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Abstract

Kullback-Leibler divergence is a leading measure of similarity or dissimilarity
of probability distributions. This technical paper collects its analytical and
numerical expressions for the broad range of distributions.
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1 Introduction

Kullback-Leibler divergence (Kullback and Leibler (1951), a.k.a. cross-entropy)
has become a standard measure within Bayesian approximation (Bernardo,
1979) or the extension of partial knowledge via minimum-cross entropy prin-
ciple (Shore and Johnson, 1980) and the fully probabilistic design of decision-
making strategies (Kárný and Guy, 2006; Kárný and Kroupa, 2012). The
multitude of other cases can be also found. For some common families of dis-
tributions, the Kullback-Leibler divergence KLD can be derived in a closed
form. There are known analytical expressions of the KLD in some important
cases or standard numerical procedures in others. They are, however, spread
in various sources and we found it useful to collect them on a single place and
partially to complement them. The current paper provides the results of this
effort.

2 Kullback-Leibler Divergence and its Elemen-

tary Properties

The Kullback-Leibler divergence (Kullback and Leibler, 1951) is a non-symmetric
measure of the dissimilarity between two probability distributions P and Q and
it is denoted DKL(P ||Q). In probability and information theory, it can be in-
terpreted as a measure of the information lost when Q is used to approximate
P (Burnham and Anderson, 2002) or as a measure of the expected number of
extra bits required to code samples from P when using a code based on Q,
rather than using a code based on P . Typically, P represents observations,
data measurements, or a precisely calculated theoretical distributions. On the
other hand, Q then represents a theoretical model, description or approxima-
tion of P . KL divergence is a special case of a broader class of divergences
called f -divergences (Csiszár, 1963).
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2.1 Discrete probability distributions

For discrete probability distributions P and Q, the Kullback-Leibler divergence
from P to Q is defined as

DKL(P ||Q) =
∑
i

ln

(
P (i)

Q(i)

)
P (i), (1)

where P and Q both sum to 1 and Q(i) = 0 implies P (i) = 0 for all i (i.e. it
is absolutely continuous).

In other words, the KLD is the expectation of the logarithmic difference
between the probabilities P and Q, where the expectation is taken using the
probabilities P .

2.2 Continuous probability distributions

Let’s assume that P and Q are probability measures over a set Θ, and P is
absolutely continuous with respect to Q, then KLD is defined as

DKL(P ||Q) =

∫
Θ

ln

(
dP

dQ

)
dP , (2)

where dP
dQ

is the Radon-Nikodým derivative of P with respect to Q (Bishop,

2006), if the expression on the right-hand side exists. This relationship can be
also written as follows:

DKL(P ||Q) =

∫
Θ

ln

(
dP

dQ

)
dP

dQ
dQ, (3)

which can be interpreted as the entropy of P relative to Q.

Provided that θ is any measure of the continuous random variable Θ on the
set Θ for which p = dP

dθ
and q = dQ

dθ
exist, the KLD from P to Q is given as

DKL(P ||Q) =

∫
Θ

p ln
p

q
dθ. (4)

It can be seen, that the discrete case of the KLD can be related to (4) when
considering dθ to be a counting measure.
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2.3 Properties of KLD

This subsection summarizes key properties of the Kullback-Leibler divergence:

Non-negativity: the KLD is always non-negative, i.e.

DKL(P ||Q) ≥ 0; (5)

This result is known as Gibbs’ inequality in case of discrete probabilities.

Self similarity and self identification:

DKL(P ||P ) = 0

DKL(P ||Q) = 0⇔ P = Q (almost surely); (6)

Asymmetry: the KLD is a non-symmetric functional, i.e.

