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Abstract. The paper addresses a lazy learning (LL) approach to decision making (DM)
problem described in fully probabilistic way. The key idea of LL is to simplify the actual DM
problem by using past DM problems similar to the current one. The approach can decrease
computation complexity and increase quality of learning when no rich alternative information
available.

The proposed LL approach helps to learn the environment model based on a proximity
of the past and current DM problem with Kullback-Leibler divergence serving as a proximity
measure. The implemented algorithm is verified on the real data. The results show that the
proposed approach improves prediction quality.
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1 Introduction

To make a good decision with respect to an environment, a decision maker should have a
good environment model and high-quality prediction of the environment behaviour, which
can be used in optimisation. There are several approaches to make good environment
model. In most learning methods, one global model is searched for to describe all of the
past data. It is essential that every complex structure contains several subsystems. Each
subsystem exhibits different behaviour, we need to identify each subsystem and analyse
it separately.
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2 J. Štěch, T. V. Guy, B. Pálková, M. Kárný

This has motivated the approach, which builds local models using the relevant data
from the past. This group of learning approaches, generally called lazy learning (LL), goes
through the data history and search for the past instances similar to the current problem.
Then the relevant past data is used to build a current environment model. These models
attempt to fit the past data only in a region around the location of the query. The strong
motivation for local learning techniques is their suitability for real time tasks. Their fast
learning and avoidance of negative interference between historical and new data is a great
advantage. The article addresses employing LL approach to improving the quality of the
prediction further used in optimisation. The resulting solution was applied to real data.

2 Preliminaries

This section introduces necessary notions and definitions. The sequence (xt, xt−1, . . . , x1)
is shortened as x(t). Values of x given in discrete time instances are labelled by t, t ∈ N.
If x is a vector, x′ is its transpose and lx its length. Bold capital X represents a set of x
values. If x is a random variable, cx is a realisation of x. We use an abbreviation pdf for
probability density function.

Consider an interacting pair ’environment-agent’. The agent observes environment
state st ∈ S and makes action at ∈ A to learn (or influence) the environment. The
selected actions are expected to provide the desired behaviour of the pair. The complete
probabilistic description of the closed-loop behaviour of the pair up to time t is represented
by a joint pdf p(s(t), a(t)), that can be decomposed using the chain rule for pdfs, [5],

p(s(t), a(t)) =
t∏

τ=1

p(sτ |aτ , s(τ − 1), a(τ − 1))p(aτ |s(τ − 1), a(τ − 1))p(s0), (1)

where p(sτ |aτ , s(τ − 1), a(τ − 1)) is a model of the environment, p(aτ |s(τ − 1), a(τ − 1))
stands for the agent’s decision rule forming DM policy and p(s0) is the prior pdf.

2.1 Environment Model

We consider the following model of the environment.

Definition 1 (Model of the environment)
Let a time-invariant parametrised environment model M(Ψt,Θ) specify a pdf of the en-
vironment observed state st given at most N ∈ N past data:

M(Ψt,Θ) = p(st|st−1, . . . , st−N , at, . . . , at−N ,Θ) = p(st|ψt,Θ) (2)

Ψt = [st, . . . , st−N , at, . . . , at−N ]′ = [st, ψ
′
t]
′,

where ψt = [st−1, . . . , st−N , at, . . . , at−N ]′ is a regression vector, Ψt is a data vector and
Θ ∈ Θ is an unknown finite-dimensional parameter.

The regression vector ψt consists of a fixed number of past (delayed) actions and
states. N ∈ N is a maximal delay of past data entering the regression vector. The data
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vector Ψt ∈ Ψ is recursively updated, (Ψt, st+1, at+1) =⇒ Ψt+1 when new data come.
Knowledge of the unknown parameter Θ ∈ Θ is described by a flat prior pdf p(Θ).

Bayesian estimation [3] is used for modifying the prior pdf p(Θ) to the posterior pdf
p(Θ|K). The resulting p(Θ|K) reflects the knowledge K gained from the past data vectors
and is further used to get a prediction p(st|ψt,K) serving as the environment model

p(Θ|K) ∝
∏
t

p(Θ)M(Ψt,Θ), (3)

p(st|ψt,K) =

∫
Θ

M([s′t, ψ
′
t]
′,Θ)p(Θ|K)dΘ, (4)

where ∝ is the proportional sign.

