proofs see [8])
are:

Nonnegativity dφ(x, y) ≥ 0 with 0 iff x = y almost everywhere.

Convexity in the first argument dφ(x, y) is convex in x. Generally, this does not hold
for y.

Linearity both additivity dφ1+φ2(x, y) = dφ1(x, y) + dφ2(x, y) and homogeneity dcφ(x, y) =
cdφ(x, y) for c ∈ R hold.

Generalized triangle inequality for admissible x, y, z ∈ X it holds dφ(x, y) + dφ(y, z) +
(Df(x))(x− y)− (Df(z))(x− y).

Example 2 (Quadratic Loss). Assume a Banach space X that is an inner product space
where φ = 〈x, x〉 is the inner product X × X 7→ R in an admissible sense. Useful examples
of such spaces are the Hilbert spaces, the Euclidean space Rn or the L2 space of Lebesgue
measurable functions. Suppose furthermore x, y ∈ X. Then the first derivative of φ reads

φ(x+ h)− φ(x) = (Dφ(x))h+ ||h||ψ(h)

= 〈x+ h, x+ h〉 − 〈x, x〉
= 2〈x, h〉+ 〈h, h〉.

Hence Df(x) = 2〈x, h〉 since 〈h, h〉 = ||h||2 → 0 as h→ 0 in X. To prove strict convexity of
φ, we need the second derivative to be strictly positive. That is,

Df(x+ h)−Df(x) = D (Df(x))h+ ||h||ψ(h)

and after rearrangement of terms and applying limit we obtain

D2f(x) = 2||h||2 (2)



which is clearly greater than 0 by assumptions. Finally,

dφ(x, y) = 〈x, x〉 − 〈y, y〉 − 2〈y, x− y〉
= 〈x− y, x− y〉
= ||x− y||2.

We emphasize, that this result is applicable in any inner product space, be it an L2 space of
admissible continuous probability density functions or the Euclidean space of real (scalar or
multivariate) parameters of these functions. The task of computing Fréchet derivatives may
seem tedious, but we remind their coincidence with the ordinary notion of function derivatives
in simpler spaces, recall Example 1.

2.2 Bregman’s Duality

Definition 3 (Legendre-Fenchel transformation of convex functions). Let X be an inner
product Banach space, f : X → R ∪ {+∞} a proper convex function. The Legendre-Fenchel
transformation is the linear mapping

f∗(x∗) = sup
x∈X

(〈x∗, x〉 − f(x)) , x∗ ∈ X∗ (3)

where X and X∗ are mutually dual spaces and (convex) f∗ with range space in R ∪ {+∞} is
called the convex conjugate of f .

From the connection between maxima and derivatives it follows that for x satisfying (3),
we have

Dx〈x∗, x〉 = (Dxf)(x)

hence
x∗ = (Df)(x) and x = (Df)−1(x∗). (4)

Applying the same arguments to find f∗∗ shows that the convex conjugation is involutive
(f∗∗ = f), obeying the trivial ordinary differential equations Df∗ = (Df)−1 and Df =
(Df∗)−1 and using (3) it yields a straightforward solution of many tasks via1

f∗(x∗) =
〈
x∗, (Df−1)(x∗)

〉
− f ◦ (Df)−1(x∗). (5)

Example 3 (Legendre-Fenchel transformation). For an illustration, consider X = R and
f(x) = x2. Then 〈x∗, x〉 = x∗x and x∗ has the meaning of the slope of the line passing through

origin. Furthermore, (Df)(x) = 2x and (Df)−1(x) = x
2 , from which follows f∗(x∗) = (x∗)2

4 ,
either by solving the differential equation or using relation (5). The duality follows from
(Df∗)(x∗) = x

2 , (Df
∗)−1(x∗) = 2x and f∗∗ = f(x) = x2, which was the original function.

Example 4 (Self-duality of 2-norm). If f = 1
2 || · ||

2, then f = f∗ = f∗∗ and f is called
self-dual.

1Strictly speaking, the necessary and sufficient condition for the biconjugation f = f∗∗ is that f is also
proper and lower semi-continuous, which directly follows from the definition.



