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Abstract. We deal with a class of parabolic nonlinear evolution equations
with state-dependent delay. This class covers several important PDE models

arising in biology. We first prove well-posedness in a certain space of functions

which are Lipschitz in time. This allows us to show that the model considered
generates an evolution operator semigroup St on a certain space of Lipschitz

type functions over delay time interval. The operators St are closed for all

t ≥ 0 and continuous for t large enough. Our main result shows that the
semigroup St possesses compact global and exponential attractors of finite

fractal dimension. Our argument is based on the recently developed method

of quasi-stability estimates and involves some extension of the theory of global
attractors for the case of closed evolutions.

1. Introduction. Differential equations with different types of delay attract much
attention during last decades. Including delay terms in differential equations is a
natural step of taking into account that many of real-world problems depend on the
pre-history of the evolution. Delay terms in an equation reflect a well-understood
phenomenon that evolution of a state of a system depends not only on this state but
rather on the states during some previous interval of time (memory of the system).
This leads to infinite-dimensional dynamics even in the case of ordinary differential
equations. The general theory of delay differential equations was initially developed
for the simplest case of constant delays. We cite just classical monographs [2, 13, 18]
on ordinary differential equations (ODEs) and milestone articles [16, 37] on partial
differential equations (PDEs) with constant delays. On the other hand it is clear
that the constancy of the delay is just an extra assumption made to simplify the
study, but it is not really well-motivated by real-world models. To describe a process
more naturally a new class of state-dependent delay models was introduced and
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intensively studied during last decades. We mention works on ODEs [14, 20, 22, 38]
and on PDEs [12, 29, 30, 32, 33] with state-dependent delays.

The simplest case of a state-dependent delay is a delay explicitly given by a
real-valued function η : R → R+ which depends on the value x(t) at the reference
time t but not on previous values of the solution {x(τ), τ ≤ t}. This leads to
terms of the form f(x(t − η(x(t))) in the model considered. Even in this case the
non-uniqueness could appear (see the scalar ODE example constructed by R.Driver
[14] in 1963 for initial data from the space of continuous functions on the delay
interval). The standard way for general models to avoid non-uniqueness in the
case of infinite-dimensional dynamics is to consider smoother (narrower) classes of
solutions. However in this case the existence problem may become critical. The
main task is to find a good balance between these two issues.

In this paper we deal with a certain abstract parabolic problem with the state de-
pendent delay term of a rather general structure. Our considerations are motivated
by several biological models, see the discussion and the references in [3], [17] and
[33]. Our main goal in this paper is to find appropriate phase spaces in which we
can establish the well-posedness of our model and study its long-time (qualitative)
dynamics.

Our first result (Theorem 3.2) states well-posedness of the problem and allows us
to define an evolution semigroup St of closed mappings on a certain Banach space
of functions on the delay time interval with values in an appropriate Hilbert space.
In some sense this result extends the well-posedness statements in [30, 32, 33] to
more general delay terms. The main result of the paper (Theorem 4.2) states the
existence of a global finite-dimensional attractor, the object which is responsible
for long-time dynamics. We also show that the model possesses an exponential
fractal global attractor (see the definition in the Appendix).

Although for some parabolic problems with state-dependent delay the existence
of compact global attractors was established earlier in [30, 33], to the best of our
knowledge, results on finite-dimensional behavior for parabolic state-dependent de-
lay problems were not known before. The main difficulty is related to the fact that
the corresponding delay term is not Lipschitz on the natural energy balance space.
We also mention that our Theorem 4.2 can be applied in the situation considered in
[33] and gives the finite-dimensionality of the global attractor constructed in that
paper.

We note that the evolution operators St we construct are not continuous mapping
on the phase space for t small enough. Therefore to prove the existence of a compact
global attractor we use the extension of the standard theory suggested in [28]. As
for dimension issues we apply the idea of the method of quasi-stability estimates
developed earlier in [6, 7, 8, 9] for the second order in time evolution models which
generate continuous evolution semigroups. This is possible in our case due to the
continuity of evolution operator for large times. We note that in the delay case the
quasi-stability method was applied earlier in [10, 11, 12] for second order models,
see also [5, Chapter 6].