2.2 Estimation of Structure and Parameters of Linear Normal
Environment Model

The considered application deals with linear normal model M(Ψ,Θ) = Ns(θ′ψ, r) and

st = θ′ψt + et, (5)

where θ is unknown time-invariant matrix of regression coefficients (lψ × ls), ψt is a
regression vector of length lψ = 2N + 1 and et is normally distributed random variable
(noise), i.e.

p(et|a(t), s(t− 1), r) = p(et|r) = (2π)−ls/2|r|−1/2 exp

{
−1

2
e′tr
−1et

}
, (6)

where r is positive-definite (ls × ls) covariance matrix. In order to get the model (4) we
need to evaluate p(Θ|K), (3), where Θ = (θ, r).

Let us denote ŝt = θ′ψt and assume the structure of the model (5) to be fixed within
a hypothesis denoted Hψ. Using (6) and the fact that et = st − ŝt we can calculate

p(st|a(t), s(t− 1),Θ, Hψ) = (2π)−ls/2|r|−1/2 exp

(
tr

(
r−1

[
Ils
−θ

]′ [
st
ψt

] [
st
ψt

]′ [
Ils
−θ

]))
, (7)

where Ik is (k × k) unit matrix. We assume the class of input generators satisfying the
natural control condition [3], i.e.

p(at|a(t− 1), s(t− 1),Θ, Hψ) = p(at|a(t− 1), s(t− 1)). (8)

It can be shown, using (7), that pdf of an observed part of the environment state
takes the form

p(s(t), a(t)|Hz) ∝
t∏

τ=1

p(aτ |a(τ − 1), s(τ − 1))p(a0, s0|Hψ)

∣∣∣∣Vψtε
∣∣∣∣−ls/2 |Λt|−νt/2 (9)

where

Vt = Vt−1 +

[
st
ψt

] [
s′t ψ′t

]
=

[
Vst V ′ψst
Vψst Vψt

]
, V0 = εIlΨ

Λt = Vst − V ′ψstV −1
ψt Vψst, νt = νt−1 + 1, ν0 = ε
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and ε > 0, ε small (standard choice in case of insufficient prior information, see [6]).
A finite amount of possible structures of model given by ψi, i ∈ {1, 2, . . . ,M}, is

assumed. The probabilities of hypotheses Hi = Hψi are calculated according to the
Bayes rule

p(Hi|s(t), a(t)) =
p(s(t), a(t)|Hi)p(Hi)∑M
k=1 p(s(t), a(t)|Hk)p(Hk)

. (10)

We have no reason to expect any hypothesis to be more probable than others, hence

p(Hi) =
1

M
. This, use of (10) and natural conditions of control (8) implies [6]

p(Hi|s(t), a(t)) =
γi(t)∑M
k=1 γk(t)

, γi(t) = |Vψi(t)|−ls/2|Λi(t)|−νt/2εlψls/2. (11)

We arrived to this using (9). A full description of pdf of observed data contains also
factors describing the input generator and normalizing factors. However, this formula is
simplified using (11), see [6].

The model is estimated to have a structure given by ψibest, where

p(Hibest|s(t), a(t)) = max
k∈{1,2,...,M}

p(Hk|s(t), a(t))

In order to obtain the estimate of Θ, we have to determine for ψ = ψibest the pdf
p(Θ|a(t), s(t), Hψ) = p(r, θ|a(t), s(t), Hψ). In the linear normal case, we choose prior pdf
in the Normal-inverse-Wishart form N iWθ,r(V0, ν0)

p(Θ|a0, s0, Hψ) = p(Θ|Hψ) ∝ |r|−
νt
2 exp

{
−1

2
tr

(
r−1

[
Ils
−θ

]′
V0

[
Ils
−θ

])}
, (12)

the pdf p(r, θ|a(t), s(t), Hψ) can be rewritten (see [3]) like

p(Θ|a(t), s(t), Hψ) ∝ |r|−
νt
2 exp

{
−1

2
tr

[
r−1

([
θ − θ̂

]′
Vt

[
θ − θ̂

]
+ Λt

)]}
,

θ̂t = CtVψst, Ct = V −1
ψt , Λt = Vψt − V ′ψstCtVψst. (13)

Note that maximum of the pdf is at θ = θ̂. We can modify (13), see [3], to obtain
recursions

θ̂t = θ̂t−1 +
1

1 + ζt
Ct−1ψtê

′
t, Ct = Ct−1 −

1

1 + ζt
Ct−1ψtψ

′
tCt−1 (14)

Λt = Λt−1 +
1

1 + ζt
êtê
′
t, ζt = ψ′tCt−1ψt, êt = st − θ̂′t−1ψt.

Recursions (14) are formally identical with the recursive least squares. Hence, this method
is used to get estimate θ̂t of θ, [3].