We leave without proof (which follows directly from Definition 3) the fundamental Fenchel-
Young inequality, stating

f(x) + f∗(x∗)− 〈x∗, x〉 ≥ 0, (6)

with equality if x∗ = (Df)(x), which is the case (5) above. By the following lemma, this
equality yields the dual forms of the Bregman divergence.

Lemma 1. The Bregman divergence (1) in an inner product space has the dual forms

dφ(x, y) = φ(x) + φ∗(y∗)− 〈x, y∗〉
= φ∗(x∗) + φ(y)− 〈x∗, y〉
= dφ∗(y∗, x∗). (7)

The proof follows simply by plugging the dual expressions (4) into Definition 2. Observe
again, how the dual expressions coincide with the Fenchel-Young inequality (6) and together
explain the nonnegativity of the Bregman divergence.

2.3 Connection with Other Divergences and the Kullback-Leibler diver-
gence

Naturally, there are couple of other families of divergences, for instance α-divergences by Cher-
noff [9] and the Tsallis α-divergences [10, 11], f -divergences of Csiszár [12], Rényi α-divergence
[13], β-divergences by Basu et al. [14] popular in PCA and ICA (Principal/Independent Com-
ponent Analysis), Fujisawa and Eguchi’s γ-divergence recently proposed for estimation under
heavy contamination by outliers [15] and others. A good message is that in many cases the di-
vergences coincide. For instance, Amari proved in [16] that the Bregman divergence coincides
with f -divergence and its special case α-divergence in the important case of the Kullback-
Leibler divergence, making it both information monotone and information-geometrically flat.
The β-divergence is a particular case of the Bregman divergence with a specific convex func-
tion [16, 17]. Two recent comprehensive overviews of divergences are papers [17] and [18].

Let us now focus for a moment on the particular celebrated case of the Bregman divergence:
the Kullback-Leibler divergence [19].2 It is defined as follows.

Definition 4. Given two pdfs f and g defined on a common space X (e.g. the real line) and
such that f is absolutely continuous with respect to g. Their Kullback-Leibler divergence is
defined by

D(f ||g) = Ef
[
log

f(x; θf )

g(x; θg)

]
=

∫
X
f(x; θf ) log

f(x; θf )

g(x; θg)
dx.

As a Bregman divergence, the Kullback-Leibler divergence is a premetric, i.e., it is non-
negative, D(f ||g) = 0 if and only if f = g almost everywhere. Unless this equality, the
symmetry property of a usual metric does not apply, D(f ||g) 6= D(g||f). Neither does the
triangle inequality. Note, that the absolute continuity of f with respect to g is critical as it
preserves (by limit) the definition for the cases g(x) = 0.

2The Kullback-Leibler divergence is generated with F (x) = x log(x)− x. However, in general (even contin-
uous) spaces, certain topology restrictions apply. This is beyond the scope of the paper; the particular case of
exponential family is covered in later sections.



Natural question is why the particularly the Kullback-Leibler divergence is often the
proper measure when there exist so many other classes of divergences. For instance, the
Hellinger distance, which is a member of the so-called Rényi divergences family just like the
Kullback-Leibler divergence, is a proper metric. In many applications, the reason lies in
the adopted Bayesian paradigm, relying on conditional distributions. The conditionality is
conveniently covered just by the Kullback-Leibler divergence. Clearly,

D (f(x, y)||g(x, y)) = D (f(x|y)f(y)||g(x|y)g(y))

= Ef(x,y)

[
log

f(x|y)

g(x|y)
+ log

f(y)

g(y)

]
= D (f(y)||g(y)) + Ef(y) [D(f(x|y)||g(x|y)] .

Assuming the models f(x|y) and g(x|y) identical, the divergence is driven by the information
carried by the prior distribution. The expectation of the Kullback-Leibler divergence in the
right-hand side is sometimes referred to as the conditional divergence and the relation as the
chain rule for the Kullback-Leibler divergence.

An important property of the Kullback-Leibler divergence, immediately arising from care-
ful investigation the defining expectation, is the difference of its behavior due to the asymme-
try. Assume, that f is a pdf of a fixed distribution and we search the pdf g of a distribution
minimizing the divergence. Two very different cases emerge:

1. Using D(f ||g) = Ef [log f
g ], the approximating pdf g(x) can avoid approaching to zero

when f(x) is close to it, while still retaining minimum contribution to the divergence.