2. Model description. We deal with well-posedness and long-time dynamics of
abstract evolution equations with delay of the form

u̇(t) +Au(t) + F (ut) +G(u(t)) = h, t > 0, (1)

in some Hilbert space H. Here the dot over an element means time derivative, A
is linear and F , G are nonlinear operators, h ∈ H. The term F (ut) represents



ATTRACTORS FOR PDES WITH STATE-DEPENDENT DELAY 1687

(nonlinear) delay effect in the dynamics. As usually for delay equations, the history
segment (the state) is denoted by ut ≡ ut(θ) ≡ u(t + θ) for θ ∈ [−r, 0]. Here and
below r represents the (maximal) delay. The analysis is carried out for an arbitrary
(but fixed) 0 < r < ∞. The case of systems with infinite time memory (r = +∞)
is beyond the scope of the theory developed.

Assumption 2.1 (Basic Hypotheses). In our study we assume that:

(A) A is a positive operator with a discrete spectrum in a separable Hilbert space
H with a dense domain D(A) ⊂ H. Hence there exists an orthonormal basis
{ek} of H such that

Aek = λkek, with 0 < λ1 ≤ λ2 ≤ . . . , lim
k→∞

λk =∞.

We define the spaces Hα which are D(Aα) for α ≥ 0 (the domain of Aα) and
the completions of H with respect to the norm ‖Aα · ‖ when α < 0 (see, e.g.,
[25]). Here and below, ‖ · ‖ is the norm of H, and 〈·, ·〉 is the corresponding
scalar product. For r > 0, we denote for short Cα = C([−r, 0];Hα) which is a
Banach space with the norm

|v|Cα ≡ sup{‖ v(θ) ‖α: θ ∈ [−r, 0]},
where ‖v‖α = ‖Aαv‖ is the norm in Hα for α ∈ R. We also write C = C0.

(F) The delay term F (ut) has the form F (ut) ≡ F0(u(t − η(ut))), where (a)
F0 : Hα 7→ Hα is globally Lipschitz for α = 0 and α = −1/2, i.e., there exists
LF > 0 such that

‖F0(v)− F0(u)‖α ≤ LF ‖v − u‖α, v, u ∈ Hα, α = 0,−1/2; (2)

and (b) η : C ≡ C([−r, 0];H) 7→ [0, r] ⊂ R is globally Lipschitz:

|η(φ)− η(ψ)| ≤ Lη|φ− ψ|C , φ, ψ ∈ C([−r, 0];H). (3)

(G) G : H1/2 7→ H is locally Lipschitz, i.e.

‖G(v)−G(u)‖ ≤ LG(R)‖v − u‖1/2, v, u ∈ H1/2, ‖v‖1/2, ‖u‖1/2 ≤ R, (4)

where LG : R+ → R+ is a nondecreasing function. We also assume that G is a
potential mapping, the latter means that there exists a (Frechét differentiable)
functional Π(u) : H1/2 → R such that G(u) = Π′(u) in the sense

lim
‖v‖1/2→0

‖v‖−11/2

[
Π(u+ v)−Π(u) + 〈G(u), v〉

]
= 0.

Moreover, we assume that (a) there exist positive constants c1 and c2 such
that

〈G(u), Au〉 ≥ −c1‖A
1
2u‖2 − c2, u ∈ D(A); (5)

and (b) there exist δ > 0 and m ≥ 0 such that G : H1/2−δ 7→ H−m is
continuous.