3 Lazy Learning

Lazy learning is a learning method based on similarity of the actual and past data. Here
we use the LL approach for selecting an environment model.
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3.1 Formulation

Let us suppose that similar regression vectors indicate similarity of the actual state of
the pair ’agent-environment’ and some past state. Naturally this similarity yields similar
prediction of the environment state and can be described by a single environment model.
To decide on the proximity of the current state and the state occurred in the past, the
Kullback-Leibler divergence (KLD) is used.

Definition 2 (Kullback-Leibler divergence)
The Kullback-Leibler divergence D(f ||g) measures the proximity of two pdfs (f, g) acting
on a set X. It is defined as:

D(f ||g) =

∫
x∈X

f(x)ln
f(x)

g(x)
dx.

It can be shown that D(f ||g) ≥ 0, D(f ||g) = 0 iff f = g almost everywhere on X.

3.2 Lazy Learning of the Environment Model

At the very beginning a prior pdf p(Θ) of the unknown parameter is used for the Bayesian
estimation. Consider the current time t (before observing state st). Let us have a set of
knowledge-expressing past data vectors {cΨκ}κ∈κ, κ = 1, 2, . . . , t − 1, which are used to
update the prior to p(Θ|K), (3).

Let us have model M(Ψt,Θ). Its parameter is estimated at time t by applying the
Bayes rule to a selected range of data indexed by κ, i.e. {cΨκ}κ∈κ (3), (4). At time t we
can get the prediction of the environment state st

p(st|cψt,K) =

∫
Θ

M([s′t,
c ψ′t]

′,Θ)p(Θ|K)dΘ. (15)

This whole design depends on the choice of the relevant (close) data vectors to be
included into K. Thus the definition of the closeness of regression vectors cψt and cψκ
is very important. The similar regression vectors have similar joint pdf of the predicted
state st and the parameter Θ, thus ψt ≈ ψκ implies

p(st,Θ|cψt) ≈ p(st,Θ|cψκ).

No information about the parameter Θ can be gained from the regression vector (an
analogy of natural conditions of control, [3]), i.e

p(Θ|cψt) = p(Θ|cψκ) = p(Θ).

Hence, the Kullback-Leibler divergence (Definition 2) of p(st,Θ|cψt) on p(st,Θ|cψκ) reads

Dtκ =

∫
st,Θ

M([s′t,
c ψ′t]

′,Θ)p(Θ)ln
M([s′t,

c ψ′t]
′,Θ)

M([s′t,
c ψ′κ]

′,Θ)
dsdΘ.



6 J. Štěch, T. V. Guy, B. Pálková, M. Kárný

For a single-output normal autoregressive model the considered conjugate pdf of the un-
known parameter, Section 2.2, is Normal-inverse-Gamma (Wishart) distributionN iGθ,r(V, ν),
(12), and KLD reads

Dtκ =

∫
θ,r≥0

[θ′(cψt −c ψκ)]2

2r
N iGθ,r(V, ν)dθdr

=
1

2

[ ν

(ν − 2)r̂
[θ̂′(cψt −c ψκ)]2 + (cψt −c ψκ)′C−1(cψt −c ψκ)

]
. (16)

Here θ̂ is the least squares (LS) estimate of regression coefficients, Θ = (θ, r), where θ
consists of the regression coefficients of the environment model (5) and r is variance of the
noise et, the number ν stands for degrees of freedom, r̂ is a LS estimate of noise variance
and C is a factor of LS covariance r̂C. This result comes from the basic properties of
Normal-inverse-Gamma pdf N iGθ,r(V, ν), see Section 2.2 and [1]. The values of KLD
have to be small for similar regression vectors cψt ≈c ψκ. The first summand in (16)
is proportional to the normalised squared difference of the regression vectors based on
estimates θ̂ and normalised by r̂. Hence values larger than one are not small enough. The
second summand is proportional to the squared Euclidean norm of (cψt −c ψκ) weighted
by the precision matrix C−1, which can be described as an inversion of the second sample
moment of the regression vectors divided by ν. Hence, the values of divergence

Dtκ ≤
1

2
(1 + lψ/ν) (17)

can be considered sufficiently small, [3].
Thus to learn a model of the environment at time t, we search for the relevant regres-

sion vectors ψκ via (16) and use them to build model at time t according to LS algorithm
described in Section 2.2. This model is then used as model of the environment.