2. With D(f ||g) = Eg[log g
f ], whenever f(x) approaches zero, the pdf g(x) must do so as

well, otherwise the argument of the logarithm will rapidly grow. That is, this order of
parameters makes the divergence zero-forcing.

Both these cases have found numerous applications in the estimation theory and machine
learning. For instance, the former gives rise to expectation propagation [20], while the second
is the cornerstone of variational Bayesian methods [21] including variational message pass-
ing [22]. In the scope of approximate inference and machine learning, both approaches are
thoroughly treated in [21].

As it will be demonstrated later, the Kullback-Leibler divergence is closely tight with the
important exponential family distributions.

3 Information Fusion with Bregman Divergence

Let {fi}i=1,...,n be a set of probability density functions assigned with weights (probabilities)
ωi ∈ [0, 1] summing to unity. The goal is to find the probability density g minimizing the
weighted convex combination

n∑
i=1

ωidφ (fi, g) (8)

The result summarizes the following proposition.

Proposition 1. The minimizer g of

arg min
g

n∑
i=1

ωidφ (fi, g) (9)



is the convex combination
∑n

i=1 ωifi.

Proof. From the definition of the Bregman divergence follows

n∑
i=1

ωidφ (fi, g) =
n∑
i=1

ωi (φ(fi)− φ(g)−Dφ(g)(fi − g))

=
n∑
i=1

ωiφ(fi)− φ(f̄)

+ φ(f̄)− φ(g)−Dφ(g)

(
n∑
i=1

ωifi − g

)
︸ ︷︷ ︸

=Υ(f̄ ,g,
∑
ωifi)

. (10)

Inspection of Υ(·) reveals the Bregman divergence if

f̄ =
n∑
i=1

ωifi,

hence Υ(f̄ , g,
∑
ωifi) = dφ(f̄ , g). Since the first two terms in (10) are independent of g, the

minimum is achieved by setting g = f̄ .

We will refer to the given case as Type-1 fusion. Note, that the result is independent
of φ. The task may naturally be formulated in the other way (Type-2 fusion), requiring
minimization of the weighted combination of the form

n∑
i=1

ωidφ (g, fi) (11)

The result summarizes the following proposition.

Proposition 2. The minimizer g of

arg min
g

n∑
i=1

ωidφ (g, fi) (12)

has the form

g = (Dφ)−1

(
n∑
i=1

ωif
∗
i

)
. (13)

Proof. From the dual forms of the Bregman divergence (Lemma 7) it follows

n∑
i=1

ωidφ(g, fi) =

n∑
i=1

ωidφ∗(f∗i , g
∗).

By Proposition 1 we directly have

g∗ = f̄∗ =
n∑
i=1

ωif
∗
i



hence by convex conjugation (4)

g = (Dφ)−1(g∗)

= (Dφ)−1

(
n∑
i=1

ωif
∗
i

)

= (Dφ)−1

(
n∑
i=1

ωi(Dφ)(fi)

)
.

For comparison, let us derive Type-1 and Type-2 fusions optimal in the Kullback-Leibler
sense as examples. Recall, that they will correspond to the zero-avoiding and zero-forcing
forms.

Example 5 (Kullback-Leibler optimal Type-1 fusion). Let us find the pdf g closest to the set
{fi; i = 1, . . . , n} weighted by ωi and satisfying

n∑
j=1

ωiD(fi||g)→ min . (14)

By the definition of the Kullback-Leibler divergence,

n∑
j=1

ωi

∫
y
fi(y|·) log

fi(y|·)
g(y|·)

=

∫
y

n∑
j=1

ωifi(y|·) log

∑n
j=1 ωifi(y|·)
g(y|·)

+ κt

= D

 n∑
j=1

ωifi

∣∣∣∣∣∣∣∣g
+ κt, (15)

where κ denotes the terms independent of g. Indeed,

g =
n∑
j=1

ωifi, (16)

hence the resulting g is a mixture density.