Our main motivating example of a system with discrete state-dependent delay is
the following one:

∂

∂t
u(t, x)−∆u(t, x) + b (B[u(t− η(ut), ·)](x)) + g(u(t, x)) = h(x), x ∈ Ω, t > 0,

(6)
in a bounded domain Ω ⊂ Rn, where B : L2(Ω)→ L2(Ω) is a bounded operator and
b : R→ R stands for a Lipschitz map. The function η : C([−r, 0];L2(Ω))→ [0, r] ⊂
R+ denotes a state-dependent discrete delay. The Nemytskii operator u 7→ g(u) with
C1 function g represents a nonlinear non-delayed reaction term and h(x) describes
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sources. The form of the delay term is motivated by models in population dynamics
where function b is a birth function (could be b(s) = c1s ·e−c2s, with c1, c2 > 0) and
the delay η represents the maturity age. For more detailed discussion and further
examples (the diffusive Nicholson blowflies equation, Mackey-Glass equation - the
diffusive model of Hematopoiesis - blood cell production, the Lasota-Wazewska-
Czyzewska model in hematology) with state-dependent delay we refer to [17] and
[33] and to the references therein. We note that several special cases of the model
in (6) were studied in [30, 31, 32, 33]). For instance it was assumed in [33] that
g(s) ≡ 0, b(s) is a bounded function, and B is an integral compact linear operator.
This leads to nonlocal (in space) models. Our assumptions cover the non-compact
case. We can take b(s) = s and B = Id, for instance. We also note that if we
equip (6) with the Dirichlet boundary condition, then the dissipativity property
in (5) holds provided g ∈ C1(R), g(0) = 0 and the derivative g′(s) is bounded
from below. This follows by the standard integration by parts. Thus population
dynamics models with nonlinear sink/source feedback terms can be included in
consideration. For this kind of biological models, but with state-independent delay,
we refer to [39].

We equip the equation (1) with the initial condition

u(θ) = ϕ(θ), θ ∈ [−r, 0], (7)

and for initial data ϕ consider the space

CL ≡
{
ϕ ∈ C([−r, 0];H)

∣∣∣ Lip[−r,0](A
− 1

2ϕ) <+∞; ϕ(0) ∈ D(A
1
2 )
}
, (8)

where

Lip[a,b](ϕ) ≡ sup
s6=t

{
‖ϕ(s)− ϕ(t)‖
|s− t|

: s, t ∈ [a, b], s 6= t

}
denotes the corresponding Lipschitz constant. One can show that the space CL
consists of continuous functions ϕ on [−r, 0] with values in H such that ϕ(0) ∈ H1/2

and which are absolutely continuous in H−1/2. The latter means that there exists
the derivative ϕ̇ ∈ L∞(−r, 0;H−1/2) such that

ϕ(s) = ϕ(0)−
∫ 0

s

ϕ̇(ξ)dξ, s ∈ [−r, 0],

and

Lip[−r,0](A
− 1

2ϕ) = ess sup
{
‖A− 1

2 ϕ̇(s)‖ : s ∈ [−r, 0]
}
≡ |ϕ̇|L∞(−r,0;H−1/2).

We equip the space CL with the natural norm

|ϕ|CL ≡ max
s∈[−r,0]

‖ϕ(s)‖+ Lip[−r,0](A
− 1

2ϕ) + ‖A 1
2ϕ(0)‖. (9)

We note that the delay term F (ϕ) ≡ F0(ϕ(−η(ϕ))) in (1) is well-defined for ev-
ery ϕ ∈ C and possesses the property (see (2) for α = 0) ‖F (ϕ) − F (0)‖ ≤
LF ‖ϕ(−η(ϕ))‖ ≤ LF |ϕ|C , hence

‖F (ϕ)‖ ≤ c1 + c2|ϕ|C , ϕ ∈ C, (10)

with c1 = ‖F (0)‖ and c2 = LF . However it is not Lipschitz on the space C. One
can only show that the delay term F satisfies the inequality

‖F (ϕ)− F (ψ)‖−1/2 ≤ LF
(

1 + LηLip[−r,0](A
− 1

2ϕ)
)
|ϕ− ψ|C (11)
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for every ϕ ∈ CL and ψ ∈ C. Using the terminology of [26] we can call this mapping
F “almost Lipschitz” from C into H−1/2, see also a discussion in [20].

