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Abstract: Four partners – two SMEs and two research institutes – have united forces to
elaborate principles and building blocks to be exploitable for the embedded condition monitoring
system with advanced features. Existing novel kind of probabilistic logic was selected for
propagation and compounding of information within the hierarchical distributed system, taking
pervasive uncertainty of available data into account. Efficient algorithms were developed for teal-
time quantification of uncertainty of measured signals. Significant effort is devoted to meaningful
transformation of the probabilistic outputs into clear notifications for operators and maintenance
personnel. Variety of particular solutions take advantage of the specific expertise of the involved
partners and allow consideration of various future applications. Currently, the system is in the
stage of testing in a metal-processing plant.
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1. INTRODUCTION

Diagnostics and condition monitoring are becoming in-
herent constituents of modern control systems, at least
for systems exceeding certain level of complexity. Their
aim is obvious: effective maintenance as a prerequisite for
the smooth production. Practical application of diagnostic
features is often confronted with two main problems:

(1) Heterogeneity of components of a complex control
system;

(2) Various credibility and importance of available incom-
ing information.

The first case involves various types of incoming signals
(analog, incremental, logical etc.), diversified ways of data
acquisition (direct, remote with dedicated or shared com-
munication means etc.), different technological platforms
of system nodes (measurement units with embedded intel-
ligence, Programmable Logic Controllers (PLC), industrial
computers, office-floor computers etc.) and various types
of networks.

The second case can be illustrated by a typical example:
if certain sensor within the system stops to provide data
due to, say, disconnected wiring, detection of the failure is
mostly obvious and action to be done is straightforward.
However, if the data are just affected by the impaired
functionality of the sensor due to, say, its wear, the failure
is much more difficult to detect and the action to be taken

is less obvious. In fact, the operator has to make a binary
decision based on uncertain information on the lowermost
level while his decision influences operation of the whole
machine or production line.

The paper presents outputs of the research project the
aims of which are to overcome both groups of problems by
introduction of an hierarchical (and possibly distributed)
condition monitoring system which takes uncertainty of
incoming and processed information systematically into
account. Individual partners involved in the project have
focussed on various aspects of the considered problem and
have elaborated principles and building blocks which are
at disposal for implementation of the system for a specific
domain and in a given extent. Pilot application targets the
metal processing industry.

The paper is organized as follows: the following section
introduces an existing kind of probabilistic logic which
was selected as the principal calculus for treatment of
uncertain information. The next sections depict further
principles and building blocks which were elaborated for
the project’s purpose. The application-oriented section is
followed by the conclusion.

2. PRINCIPLES AND BUILDING BLOCKS

The system being built is schematically depicted in Fig. 1.

Measured signals and other quantities whose proper oper-
ation should be taken into account when evaluating health



Fig. 1. Example of the structure of the hierarchical condi-
tion monitoring system. Green, blue and yellow blocks
belong to single signals, relation between pairs of
signals and probabilistic logic operations respectively.

of the system enter the hierarchical structure on the lower-
most level. Particular green blocks evaluate health of single
incoming signals while the blue blocks care about proper
relation between pairs of signals. Yellow blocks realize
probabilistic logic operations to asses health of functional
or logical subsystem and – on the uppermost level – health
of the system as the whole. Parts of the system pyramid
can be distributed within a networked system.

Means used for the treatment of information and domain
or application specific parts of the solution are summarized
in the following sections.

2.1 From beta distributions to the Subjective logic

Central idea of the project consists in using a kind of
probabilistic logic for compounding of information about
health of particular system components. Right from the
beginning, the idea ran up against the problem of appro-
priate modeling of distribution of probabilities in question.
As the key considered quantity – probability of health
of a component – is naturally bounded, a group of suit-
able theoretical distributions with bounded support was
thoroughly investigated, with the beta distribution as the
obvious favorite (Dedecius and Ettler (2013)). Searching
for a calculus which enables consistent logical operations
with the beta distributions led to the engagement of the
so called Subjective logic (SJ).

Subjective logic (Jøsang (2001), Jøsang (2009)) is a novel
probabilistic logic theory for treatment of uncertain propo-
sitions. Appropriateness of its use for the purpose of the
project was inferred by Ettler and Dedecius (2014a). Below
we state the essentials of the calculus.