Example 6 (Kullback-Leibler Divergence, Type-2 fusion). In this case, we seek the pdf g
satisfying

n∑
i=1

ωiD(g||fi)→ min . (17)

We proceed similarly to the previous example,

n∑
j=1

ωi

∫
y
g(y|·) log

g(y|·)
fi(y|·)

dy =

∫
y
g(y|·) log

g(y|·)∏
j∈Ni

fi(y|·)ωi
dy

= D

g ∣∣∣∣∣∣∣∣ ∏
j∈Ni

fωi
i

 .



That is, the Kullback-Leibler optimal pdf g has the form of the weighted geometric mean

g =

n∏
i=1

fωi
i . (18)

4 Exponential Family

The Bregman divergence has a close relation to the exponential family of distributions, which
in turn are fundamental in Bayesian modelling and its dynamic branch in particular.

Definition 5. A regular exponential family distribution of a random variable X with param-
eters θ in open parameter set Θ is characterized by the pdf of the form

p(x; θ) = exp (〈η(θ), T (x)〉 −A(η(θ)) +B(x)) , (19)

where η ≡ η(θ) is the natural parameter, T (x) is the sufficient statistics, A(θ) ∈ C∞ is the
log-partition function and B(x) is a link function.

We assume compatible dimensions of the variables in the definition. The role of the
dimension preserving term T (x) is to accumulate all information about θ contained in data
x. The log-partition function A(η) = log

∫
X exp (〈T (x), η(θ)〉+B(x)) dx has the role of the

normalizing term, assuring ∫
X
p(x; θ)dx = 1.

If η(θ) = θ, the exponential family is canonical.

Lemma 2 (Barndorff-Nielsen [23]). If A is the log-partition function or a regular exponential
family with natural parameter space η(Θ), then A is a proper convex function.

Corollary 1. There exists a convex conjugate function A∗ fulfilling Definition 3.

If T and η are identity mappings, the exponential family is called natural.
The first and second moments of the random variable X can be estimated by relations

E[T (x)] = DA(η) =
∂A(η)

∂η

cov(T (x)) = D2A(η) =
∂2A(η)

∂η2
, (20)

where the derivatives may be in the multivariate sense. Notice, the Legendre-Fenchel duality
E[T (x)] = η∗.

Example 7 (Univariate normal distribution). The normal distribution of the random variable
X has two parameters θ = [µ, σ2]. Its pdf

p(x;µ, σ2) =
1√

2πσ2
exp

(
(x− µ)2

2σ2

)
can be rewritten into the form (19) as

p(x;µ, σ2) = exp

{〈[ µ
σ2

− 1
2σ2

]
,

[
x
x2

]〉
− µ2

2σ2
+

1

2
log 2πσ2

}



hence A(η) = − η21
4η2
− 1

2 log
(
−η2

π

)
. The first and (the diagonal of) the second moments of

T (x) via (20)

DA(η) = [x̂, x̂2]ᵀ =

[
− η1

2η2
,
η2

1

4η2
2

− 1

2η2

]ᵀ
= [µ, µ2 + σ2]ᵀ

D2A(η) = [var(x), var(x2)]ᵀ =

[
− 1

2η2
,− η2

1

2η3
2

+
1

η2

]ᵀ
= [σ2, σ2(4µ2 + 1)]ᵀ. (21)

Note that this links the mean and variance of observations with the mean and variance of
the distribution.

The following fundamental lemma associates the Bregman divergence of two exponential
family distributions directly with the Kullback-Leibler divergence. Its immediate impact will
become clear shortly.

Lemma 3. The Bregman divergence d(η(θq), η(θp)) of two distributions p(x; η(θp) = p(x; θp)
and q(x; η(θq)) = q(x; θq) from the same exponential family generated by A coincides with the
Kullback-Leibler divergence D(p||q).

Proof. Denote ηp = η(θp) and ηq = η(θq). Then

dA(ηq, ηp) = A(ηq)−A(ηp)− 〈ηq − ηp, D(ηp)〉

= log
exp (〈T (x), ηp〉 −A(ηp)−B(x))

exp (〈T (x), ηq〉 −A(ηq)−B(x))

+ 〈ηp − ηq, DA(ηp)− T (x)〉

= log
p(x, θp)

q(x, θq)
+ 〈ηp − ηq, DA(ηp)− T (x)〉

By (20) and taking expectations of both sides with respect to p(x; θp) yields the result

dA(ηq, ηp) = E
[
log

p(x; θp)

q(x; θq)

]
= D(p||q).