Remark 1. We can also include in (1) a delay term M(ut) which is defined by a
globally Lipschitz function from C([−r, 0];H1/2) into H. We will not pursue this
generalization because our main goal is state-dependent delay models.

3. Well-posedness. In this section we prove the existence and uniqueness theo-
rem and study properties of solutions. Then we use these results to construct the
corresponding evolution semigroup and describe its dynamical properties.

We introduce the following definition.

Definition 3.1 (Strong solution). A vector-function

u(t) ∈ C([−r, T ];H) ∩ C([0, T ];H1/2) ∩ L2(0, T ;H1) (12)

is said to be a (strong) solution to the problem defined by (1) and (7) on [0, T ] if

(a) u(θ) = ϕ(θ) for θ ∈ [−r, 0];
(b) ∀v ∈ L2(0, T ;H) such that v̇ ∈ L2(0, T ;H−1) and v(T ) = 0 we have that

−
∫ T

0

〈u(t), v̇(t)〉 dt+

∫ T

0

〈Au(t), v(t)〉 dt

+

∫ T

0

〈F (ut) +G(u(t)), v(t)〉 dt = 〈ϕ(0), v(0)〉+

∫ T

0

〈h, v(t)〉 dt. (13)

Remark 2. Let u(t) be a strong solution on an interval [0, T ] with some initial
data ϕ ∈ C. Then it follows from (12) and also from (4) and (10) that

F (ut) +G(u(t))− h ∈ L∞(0, T ;H).

This allows us to conclude from (12) and (13) that

u̇(t) ∈ L∞(0, T ;H−1/2) ∩ L2(0, T ;H). (14)

Moreover, the relation in (13) implies that u(t) satisfies (1) for almost all t ∈ [0, T ]
as an equality in H. We also note that relations (12) and (14) yield

ut ∈ CL for every t ∈ [0, T ] and max
[0,T ]
|ut|CL < +∞ (15)

for every strong solution u with initial data ϕ from the space CL defined in (8).

Our first result is the following theorem on the existence and uniqueness of so-
lutions.

Theorem 3.2. Let Assumption 2.1 be in force. Assume that ϕ ∈ CL, see (8). Then
the initial-value problem defined by (1) and (7) has a unique strong solution on any
time interval [0, T ]. This solution possesses the property

u̇(t) ∈ C([0, T ];H−1/2) ∩ L2(0, T ;H) (16)

and satisfies the estimate

‖A−1/2u̇(t)‖2 + ‖A1/2u(t)‖2 +

∫ t

0

[
‖u̇(τ)‖2 + ‖Au(τ)‖2

]
dτ ≤ CT (R) (17)
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for all t ∈ [0, T ] and ‖A1/2ϕ(0)‖2 + |ϕ|2C ≤ R2. Moreover, for every two strong
solutions u1 and u2 with initial data ϕ1 and ϕ2 from CL we have that

sup
τ∈[0,t]

‖u1(τ)−u2(τ)‖2+

∫ t

0

‖A1/2(u1(τ)−u2(τ))‖2 dτ ≤ CR(T )|ϕ1−ϕ2|2C , ∀ t ∈ [0, T ],

(18)
for all ϕi such that |ϕi|CL ≤ R.

Proof. To prove the existence we use the standard compactness method [24] based
on Galerkin approximations with respect to the eigen-basis {ek} of the operator A
(see Assumption 2.1 (A)).

We define a Galerkin approximate solution of order m by the formula

um = um(t) =

m∑
k=1

gk,m(t)ek,

where the functions gk,m are defined on [−r, T ], absolutely continuous on [0, T ] and
such that the following equations are satisfied{

〈u̇m +Aum + F (umt ) +G(um)− h, ek〉 = 0, t > 0,
〈um(θ), ek〉 = 〈ϕ(θ), ek〉, ∀θ ∈ [−r, 0], ∀k = 1, . . . ,m.