The theory of SJ is based on definition of a probabilistic
opinion of a proposition about h (health) in the form of a
quadruplet

ωh = (b, d, u, a) , (1)

where the components b, d, u, a are belief (amount of h-
supporting information), disbelief (the opposite), uncer-
tainty (amount of information insufficiency) and base rate
(prior information) respectively. It must hold

b+ d+ u = 1 , b, d, u, a ∈ [0, 1] (2)

and the expected value can be expressed as

Eh = b+ au . (3)

There exists a bijective mapping between an opinion ωh

and the corresponding beta probability density function

for non-zero uncertainty u. For u = 0, the function
degenerates to the Dirac pdf concentrated at a point
between 0 and 1 given by the belief b.

There exists a full set of operators as counterparts to
the binary logic and probabilistic logic operators including
multiplication, addition, deduction, abduction, etc. More-
over, additional operators can be used for various types of
fusion and unfusion and for the belief constraining.

The base rate a represents the prior amount of belief
and can be constructed from historical data or based on
experience of the user. Bayesian approach can be beneficial
for this purpose as was investigated by Dedecius and Ettler
(2014).

2.2 Evaluation of uncertainty

Quantification of the uncertainty u is the crucial step of
the whole approach. Several algorithms for evaluation of
u were developed within the project.

Signal range

Very basic evaluation of signal health is based on ex-
amination how the signal fits its allowed range. In the
simplest case, the measured signal should lie within the
specified interval: x(t) ∈ [xmin, xmax]. Measurements x(t)
are mostly corrupted by some kind of noise which can be
expressed by the model

x(t) = x⋆(t) + e(t) , (4)

where x⋆(t) is the real but unknown value of the signal
in time t and e(t) is a zero-mean signal noise. In the
neighborhood of signal boundaries, there is difficult to
determine whether x⋆(t) lies inside or outside the al-
lowed range. Related uncertainty u can be derived from
statistical moments of e(t) within the selected moving
window. Detailed relations for evaluation of uncertainty
u and opinion ωh for the model with normal noise can be
found in Ettler and Dedecius (2014b). Fig. 2 illustrates a
simulated situation where the measured signal traverses
its allowed maximum (the upper plot) which is reflected
by probability distribution of signal health h(t) (the lower
plot).

Pavelková and Jirsa (2014) consider two-level bounds xH <
xS < x̄S < x̄H, where indices H and S stand for hard
and soft boundaries, respectively. Under usual working
conditions, the signal x⋆(t) is expected to occur inside the
soft bounds and it may not occur outside the hard bounds.
Utilizing these bounds, the course of the opinion ωh (1) of
the health of x⋆(t) can be constructed straightforwardly.
Concerning x(t), it is described here by the model (4)
with uniformly distributed noise e(t). Then, the resulting
opinion ωh depends on the mean value of x(t) and its
uncertainty u is influenced by the interval given by the
support of uniform distribution describing x(t).

Signals the distribution of which is obviously not unimodal
can be modeled by the mixture of normal distributions as
explained by Jirsa and Pavelková (2014).

Outliers

Another type of uncertainty is connected with potential
measurement outliers. Degradation of signal reliability
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Fig. 2. Range-dependent proposition about signal health:
The noisy signal is traversing its given positive bound-
ary on the upper plot. Propagation of the beta distri-
bution of probability of its health is depicted on the
lower plot.

caused by occurrence of outliers can be appropriately
expressed by non-zero uncertainty, relations for which were
specified by Ettler and Dedecius (2014b).

Monitoring in the frequency domain

Some signals may suffer from harmonic disturbances.
Utilization of the Fourier transform and analysis in the
frequency domain is then commonplace. From the uncer-
tainty evaluation point of view, undesired frequency peaks
can be treated as outliers with similar consequences. More
on the analysis in the frequency domain can be found in
the following subsection.

Monitoring and modeling of relationships between signals

Relationships between signals can be monitored in two
ways:

(1) Plain comparison of moving averages of signals and
indication whether their difference exceeds given
limit. Uncertainty of such comparison can be eval-
uated similarly as in the signal-to-range case.