4 Results

General aim of this part is to illustrate the proposed approach combining LL and structure
and parameter estimation. The task is to learn the dependencies in the whole system
and to make high-quality prediction of the environment behaviour, which can be further
used in the optimisation. The behaviour of the environment changes with time and may
have different modes. So it can be described by a collection of several models, each valid
at some time period. We learn the main dependencies between data and estimate the
relevant coefficients of this structure. Eventually, we explore the ability to predict the
future behaviour of the environment.

The experimental data are taken from International Fast Moving Consumer Goods
company1. The data containing 30 variables has been observed for 139 weeks. The ob-
served environment states characterise sale of selected goods. Other variables potentially
entering regression vector contain price, sales volumes, marketing indicators (leaflets, TV
commercials, etc.) and index of the location of the goods in the store.

1Any details about data and company are subject to anonymity restrictions.
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4.1 Algorithm

We use the logarithm of sales values as st and work with log-normal model. The maximal
delay N (see Definition 1) is set to one week. It is assumed that older data do not influence
the present behaviour. The overall algorithm implementing the proposed approach is as
follows.

1. At the very beginning Bayesian approach without lazy learning is used to analyse
the data set. At each time step: (i) structure of the model (2) is estimated; (ii)
corresponding estimates of regression coefficients, θ̂, (5) are updated and, (iii) pre-
diction of the environment state (15) is made. Recall that the model is log-normal,
the mean is exp(µ + r

2
), where µ is the mean and r is the variance of the related

normal distribution N (µ, r). Prediction is then equal ŝt = θ̂t−1ψt.

2. Next step considers separating the past data into several sets, each corresponds to
one working mode (described by an individual model). Here due to the lack of data
we consider only two working modes. To make the separation, every past regression
vector ψκ, κ = τ, τ + 1, . . . , t − 1, where τ is learning time, is compared with the
current regression vector, ψt via corresponding KLD. Having the learning time τ
fixed, the computed values of KLD, (16), are Dtκ, κ = τ, τ + 1, . . . , t− 1. By setting
a boundary value d > 0, we can separate the original data set into two sets: similar
data, i.e. data with regression vectors close to the actual one, ψt, Dtκ < d, and data
with regression vectors having KLD Dtκ ≥ d.

A boundary value d is defined such that if Dtκ < d, the regression vector at time
κ belongs to one working mode, otherwise (Dtκ ≥ d) it belongs to another. Hence,
at each time step only one of the modes (described either by model M1 or M2) is
valid. Boundary value of KLD d is set empirically, based on (17).

3. The structure of each model (M1 and M2) is estimated using the available data.

4. Finally, we make predictions based on the approach with lazy learning. At each time
we compare actual data with all past data, i.e. calculated the KLD, Dtκ(ψt||ψκ),
and searched for the regression vector closest to the current one. The prediction is
made based on the relevant structure at some past time τ , where τ = argminκ(Dtκ).

After the predictions with LL and without LL are obtained, we calculate the prediction
errors eτ = sτ − ŝτ , where sτ is the real state and ŝτ is the prediction of this state.
To compare the approaches, the error is calculated as root-mean-square error of the
prediction normalized by the root-mean measured value.

These two approaches are confronted with trivial prediction. Trivial prediction means
that the environment state at time t+1 is going to be the same as already observed state
at time t, i.e. ŝt+1 = st.

4.2 Examples

Throughout the experiments the special notations connected with software implemen-
tation are used. Channel indicates the position of particular variable in the maximal
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regression vector. Delay can be 0 or 1 week, because the maximal delay (N) of variables
present in the regression vector is set to 1 week, see (2). That means at time t, s9,t

stands for the sales stored in Channel 9 with zero delay and s9,t−1 for one-week delay.
The initialisation (learning time) for the predictions is set to 30 as we have small amount
of data. Recall that the data contain 30 variables, i.e. price, sales volumes, marketing
indicators (leaflets, TV commercials, etc.) and index of the location of the goods in the
store.

Consider selling Product 1 (P1) by a Seller 1 (S1). Our aim is to predict sales values.
First we applied approach without lazy learning, i. e. we learned the model structure and
regression coefficients based on the whole data set. The results are in Table 1.

Channel 16 9 21 8 26 16
Delay 1 1 0 1 0 0
Coefficient -1.0524 8.8417 -1.5553 -6.931 -1.4128 2.5996

Table 1: Model structure, corresponding regression coefficients and delays (approach
without LL).

The corresponding model is then

s9,t = −6.93s8,t−1 + 8.84s9,t−1 + 2.60a16,t − 1.05a16,t−1 − 1.56a21,t − 1.41a26,t + êt,

where s9,t stands for the sales values and êt is the prediction error in the actual time t,
see Section 4.1.