DKL(P ||Q) 6= DKL(Q||P ); (7)

Upper limit: the Kullback-Leibler distance is infinite if p = dP
dθ

= 0 and

q = dQ
dθ
> 0 on a set of a positive dθ-volume;

Triangle inequality: the KLD does not obey the triangle inequality. It
means that for the probability distributions P , Q and R holds

DKL(P ||R) � DKL(P ||Q) + DKL(Q||R); (8)

Convex function: the KLD follows the Jensen’s inequality, that relates the
value of a convex function of an integral to the integral of the convex
function. The KLD is convex in its first argument, but not necessarily in
the second argument. If ϕP is a convex function, then

ϕP (DKL(P ||R)) ≤ DKL(ϕP (P )||Q), (9)

where ϕP (P ) is point-wisely defined. Moreover, it can be easily shown
(Kullback and Leibler, 1951) that the KLD is strictly convex in P, i.e.
ϕP (DKL(P ||R)) < DKL(ϕP (P )||Q), because the KLD as the integral part
over the support complement of the probability distribution P is zero, so
it (almost surely) holds supp(P ) ⊆ supp(Q). This property can be seen
from a key result about Bregman divergences, covering the generalized
Kullback-Leibler divergence, saying the mean vector minimizes the ex-
pected Bregman divergence from the random vector (Banerjee et al.,
2005), (Frigyik et al., 2008).
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Parameter transformation: the KLD is invariant under parameter trans-
formations. For example, if a transformation is made from variable θ
to variable φ(θ) and since P (θ) dθ = P (φ) dφ and Q(θ) dθ = Q(φ) dφ,
then the KLD may be rewritten:

DKL(P ||Q) =

∫
Θ

p(θ) ln
p(θ)

q(θ)
dθ =

∫
Φ

p(φ) ln
p(φ) dφ

dθ

q(φ) dφ
dθ

dφ =

=

∫
Φ

p(φ) ln
p(φ)

q(φ)
dφ; (10)

Additivity: the KLD is additive for distributions of independent random vari-
ables. In case that P1, P2 are distributions of two independent variables,
with the joint distribution P (θ1, θ2) = P1(θ1)P2(θ2), and Q, Q1, Q2 like-
wise, then:

DKL(P ||Q) = DKL(P1||Q1) + DKL(P2||Q2). (11)

Existence of minimum: the minimum P ∗ ∈ P of the distribution P ∈ P
exists and moreover, it is the unique one for the given Q:

P ∗ = arg min
P∈P

DKL(P ||Q) is unique, (12)

wherever the set P is non-empty, convex and closed.

3 Analytical Expressions

The subsequent sections provide the main practical contribution of the paper by
collecting cases in which the KLD can be evaluated in a closed form. Often, it is
done using the form of the KLD in terms of expected values E(•) =

∫
Θ
•p(θ) dθ

or in terms of information entropy:

DKL(P ||Q) = −E(ln q) + E(ln p) = K(P,Q)− H(P ), (13)

where H(P ) = −E(ln p) is the information entropy of P and K(P,Q) is the
Kerridge inaccuracy (Kerridge, 1961) of P and Q.

From the point of view of generality, the article only focuses on multivariate
continuous random variable and its joint probability distribution.
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3.1 Notation

This subsection summarizes the notation of parameters, variables or functions
used in next sections. A continuous random variable is denoted Θ as before.
It is a continuous random variable with values θ ∈ Θ that is the subset of
finite dimensional real space. The random variable has the form of a vector (or
a matrix) and its length (the number of entries) is denoted `{Θ}. Probability
density functions of probabilities P and Q are denoted by the symbol fS(θ),
where the index S ∈ S is a value of a finite dimensional statistic from the
finite dimensional real space. It is referred as Parameters and determines the
probability densities:

dP

dθ
= fSa(θ),

dQ

dθ
= fSb(θ), Sa, Sb ∈ S. (14)

Using the definition equation (3) and the above mentioned densities (14),
the Kullback-Leibler divergence can be referred as follows:

DKL(P ||Q) =

∫
Θ

ln

(
dP

dQ

)
dP

dQ
dQ =

∫
Θ

fSa ln
fSa
fSb

dθ = D(fSa ||fSb). (15)

3.2 KLD on Exponential Family of Probability Densities

The exponential family of probability densities has an exceptional role because
its members have non-trivial finite-dimensional sufficient statistics (Koopman,
1936) and consequently they admit non-trivial conjugated distributions. These
probability densities have the following form (Barndorff-Nielsen, 1978)

fS(θ) =
exp 〈S,C(θ)〉
I(S)

,

I(S) =

∫
θ

exp 〈S,C(θ)〉 dθ, (16)

where 〈·, ·〉 is a scalar product and the statistic S is a finite-dimensional real
array compatible with the values of the mapping C(θ) (with respect to the
scalar product). The definition makes sense only if the normalization integral
is limited from above, i.e. I(S) <∞.