(2) Simple modeling of signal relationship in the form

x1(t) = p1(t) ∗ x2(t) + p2(t) + ǫ(t) , (5)

where x1(t), x2(t) stand for the two monitored sig-
nals, p1, p2 are time-varying model parameters, and
ǫ(t) is a normally distributed, zero-mean noise. Com-
parison of parameter estimates p̂1(t), p̂2(t) and evalu-
ation of its uncertainty is accomplished similarly as in
preceding case. Again, details can be found in Ettler
and Dedecius (2014b).

2.3 More on the monitoring in the frequency domain

Data acquisition setup for the frequency analysis is ex-
plained in Figure 3. In certain cases it is not necessary to

perform sampling all the time, but just in periodic sam-
pling sessions while in other cases measurement sessions
will immediately follow each other. Each session consists
of N samples taken at a sampling rate fs = 1

Ts
. The first

Nref sessions belong to the reference window and are taken
while the inspected signal is in the healthy state. During
the operation a sliding window with Ncur recent sampling
sessions is used to decide whether there is a change in the
features statistics. For simplicity, let us assume that after
each measurement session labeled k, a feature being the
mth component of the Fourier spectrum is calculated as
follows:

Zk,ref =

N−1
∑

t=0

yk(t)e
j2π mt

N = Xk,ref +jYk,ref (6)

k = 1, ..., Nref .

Since the Fourier transform (6) is a linear transformation
of a normally distributed random signal (4), Zk,ref is also
a normally distributed but complex random variable. Fur-
thermore, the same applies also to the current condition:

Zl,cur =

N−1
∑

t=0

yl(t)e
j2π mt

N = Xl,cur +jYl,cur (7)

l = 1, ..., Ncur.

Fig. 3. Possible computational scheme for monitoring in
the frequency domain.

After the sets of features are formed, a batch of Nref

features obtained in nominal condition and a batch of
Ncur features obtained at current condition are subjected
to centering by subtracting the average from nominal
condition from both batches

Zk,ref← (Xk,ref −Xk,ref +j(Yk,ref −Y k,ref ) (8)

where X denotes the expected value of X .



Failure detection

A statistical hypothesis test is derived from the pre-
viously obtained centered reference and current sets of
features Zk,ref , k = 1, ..., Nref and Zl,cur , l = 1, ..., Ncur.
Let us now note that the sum of squared modules of Zk,ref
is compliant with the central chi-squared distribution with
Nref degrees of freedom.

CIref =

Nref
∑

k=1

Zk,ref Z
∗

k ,ref =

Nref
∑

k=1

|Zk,ref |
2 (9)

CIref ∼ χ2(Nref )

This result is obtained by assumption that in nominal con-
dition small changes in the mean occur between different
sampling sessions. Actually we suppose that the healthy
features are zero mean and their chi-square statistics
are obtained by mathematical calculation (9). In general,
when the component becomes faulty, the mean of the
features is no longer zero, meaning that the features in
current condition are

CIcur =

Ncur
∑

l=1

Zl,cur Z
∗

l ,cur =

Ncur
∑

l=1

|Zl,cur |
2 (10)

CIcur ∼ χ2(Ncur, λ)

λ =

Ncur
∑

l=1

(

µl,cur
σl,cur

)2

, (11)

distributed according to the noncentral χ2 distribution
with Ncur degrees of freedom and noncentrality parameter
λ. The noncentrality parameter is related to the means
µl,cur and the variances σl,

2
cur of the random variables

CIcur . This is the case because of the non-zero mean
features of Zl,cur (8). As a result of the changes, for
example in the amplitude of a signal, the statistics of the
features are changing, which is an indication that a fault
has occurred. From here it is easy to distinguish between
different faults. Changes in the signal will reflect in large
increase in the mean of the signal and by the ratio between
these CIs the decision could be made. If there is no change
in the system condition, then the statistical properties of
|Zl,cur|

2, l = 1, ..., Ncur should be equal to the statistical
properties of |Zk,ref |

2, k = 1, ..., Nref , i.e. should share
the same χ2 distribution. Let us assume E|Zl,cur|