Corollary 2. Assume the set {fi}i=1,...,n of probability density functions from the same expo-
nential family assigned with weights ωi ∈ [0, 1] summing to unity. Then the distribution g of
the same family, whose parameter θg (identically η(θg)) minimizes the Bregman divergences
generated by the log-partition function A in the sense of the Type-1 fusion is given by

ηg =

n∑
i=1

ωiη(θfi). (22)

Identically, this pdf minimizes the criterion

n∑
i=1

ωiD(g||fi)



yielding

g =
n∏
i=1

fωi
i , (23)

which coincides with the Kullback-Leibler optimal Type-2 fusion.

Note that in the identical exponential family, the sum of exponents (hence natural param-
eters) obviously results from the weighted geometric mean. Let us also draw attention to an
interesting peculiarity: the Type-1 fusion (Prop. 1) of whole pdfs yields a convex combina-
tion, i.e. a mixture pdf with the individual merged pdfs as components. On the other hand,
the same fusion of exponential family pdfs in terms of parameters yields the geometric mean
of pdfs resulting in a single pdf g of the same family.

5 Examples

The ongoing examples consider distributed Bayesian inference of model parameters with con-
jugate priors. Generally, this type of inference obeys the following lemma.

Lemma 4. Assume modelling of an observed random variable yt based on an observed variable
xt and a latent parameter θ. Let the model and the conjugate prior distributions have the forms

f(yt|xt, θ) = exp {〈η(θ), T (xt, yt)〉 −A (η(θ)) +B(xt, yt)}

and

π(θ|ξt−1, νt−1) = exp
{
〈η(θ), ξt−1〉 − νt−1A (η(θ)) + C(ξt−1, νt−1)

}
,

respectively (νt−1 ∈ R+). Then, the Bayesian update

π(θ|ξt, νt) =
f(y|x, θ)π(θ|ξ, ν)∫
f(y|x, θ)π(θ|ξ, ν)dθ

(24)

reduces to the linear update of the conjugate prior hyperparameters ξ and ν

ξt = ξt−1 + T (xt, yt)

νt = νt−1 + 1. (25)

The proof follows directly from putting the pdfs into the Bayes’ rule (24). Observe that the
π(θ|ξt−1, νt−1) above is not in the exponential family form by Def. 5, as η(θ) is a function of the
modelled parameter, not hyperparameters ξ and ν. In static inference, the hyperparameters
express the a priori available knowledge in terms of the number νt−1 of pseudoobservations
put into the statistic ξt−1, corresponding to the model’s sufficient statistic T . In dynamic
cases, ν and ξ contain both the pseudoobservations and the incorporated real observations.
In practice, the updating of the form (25) is rather rare in favour of expressions dealing with
the original parameter θ.

Corollary 3 (of Lemma 4). Bregman Type-1 fusion of exponential family posterior distribu-
tions can be achieved either by rewriting the posterior into the exponential family form and
using (22), or directly by convex combination of hyperparameters ξ and ν by (23). These
ways agree.
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Figure 1: Diffusion network: all nodes locally process the obtained data and share information
within a neighborhood (N (i) depicted in grey).

5.1 Problem Formulation

The underlying problem is the diffusion estimation of an unknown parameter θ with a fully
decentralized network of cooperating nodes (estimators) i = 1, . . . , n, Fig. 1. These nodes

exchange either their observations x
(i)
t , y

(i)
t , or their posterior distributions π(i)(θ|ξ(i)

t , ν
(i)
t ),

i = 1, . . . , n or both. For simplicity, we will consider only the exchange of the posterior
distribution; the identical rules apply to the fusion of observations. For a node i, the commu-
nication is restricted to the neighborhood N (i), consisting of the nodes within 1-hop distance,
including i itself. The node weights the information from the neighbors j ∈ N (i) by weights

ω
(i)
j summing to unity. The generality of this setting allows application of the achieved meth-

ods to a broad variety of simpler problems, e.g. the estimation in a fusion center, where we
consider only a single node with a neighborhood of all other (non-cooperating) nodes.