Often, the probability density fS(θ) (16) serves as an approximation of
another probability density, let’s say g(θ). Then the statistics S in (16) is
chosen to minimise the Kullback-Leibler divergence D(g||fS), (Bernardo, 1979).
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Applying the basic KLD definition (4) on probability densities (16), we easily
obtain

D(g||fS) = ln(I(S))− 〈S,Eg(C)〉+

∫
θ

g(θ) ln(g(θ)) dθ,

Eg(C) =

∫
θ

g(θ)C(θ) dθ. (17)

Thus, the KLD depends on the expected value Eg(C) of the function C(θ) with
respect to the approximated probability density g(θ). The necessary condition
for extreme with respect to S is the zero value of the first derivative. Due to
(17), it has the following form:

dD(g||fS)

dS
=

d ln(I(S))

dS
− Eg(C) =

= EfS(C)− Eg(C) = 0,

EfS(C) =

∫
θ

fS(θ)C(θ) dθ. (18)

As seen from (18), the optimal approximation thus fits the moment EfS(C)
to the moment Eg(C). The choice of the fitted moments is not arbitrary but, on
the contrary, uniquely determined by the considered approximate probability
density fS(θ).

It is uncomplicated to verify that the second derivative of D(g||fS) with
respect to S is the covariance of C(θ) with respect to fS(θ) and thus it is
positive semi-definite. It means that D(g||fS) is (not-necessarily strictly) the
convex function of S. Moreover, for all S for which probability density fS(θ) is
non-degenerate, the second derivative is positive definite. In this generic case,
the minimiser is the unique one.

4 KLD in Recursive Bayesian Estimation

Approximate recursive Bayesian estimation often relies on the probability den-
sity from the exponential family in the form that can be defined by the relation
(16) (Kárný et al., 2006; Kárný, 2014). Essentially, it deals with probability
density g(θ) resulting from the Bayes rule (Peterka, 1981) and having the form

gSa(θ) =
m(θ) exp 〈Sa,C(θ)〉

Im(Sa)
,

Im(Sa) =

∫
θ

m(θ) exp 〈Sa,C(θ)〉 dθ, (19)

where m(θ) ≥ 0 is the likelihood function determined by the estimated para-
metric model and measured data inserted into it.
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The necessary condition (18) for the optimal approximation of gSa(θ) by
the probability density fSb(θ) (16) is determined by the statistics Sb = ∆ + Sa,
with ∆ solving the equation∫

Θ

exp 〈Sa,C(θ)〉C(θ)

[
Im(Sa) exp 〈∆,C(θ)〉
Im(Sa + ∆)

−m(θ)

]
dθ = 0, (20)

whose solution generally requires repetitive integration (say by combination of
Laplace and Monte Carlo methods (Robert E. Kass, 1995)) and a standard
iterative solution of algebraic equations.

4.1 Analytical Example

Let’s assume the fSa to be the exponential probability density with parameter
λ > 0:

fSa(θ) = λe−λθ, θ > 0. (21)

In terms of (16), it must hold:

Sa = −λ,C(θ) = θ, I(Sa) =

∫ ∞
0

e−λθ dθ =
1

λ
. (22)

Applying (17), the KLD is then defined

D(g||fSa) = ln

(
1

λ

)
+ λEg(C) +

∫
θ

g(θ) ln(g(θ)) dθ,

Eg(C) =

∫
θ

θg(θ) dθ. (23)

Now, let’s assume the probability distribution g to be also an exponential
distribution with parameters Sb:

g = fSb(θ) = βe−βθ, θ > 0. (24)

Due to 23, the KLD can be calculated by

D(fSb||fSa) = ln

(
β

λ

)
+
λ

β
− 1. (25)

5 Review of the Analytical Expressions

This section contains KLDs between two distributions from a same distribution
family for which an analytical expression exists. It focuses on the frequently
used distributions, mostly from the exponential family. For the clarity, the
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main information about probability distribution, random variable, probability
density functions, entropy and Kullback-Leibler divergence related to a specific
distribution family are arranged into a table of the following form:

Name: Name of the probability distribution

Variable: Description of the random variable Θ.