2 =
σ2
cur and E|Zk,ref |

2 = σ2
ref for all samples. If the signal

health deteriorates, the statistical properties of the feature
change, which normally affect the increase in feature
variance. Since both sets of samples are independent, we
can define the null hypothesis H0 : σ2

cur = σ2
ref versus the

alternative hypothesis H1 : σ2
cur > σ2

ref . We propose the
test statistic

CIF =
CIcur/Ncur

CIref/Nref

∼ F (Ncur, Nref) (12)

which under H0 complies with the central F-distribution
with Ncur − 1 and Nref − 1 degrees of freedom. So, given
samples we reject H0 if

CIF ≥ h = Fα(Ncur − 1, Nref) (13)

where the term on the right side denotes the critical value
of the distribution at the level of significance α. The level

of significance α · 100% denotes the tolerated PFA. For
example, in case of Nref = 400 and Ncur = 400 and
PFA = 5% from the table of low critical values for the
F distribution it follows that the value of the threshold
h = 1, 2290.

An example:

Let us take a two-component signal with additive white
Gaussian noise

y(t) = A · (sin(2π · 20 · t) + sin(2π · 50 · t)) + w(t). (14)

Changes in amplitude A simulate increase in a component
of a vibrational signal due to a particular fault (e.g. unbal-
ance). This change influences the current feature statistics.
Let us take the referent set with Nref = 400 sampling
sessions and set the sliding window in on-line operation
Ncur = 100. Each session contains N = 1000 samples.
Prior to calculating the FFT of sampled record in a mea-
surement session the record is multiplied by the Hamming
window. From a batch of features collected in nominal
condition and a batch corresponding to the current condi-
tion, a statistical hypothesis test is derived. Furthermore,
noncentral F-test is performed where the resulting CIs
are used for obtaining the threshold percentiles from the
quantile function.

Fig. 4. An example of performance of the detection algo-
rithm.

It can be seen in Fig. 6 that the test reliably detects change
in the feature. However, the alarm is triggered with a delay,
which depends on the window length.

2.4 Coherence with existing standards

Managing data processing and storing data on various
levels of aggregation in condition based maintenance is
rarely discussed in the publications as the bulk of interest
of the community is on algorithms for feature extraction,
diagnosis and recently prognosis. The most comprehen-
sive approach to this issue seems to be provided by MI-
MOSA OSA-EAI (Mimosa (2013)) standard. The notable



strength of MIMOSA comes from the completeness and
consistency of the entities that constitute the system.

Condition monitoring is a multistage process. MIMOSA
delivers a model of it, which consists of 6 modules, cf.
Fig. 6. The first two modules take care of correct data ac-
quisition and evaluation of the features. The next module
checks the conformity of the pattern of features with the
reference pattern and an alarm is triggered if discrepancy
is detected. The health assessment module provides an
estimate of the current health, i.e. indicating tentative
faulty locations. From the historical trends of features as
well as the available degradation models the remaining
useful life of the machine can be estimated (Gasperin et al.
(2012)). Based on the assessed current health and expected
machine lifetime the last module generates guidelines for
the operators and maintenance personnel.

The state detection module is based on various algorithms
for detecting changes in trends of the features evolution
over time. Simple thresholding techniques are also utilized
for large changes. Prognostic assessment (PA) is a notori-
ously difficult task and is not addressed here.

Our system schematically depicted in Fig. 1 can be consid-
ered as a subset of the above mentioned standard scheme
realizing blocks Data acquisition (DA), Data manipulation
(DM) and Health assessment (HA).

Fig. 5. MIMOSA standard: Data processing and informa-
tion flow blocks.

2.5 Presentation of outputs

Although the theory behind the control system health
evaluation is complex, the system operators should be
confronted with as simple and comprehensible information
as possible. Therefore, it is necessary to ‘translate’ the
outputs from the hierarchical monitoring system to a
format allowing quick understanding. Furthermore, the
presented information must be stable in the sense that
any changes must be sufficiently smooth.

The situation is illustrated in Fig. 7: uncertain information
is consistently processed up to the uppermost block, the
outputs of which are presented in the form of the three-
state semaphore and textual messages for the operator.
Detailed probabilistic information is still available for the
qualified inspection.