Below, we first describe the basic linear regression model and then consider two cases:
(a) prior distribution for non-natural model parametrization and (b) prior distribution for
natural model parametrization. We highlight that (a) is commonplace. For each case, we
give the Bregman Type-1 optimal fusion.

6 Diffusion Estimation

6.1 Model

We consider modelling of an observed random variable yt ∈ R determined by an observed
regressor xt ∈ Rp and latent vector of regression coefficients β ∈ Rp,

yt = xᵀt β + εt, (26)

where the iid scalar variables εt ∼ N (0, σ2) represent white noise and θ = {β, σ2). This model
can be written in the form yt|xt, β, σ2 ∼ N (xᵀt β, σ

2) with a pdf

f(yt|xt, β, σ2) =
1√

2πσ2
exp

(
−1

2σ2
(yt − xᵀt β)ᵀ(yt − xᵀt β)

)
. (27)

Three most popular prior distributions inference of β and σ2 (or its reciprocal) are the
normal inverse-gamma, normal scaled-inverse-χ2 and normal gamma distributions. We stick
with the first one.



Table 1: Normal inverse-gamma parameters.
Hyperparameter Natural hyperparameter Sufficient stat.

−a− p
2 − 1 −η1 − p

2 − 1 log σ2

−b− 1
2µ

ᵀ
βV
−1
β µβ −η2 + 1

8η
ᵀ
3η
−1
4 η3 σ−2

V −1
β µβ −1

2η4−1η3 σ−2β

−1
2V
−1
β −1

2η
−1
4 σ−2ββᵀ

6.2 Non-natural parameters

The normal inverse-gamma distribution is a compound of the form (time indices omitted)

N iG(µβ, σ
2Vβ, a, b) = N (µβ, Vβ)× iG(a, b)

with a pdf

π(β, σ2|µβ, Vβ, a, b)

= ba(2π)−
p
2 |Vβ|−

1
2 Γ−1(a)

(
σ2
)−a− p

2
−1

× exp

{
− 1

σ2

[
b+

1

2
(β − µβ)ᵀV −1

β (β − µβ)

]}
(28)

where Vβ ∈ Rp×p is a symmetric positive definite scaling matrix. The posterior pdf

π(β, σ2|µβ,t, Vβ,t, at, bt) ∝ f(yt|xt, β, σ2)× π(β, σ2|µβ,t−1, Vβ,t−1, at−1, bt−1)

is given by updated hyperparameters [24]

µβ,t = Vβ,t

(
V −1
β,t−1µβ,t−1 + xtyt

)
Vβ,t =

(
V −1
β,t−1 + xtx

ᵀ
t

)−1

at = at−1 +
1

2

bt =
1

2

[
y2
t + µᵀβ,t−1V

−1
β,t−1µ

ᵀ
β,t−1 − µ

ᵀ
β,t−1V

−1
β,t µ

ᵀ
β,t−1

]
+ bt−1.

Consider now the aforementioned diffusion estimation problem with pdfs π(i)(β, σ2|·) and

weights ω
(i)
j ∈ [0, 1] summing to unity. The goal is to find a Bregman Type-1 optimal pdf

of the same type (N iG), as close to the particular π(i)s as possible. In order to exploit
Proposition 1, we need to rewrite (28) into the exponential family form, Def. 5. Using simple
algebraic operations one arrives at the hyperparameters, their natural form and the connected
sufficient statistics, summarized in Table 1. By direct use of (22), we arrive at the optimal



fused posterior hyperparameters

µ̃
(i)
β,t = Ṽ

(i)
β,t ·

∑
j∈N(i)

ω
(i)
j V

(j)−1
β,t µ

(j)
β,t

Ṽ
(i)
β,t =

 ∑
j∈N(i)

ω
(i)
j V

(j)−1
β,t

−1

ã
(i)
t =

∑
j∈N(i)

ω
(i)
j a

(j)
t (29)

b̃
(i)
t =

∑
j∈N(i)

ω
(i)
j b

(j)
t .