(19)

The equation in (19) is a system of (ordinary) differential equations in Rm with
a concentrated (discrete) state-dependent delay1 for the unknown vector function
U(t) ≡ (g1,m(t), . . . , gm,m(t))

The condition ϕ ∈ CL implies that the function U(·)|[−r,0] ≡ Pmϕ(·), which
defines initial data, is Lipschitz continuous as a function from [−r, 0] to Rm. Here
Pm is the orthogonal projection onto the subspace Span {e1, . . . , em}. Hence, we
can apply the theory of ODEs with discrete state-dependent delay (see e.g. [20]) to
get the local existence of solutions to (19).

Next, we derive an a priori estimate which allows us to extend solutions um to
(19) on an arbitrary time interval [0, T ]. We also use it for the compactness of the
set of approximate solutions.

We multiply the first equation in (19) by λkgk,m and sum for k = 1, . . . ,m to get

1

2

d

dt
‖A1/2um(t)‖2 + ‖Aum(t)‖2 + 〈F (umt ) +G(um(t))− h,Aum(t)〉 = 0.

Due to (10) and (5) this implies that

d

dt

[
‖A1/2um(t)‖2 +

∫ t

0

‖Aum(τ)‖2dτ
]
≤ c
[
1 + |umt |2C + ‖A1/2um(t)‖2

]
≤ c0

[
1 + |ϕ|2C

]
+ c1 max

τ∈[0,t]
‖A1/2um(τ)‖2

Integrating the last inequality we can easily see that the function

Ψ(t) = max
τ∈[0,t]

‖A1/2um(τ)‖2 +

∫ t

0

‖Aum(τ)‖2dτ

satisfies the inequality

Ψ(t) ≤ 2‖A1/2ϕ(0)‖2 + 2tc0
[
1 + |ϕ|2C

]
+ 2c1

∫ t

0

Ψ(τ)dτ.

1 For the corresponding ODE theory see [38] and also the survey [20].
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Therefore Gronwall’s lemma gives us the a priori estimate

‖A1/2um(t)‖2 +

∫ t

0

‖Aum(τ)‖2 dτ ≤ 2eat
[
‖A1/2ϕ(0)‖2 + bt

[
1 + |ϕ|2C

]]
, (20)

for all t from an existence interval, where a and b are positive constants. This a
priori estimate allows us to extend approximate solutions on every time interval
[0, T ] such that (20) remains true for every t ∈ [0, T ].

Now we establish additional a priori bounds. Using (20), (4) and (10) from the
first equation in (19) we obtain that

‖u̇m(t) +Aum(t)‖ ≤ ‖F (umt )‖+ ‖G(um(t))‖+ ‖h‖ ≤ C(R, T ), t ∈ [0, T ],

provided ‖A1/2ϕ(0)‖2 + |ϕ|2C ≤ R2. Thus by (20) we obtain the estimate

‖A1/2um(t)‖2 +

∫ t

0

[
‖u̇m(τ)‖2 + ‖Aum(τ)‖2

]
dτ ≤ CT (R) (21)

for all t ∈ [0, T ] and ‖A1/2ϕ(0)‖2 + |ϕ|2C ≤ R2. It also follows from (19) that

sup
t∈[0,T ]

‖A−1/2u̇m(t)‖2 ≤ CT (R). (22)

Thus

{um}∞m=1 is a bounded set in W1 ≡ L∞(0, T ;H1/2) ∩ L2(0, T ;D(A))

and

{u̇m}∞m=1 is a bounded set in W2 ≡ L∞(0, T ;H−1/2) ∩ L2(0, T ;H).

Hence, there exist a subsequence {(uk; u̇k)} and an element (u; u̇) ∈ Z1 ≡W1×W2

such that
{(uk; u̇k)} *-weakly converges to (u; u̇) in Z1.

By the Aubin-Dubinski theorem [34, Corollary 4] we also have

uk → u in C(0, T ;H1/2−δ)) ∩ L2(0, T ;H1−δ) as k → +∞.
Now the proof that any *-weak limit u(t) is a solution is standard. To make the
limit transition in the nonlinear terms F and G we use relation (11) and Assumption
2.1(Gb).