Then we divided the whole data set into two and learned respective models M1
and M2. Table 2 shows the model structures and corresponding estimates of regression
coefficients. Then approach with lazy learning is used. At each time t we compare the
actual regression vector with all past vectors (see Section 3.2). The prediction is made
based on the model (M1 or M2) corresponding to the closest regression vector ψi, where
i = argminκ(Dtκ), see Section 4.2.

Model M1 Model M2
Channel 26 16 21 7 21 27 16
Delay 1 0 0 0 0 1 0
Coefficient -0.8884 2.6415 -1.9270 0.8554 -1.9990 -1.1612 2.4277

Table 2: Model structure, corresponding regression coefficients and delays (approach with
LL).

In a similar way we proceeded two other examples describing selling other products.
Table 3 compares the prediction error of trivial prediction, approach without lazy learning
and our proposed approach for all three examples. The improvement brought by LL is
significant compare to other approaches.

4.3 Discussion

An assumption, that data older that 1 week (maximal delay) do not influence the actual
sales, was confirmed experimentally.
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Due to the lack of data, the separating value d set according to (17), where lψ =
30, ν = 32, d ≈ 1, was not good.

The separating value is set based on two demands. Firstly, the subsystems have
to be valid for longer time than the learning time (30). Then, we focus on the visual
criterion. As the businesses data are proceeded, we can recognize different subsystems,
selling strategies, data collection mistakes etc. The division based on KLD has to match
with the reality. Empirically selected value d = 2 provided the prediction of good quality.
The reason for that might be the following. Both time curve of KLD values and time
curve of sales values have big peaks, which may represent external influences, for instance
promotions and discounts, which may cause significant increase of sales. Approaches with
and without LL provide similar quality predictions when sales curves do not have peaks,
but LL approach significantly better predicts peaks in sales.

Let us compare Table 1 and Table 2. Table 1 describes model learned on the all data.
Then original data were divided into two sets and Table 2 describes two models, each
learned on respective part of the original data set. For instance, compare to the model
learned on the whole data (Table 1), Model M2 (Table 2) contains two new variables
(Channel 7 and Channel 27). Channel 7 reflects whether leaflet was used or not. As
leaflets usually announce promotions, model M2 may describe the sales behaviour during
promotion. This strongly supports our motivation to separate the original data set.

We add the comparison of the approaches for Example 2 and Example 3, describing
sales of P2 and P3 by S2 and S3 (Table 3). There were many promotions during the
139 weeks in the Example 2. Almost every promotion or advertising is represented by
a peak in sales. Our approach improved the predictions of these peaks. However, the
improvements are smaller than in Example 1. Recall that during the basic sale the
predictions differ only a little and that is why we focus on the peaks as the most interesting
part for the seller performance. The Example 3 shows that separating into two subsystems
may not be sufficient. We did many improvements and degradation of the prediction
during the time and that could be solved by more than two separating levels. We tried
to set two separating values d1, d2 to describe by three models. However, the prediction
was worse due to low tolerance in changing of d1, d2 and there was no way to improve
this due to the lack of data.

Example 1 Example 2 Example 3
Error of trivial prediction 0.9664 0.9132 0.4647
Error of prediction without LL 0.6061 0.6512 0.3278
Error of prediction with LL 0.4080 0.5848 0.3421

Table 3: Errors of the different approaches.

5 Conclusion

The LL approach for learning environment model is proposed and tested on real market-
ing data. The key idea is to describe the overall process by several models, each describing
one operating mode. The separation of the data depends on selecting a separating value
d. Three different examples were considered, Chapter 4.1. The main difficulty is small
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amount of data available. Examples considered have significant differences in the struc-
tures, which calls for large sets of data. The disadvantage of the proposed approach
is possible reaction on the environment dynamics and transitions between the different
modes. Errors occur during the transitions, if the states change too fast. Hence, the
suggested form of lazy learning is a powerful tool for dealing with long term errors in
data collection. The approach able to find and emphasize new significant variables, that
were not included in the single-model structure.

The proposed approach significantly improves the prediction quality in the most ex-
periments. The choice of the value d is important and determines how many modes
(models describing the environment) should be considered. As mentioned, the separation
is based on the value of KLD, see Section 3.2. The approach is very sensitive to the
choice of d. A slight change of d causes big changes in number and structure of models.
The algorithm how to properly select value of d remains one of the most demanding open
questions. Another open question is a proximity measure. Here we use KLD but there is
no evidence that this is the best practical choice.
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