6.3 Natural Parameterization

Peterka [25] has shown that the model (27) can be identically rewritten into the form

f(yt|xt, β, σ2) =
1√

2πσ2
exp

{
Tr

(
−1

2σ2

[
−1
β

] [
−1
β

]ᵀ
︸ ︷︷ ︸

ηᵀ

[
yt
xt

] [
yt
xt

]ᵀ
︸ ︷︷ ︸
T (xt,yt)

)}
.

The prior normal inverse-gamma distribution N iG(ξ, ν) for the natural model parameteriza-
tion has the Peterka’s form

π(β, σ2|ξt−1, νt−1) = exp

{
Tr

(
−1

2σ2

[
−1
β

] [
−1
β

]ᵀ
︸ ︷︷ ︸

ηᵀ

ξt−1

)
+ νA

(
η(β, σ2)

)
+ C(ξ, ν)

}
.

The counterparts of parameters µ and Vβ are

µβ = ξ−1
[2:p+1,2:p+1]ξ2:p+1,1

Vβ = ξ−1
[2:p+1,2:p+1].

This becomes obvious from the Bayesian update (24) taking exactly the form (25),

ξt = ξt−1 +

[
yt
xt

] [
yt
xt

]ᵀ
νt = νt−1 + 1,

simply by recognizing the updates of the relevant blocks of ξt−1.
The Bregman Type-1 fusion of posteriors from the neighborhood N (i) is hence simply

ξ
(i)
t =

∑
j∈N(i)

ω
(i)
j ξ

(j)
t

ν
(i)
t =

∑
j∈N(i)

ω
(i)
j ν

(j)
t , (30)

which coincides with the Kullback-Leibler optimal Type-2 fusion. In the scope of the diffusion
Bayesian linear regression, this yields the whole-pdf combine step proposed by the author [26].



If this method is applied to observation, the adapt step of the diffusion recursive least squares
proposed by Cattiveli et al. [27] is achieved in the Bayesian form, c.f. Supplement of [26].

A particularly interesting aspect of (30) (and indeed (29)) is that it can be seen as a se-
quence of several Bayesian updates, where the ith node’s posterior pdf with hyperparameters

ωiξ
(i)
t and ωiν

(i)
t is updated by the corresponding discounted “sufficient statistics” (or pseu-

doobservations) from the neighborhood (excluding i). In this respect, the Bregman Type-1
fusion of exponential family pdfs is in certain sense Bayes-optimal and inherits the properties
of the traditional Bayes’ estimators. This deserves further research yet.

The choice of weights ω
(i)
j drives the values of the estimates between two extremes – the

“best” estimate and the “worst” estimate within N (i) (in the sense of the variance/bias due
to the potential presence of the additional noise connected with the nodes). The distributed
estimator is hence a shrinkage estimator.

6.4 Functional Fusion

The functional Bregman Type-1 fusion of whole pdfs yields the mixture density

π(i)(β, σ2|·) =
∑
j∈N(i)

ω
(i)
j π(j)(β, σ2|·).

It coincides with the Kullback-Leibler optimal Type-1 fusion in terms of hyperparameters.
The mixture is not an exponential family distribution. Its use in dynamic problems is com-
plicated, making its approximation by a single pdf is practically inevitable. The development
of a method allowing functional Type-1 fusion within a preselected class of distributions is
hence quite attractive.

7 Conclusion

The paper shows the potential of the Bregman divergences for information fusion in dis-
tributed systems. The functional form is shown to yield a very general methodology, ap-
plicable to a quite wide range of problems, from the viewpoint of functions classes to the
parameters of these functions. The Bregman divergences generated by the exponential family
log-partition are shown to coincide with the Kullback-Leibler divergence. The Bregman-
optimal Type-1 fusion of exponential family distributions in terms of hyperparameters par-
ticularizes to the Kullback-Leibler optimal Type-2 fusion of probability densities, resulting in
a single distribution of the identical class.

The future work comprises further exploration of the functional Bregman divergences for
information fusion. For instance, the related information-geometric scope is a very promising
field. Another challenge is the restricted functional fusion within an a priori specified class
of distributions. In other words, the Bregman-optimal fusion of a set of general pdfs {fi}
yielding a single pdf g of the same type, evaluated in the (significantly more general) function
rather than parameter space.
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