The property u(t) ∈ C([0, T ];H1/2)) follows from the well-known continuous
embedding (see [25, Theorem 1.3.1] or [35, Proposition 1.2]):

{u ∈ L2(0, T ;H1) : u̇ ∈ L2(0, T ;H)} ⊂ C([0, T ];H1/2).

The continuity of u̇ in H−1/2 follows from equation (1) and from continuity of u in
H1/2. Thus the existence of strong solutions is proved. It is easy to see from (21)
and (22) that the strong solution constructed satisfies (17).

Now we prove the uniqueness.
Let u1 and u2 be two solutions (at this point we do not assume that they have the

same initial data). Then the difference z = u1 − u2 ∈ C([0, T ];H1/2)∩L2(0, T ;H1)
is a strong solution to the linear parabolic type (non-delay) equation

ż(t) +Az(t) = f(t), t > 0, with f(t) ≡ F (u2t )−F (u1t ) +G(u2(t))−G(u1(t)). (23)

By Remark 2 f ∈ L∞(0, T ;H). From (4) and (11) using (15) we also have that

‖G(u2(t))−G(u1(t))‖ ≤ LG(%)‖z(t)‖1/2, t ∈ [0, T ],

and
‖A−1/2(F (u2t )− F (u1t ))‖ ≤ LF (1 + Lη%)|zt|C , t ∈ [0, T ],
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for every % ≥ max[0,T ]

{
|u1t |CL + |u2t |CL

}
. Therefore

|〈f(t), z(t)〉| ≤LF (1 + Lη%)|zt|C‖z(t)‖1/2 + LG(%)‖z(t)‖1/2‖z(t)‖

≤1

2
‖z(t)‖21/2 + C(%)|zt|C .

Thus using the standard multiplier z in (23) we obtain that

d

dt
‖z(t)‖2 + ‖A1/2z(t)‖2 ≤ C(%)‖zt‖2C ≤ C(%)

[
|ϕ1 − ϕ2|2C + sup

τ∈[0,t]
‖z(τ)‖2

]
for every % ≥ max[0,T ]

{
|u1t |CL + |u2t |CL

}
. Applying Gronwall’s lemma we obtain

sup
τ∈[0,t]

‖u1(τ)−u2(τ)‖2+

∫ t

0

‖A1/2(u1(τ)−u2(τ))‖2dτ ≤ C(%)|ϕ1−ϕ2|2C , ∀ t ∈ [0, T ],

(24)
This implies uniqueness of strong solutions.

As a by-product the uniqueness yields that any strong solution satisfies (17).
Therefore we can apply (24) with some % = %(R, T ) to obtain (18).

Thus the proof of Theorem 3.2 is complete.

Theorem 3.2 allows us to define an evolution semigroup St on the space CL (see
(8)) by the formula

Stϕ ≡ ut, t ≥ 0, (25)

where u(t) is the unique solution to the problem (1) and (7). We note that (18)
implies that St is almost locally Lipschitz on C, i.e.,

|Stϕ1 − Stϕ2|C ≤ CR(T )|ϕ1 − ϕ2|C for every ϕi ∈ CL, |ϕi|CL ≤ R, t ∈ [0, T ].

However, it seems that a similar bound is not true in the space CL. We can only
guarantee that ϕ 7→ Stϕ is a continuous mapping on CL for all t > r. Moreover, the
following assertion shows that the mapping ϕ 7→ Stϕ is even 1

2 -Hölder on CL with
respect to ϕ when t > r.