Fig. 6. Propagation of uncertain information upwards
the hierarchical system and its simplification on the
uppermost level.

A possible way towards smooth information for operators
is to model the time between events – the semaphore
states – as an exponentially distributed random variable
(denoted Xt) with an unknown rate parameter λ > 0.
The Bayesian estimation of this parameter, accompanied
by an exponential discounting (setting the smoothness of
transitions among states), exploits the probability density
function of Xt of the form

p(xt|λ) = H(xt)λ exp(λxt),

where the Heaviside step function

H(xt) =

{

0 if xt < 0

1 otherwise.

From now on, we assume λ time-variable and denote it λt.
The conjugate prior distribution allowing fast sequential
estimation is the gamma distribution. It has two non-
negative prior hyperparameters αt−1 and βt−1 and the
probability density function

π(λ|αt−1, βt−1) =
β
αt−1

t−1

Γ(αt−1)
λαt−1−1 exp(−λβt−1).

The prior hyperparameters summarize the available statis-
tical knowledge about λt, whose mean, variance and mode
read

E[λ] =
αt−1

βt−1

, varλ =
αt−1

β2
t−1

, and λ̃ =
αt−1 − 1

βt−1

.

The posterior density is proportional to the product of the
exponentially discounted prior and the model,

π(λ|αt, βt) ∝ [π(λ|αt−1, βt−1)]
γ
p(Xt = xt|λ),

where γ ≤ 1 is a discounting factor slightly smaller than
one and xt a measurement of the time between events. The
posterior is fully characterized by the hyperparameters

α+
t = γαt−1 + 1, and β+

t = γβt−1 + xt.

3. APPLICATION

The main feature of the proposed condition monitoring
system is its hierarchical structure, allowing distribution
of its parts over a network of interconnected processing
nodes. System components or the system as the whole can
be embedded into the nodes of the monitored system. The
last possibility is suitable mainly in situations where the
control and condition monitoring systems are developed
and commissioned together, i.e. for new systems. When
the monitoring functionality is to be added to an existing
control system, using of dedicated nodes may be more
suitable.



Such solution has been used for the experimental system
which is now being tested in a metal-processing plant.
Single nodes are realized by industrial computers as in
Fig. 8. MS Windows Embedded are used as the operating
system in this case while Linux with the real-time kernel
extension is considered as an alternative.

Fig. 7. A node of the ProDisMon condition monitoring
system.

The experimental system monitors functionality of the
control system of the four-high cold rolling mill which pro-
cesses copper and brass strips. Four groups of quantities
are supervised:

(1) Measured analog signals (hydraulic pressures, slide-
valve positions of proportional valves, strip thick-
nesses and electric currents of the mill drives;

(2) Digitally measured signals (positions of the roll posi-
tioning system, revolutions of working rolls and coil-
ers and strip speeds);

(3) Information about computer hardware (processor
temperatures and revolutions of fans);

(4) Information about software functionality (load of
processor cores and execution times of particular real-
time tasks/threads).

The input signals are accessed via the industrial net-
work. The software solution is based on the OOP (Object
Oriented Programming) principles. Outputs and internal
states of each block are recorded continuously to allow
subsequent detailed inspection. Developed visualization
tools provide on-line information about operation of the
system together with simplified outputs intended for the
operators.

4. CONCLUSION

Several principles were adopted or elaborated and num-
ber of building blocks were developed to be ready for
implementation of the probabilistic condition monitoring
system. Subjective logic – a kind of probabilistic logic
taking information uncertainty systematically into account
– was adopted as the principal calculus for compounding
and propagation of information within the system. This
approach enables consistent treatment of uncertain propo-
sitions about health of particular components, parts of the
system and health of system as the whole. Thus, a better
decisions support is placed at disposal of operators and/or
maintenance personnel.

Bulk of the developed building blocks were used for config-
uration of the experimental condition monitoring system
the testing of which has been commenced for a cold rolling
mill. Enlargement of the system for monitoring other ag-
gregates within the metal processing plant is envisaged
after evaluation of long-term testing.
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