Parameters: The parameter S determining the probability density
function.

Pdf: Probability density function fS(θ).

Entropy: Entropy of the probability distribution H(fS).

KLD: Kullback-Leibler divergence D(fSa||fSb).
Remarks: Typically, comments on proof or source where it comes from.

In formulas in text, the symbol ′ denotes vector transposition. The symbol
tr[·] denotes matrix trace, i.e. the sum of the entries on the main matrix diag-
onal.

5.1 Gaussian (Normal) distribution

First, the KLD between two multivariate Gaussian (normal) distributions with
and their corresponding means and nonsingular covariance matrices is treated.

Name: Gaussian Distribution

Variable: Θ – `{Θ}-dimensional column vector

Parameters: S =[µ;R] =[mean; covariance matrix]=
=[`{Θ}-dimensional column vector;
`{Θ} × `{Θ} positive definite matrix (R > 0)].

Pdf: fS(θ) = (2π)−
`{Θ}

2 |R|− 1
2 exp

[
−1

2
(θ − µ)′R−1(θ − µ)

]
Entropy: H(fS) = 1

2
`{Θ}(1 + ln(2π)) + 1

2
ln |R|

KLD: D(fSa||fSb)= 1
2

[
tr
[
R−1
b Ra

]
+ (µb − µa)′R−1

b (µb − µa)
]
−

−`{Θ} + ln |RbR
−1
a |

Remarks: See (Penny, 2001).

Some applications (Peterka, 1981) work with a matrix form of the Gaussian
probability density functions. This form means that when arranging Θ into
column vector (by stacking matrix columns) then the same arrangement of µ
provides its mean and it has the covariance matrix R ⊗ Q, where ⊗ denotes
Kronecker product.
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Name: Gaussian Distribution - Matrix Form

Variable: Θ – (`{T}, `{R})-dimensional matrix

Parameters: S= [µ; (R, T )]=[mean; factors of the covariance matrix]=
= [(`{T}, `{R})-dimensional matrix;

Kronecker factors of covariance matrix, R>0, T>0].

Pdf: fS(θ) = |2πR|−
`{T}

2 |2πT |−
`{R}

2 exp
{
− tr[R−1(θ−µ)′T−1(θ−µ)]

2

}
Entropy: H(fS)=1

2
`{T}(1 + ln(2π) + ln |R|)+

+1
2
`{R}(1 + ln(2π) + ln |T |)

KLD: D(fSa||fSb)= 1
2

{
`{R} ln |TbT−1

a |+ `{T} ln |RbR
−1
a | −

−`{R}`{T} + tr
[
Ra ⊗ TaT−1

b ⊗R
−1
b

]
+

+tr[R−1
b (µb − µa)′ T−1

b (µb − µa)
}
.

Remarks: See Proposition 8.10 in (Kárný et al., 2006). The result
is obtained by direct application of the results for the
multivariate Gaussion distribution and the following
identities (Graham, 1981):

tr[A⊗B] = tr[A]tr[B],
[A⊗B]−1= A−1 ⊗B−1,
|A⊗B| = |A|`{B}|B|`{A} .

5.2 Gaussian-Inverse-Gamma Distribution

Gaussian-inverse-gamma (or normal-inverse-gamma) distribution is conjugated
to Gaussian regression model with single output (Berger, 1985; Kárný et al.,
2006). It is one-dimensional version of Gauss-inverse-Wishart distribution
(Zellner, 1976).

Multivariate output can always be treated as the collection of the single
output cases (Zellner, 1976):

fS(θ|•) =
n∏
i=1

fS(θi|θi+1, . . . , θn, •), where (26)

θ = [θ1, . . . , θi, θi+1, . . . , θn]′.
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Name: Gaussian-Inverse-Gamma Distribution

Variable: Θ = [θ; r]=[mean; variance]=
= [`{Θ}-dimensional column vector; positive variance]

Parameters: S = [θ̂, r̂;C; ν]=[maximum likelihood estimates of θ and r,
r̂ > 0; covariance factor of θ, C > 0; degrees of freedom,
ν > 0]

Pdf: fS(θ) = r
− 1

2 (ν+`{θ}+2)

I(S)
exp

{
− 1

2r

[
(θ − θ̂)′C−1(θ − θ̂) + r̂

]}
I(S) = Γ(ν

2
)r̂−

ν
2 |C|

1
2 (2ν)

ν
2 (2π)

`{Θ}
2 ,

Γ(τ) =
∫∞

0
zτ−1 exp(−z) dz, `{Θ} = `{Θ̂}.

KLD: D(fSa||fSb)= ln

(
Γ( νb2 )
Γ( νa2 )

)
− 1

2
ln
∣∣CaC−1

b

∣∣+ νb
2

ln
(
r̂a
r̂b

)
+

+1
2
(νa − νb) ∂

∂( νa
2

)
ln
(
Γ(νa

2
)
)

+ 1
2
tr
[
CaC

−1
b

]
−

− `{θ}
2
− νa

2
+ νa

2r̂a

[(
θ̂a − θ̂b

)′
C−1
b

(
θ̂a − θ̂b

)
+ r̂b

]
.

Remarks: See (Penny, 2001).

5.3 Uniform Distribution

Uniform distribution is a prototype of probability density with Θ-dependent
supports and it is out of the exponential family.

Name: Uniform Distribution

Variable: Θ – `{Θ}-dimensional vector

Parameters: S– two `{Θ}-dimensional vectors describing minimum

and maximum support values

Pdf: fS(Θ)=χS(Θ)
|S| ,

χS(Θ) is indicator of S, χS(Θ)=1 if and only if Θ ∈ S,
|S| the denotes volume of the interval determined by S.

Entropy: H(fS) = ln |S|

KLD: D(fSa||fSb) =

{
ln
(
|Sb|
|Sa|

)
if Sa ⊆ Sb

∞ otherwise

Remarks: Resulting from the definitions of uniform pdf and KLD (4).
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5.4 Dirichlet Distribution

Dirichlet distribution is conjugated probability distribution to multi-nominal
probability density (Kárný et al., 2006).

Name: Dirichlet Distribution

Variable: Θ – `{Θ}-dimensional positive vectors summing to one

Parameters: S – `{Θ}-dimensional positive vector

Pdf: fS(Θ) =
∏`{Θ}
i=1 Θ

Si−1
i χΘ(Θ)

I(S)

I(S) =
∏`{Θ}
i=1 Γ(Si)

Γ(ν)
, ν=

∑`{Θ}
i=1 Si.

Entropy: H(fS) = log (I(S)) + (ν − `{Θ})Ψ(ν)−
∑`{Θ}

j=1 (Sj − 1)Ψ(Sj),

Ψ(x) = d
dx

ln Γ(x).

KLD: D(fSa||fSb) =
∑|d|

d=1

[
(Sd;a − Sd;b) Ψ(Sd;a) + ln

(
Γ(Sd;b)
Γ(Sd;a)

)]
−

−(νa − νb)Ψ(νa) + ln
(

Γ(νa)
Γ(νb)

)
.

Remarks: See (T.W. Rauber and Berns, 2008).

6 Conclusions

In this paper, the definition of the Kullback-Leibler divergence is recalled for
both cases of the probability distributions: discrete and continuous. The way
how to find the analytical expression of the KLD is described and also demon-
strated by one analytical example. The paper is focused on the frequently
used distributions, mostly from the exponential family. The analytical expres-
sions of the KLD between two distributions from the same family, for which
an analytical expression exists, are collected and served by the table form.
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Kárný, M., 2014. Approximate Bayesian recursive estimation. Information
Sciences 289, 100–111. DOI 10.1016/j.ins.2014.01.048.
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