Proposition 1 (Dependence on initial data in the space CL). Assume that the
hypotheses of Theorem 3.2 are in force. Let u1 and u2 be two solutions on [0, T ]
with initial data ϕ1 and ϕ2 from CL. Then the difference z = u1 − u2 satisfies the
estimate

(t− r)
[
‖A−1/2ż(t)‖2 + ‖A1/2z(t)‖2

]
+

∫ t

r

(τ − r)
[
‖ż(τ)‖2 + ‖Az(τ)‖2

]
dτ ≤ CT (R)|ϕ1 − ϕ2|C (26)

for all t ∈ [r, T ] and for all initial data ϕi such that |ϕi|CL ≤ R. This implies that
for every t > r the evolution semigroup St is 1

2 -Hölder continuous in the norm of
CL. In the case when t ∈ (0, r] we can guarantee the closedness of the evolution
operator St only. This means2 (see, e.g., [28]) that the properties ϕn → ϕ and
Stϕn → ψ in the norm of CL as n→∞ imply that Stϕ = ψ.

2We refer to the Appendix for a discussion of closed evolutions. Here we only mention that
any continuous mapping is closed and a mapping can be closed but not continuous, see examples

in [28] and also in [5, Sect.1.1].
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Proof. Multiplying (23) by Az and using (17) and (4) we obtain that

d

dt
‖A1/2z(t)‖2 + ‖Az(t)‖2 ≤ ‖F (u2t )− F (u1t )‖2 + CR(T )‖A1/2z(t)‖2, t > 0.

From (17), (2) and (3) we also have that

‖F (u2t )− F (u1t )‖2 ≤ 2L2
F

∣∣∣∣∣
∫ t−η(u2

t )

t−η(u1
t )

‖u̇2(ξ)‖dξ

∣∣∣∣∣
2

+ |u2t − u1t |2C


≤ 2L2

F

[∣∣η(u1t )− η(u2t )
∣∣ ∫ t

t−r
‖u̇2(ξ)‖2dξ + |u2t − u1t |2C

]
≤ CT (R)|u2t − u1t |2C (27)

for every t ≥ r. Therefore

d

dt
‖A1/2z(t)‖2 + ‖Az(t)‖2 ≤ CT (R)

[
max
[0,t]
‖z(s)‖2 + ‖A1/2z(t)‖2

]1/2
, t ≥ r.

Integrating over interval [τ, t] with τ ≥ r and using (18) we obtain that

‖A1/2z(t)‖2 +

∫ t

τ

‖Az(ξ)‖2dξ ≤ ‖A1/2z(τ)‖2 + CT (R)|ϕ1 − ϕ2|C , t ≥ τ ≥ r. (28)

Now we integrate (28) with respect to τ over [r, t], change the order of integration,
and use (18) again to get

(t− r)‖A1/2z(t)‖2 +

∫ t

r

(ξ − r)‖Az(ξ)‖2 dξ ≤ CT (R)|ϕ1 − ϕ2|C , t ≥ r.

Using the expression for ż from (23) and also the bounds in (18) and (27) we have
that

‖ż(t) +Az(t)‖2 + ‖A−1/2ż(t)‖2 ≤ CT (R)
[
‖A1/2z(t)‖2 + |ϕ1 − ϕ2|C

]
, t ≥ r.

This implies (26).
The 1

2 -Hölder continuity of the evolution semigroup St in the norm of CL follows
from (26).

The closedness of St for t ∈ (0, r] easily follows from (18).

Remark 3. As it follows from (27) we can obtain a 1
2 -Hölder continuity relation like

(26) for all t ≥ 0 if we assume in addition that one of initial data ϕi possesses the
property ϕ̇i ∈ L2(−r, 0;H). In this case the argument above leads to the relation

‖A−1/2ż(t)‖2 + ‖A1/2z(t)‖2 +

∫ t

0

[
‖ż(τ)‖2 + ‖Az(τ)‖2

]
dτ

≤ CT (R)
[
‖A1/2(ϕ1(0)− ϕ2(0))‖+ |ϕ1 − ϕ2|C

]
(29)

for all t ∈ [0, T ] and for all initial data ϕi such that |ϕi|CL + |ϕ̇i|L2(−r,0;H) ≤ R.
Moreover, one can also see that the set

CL0 =
{
ϕ ∈ CL : ϕ̇ ∈ L2(−r, 0;H)

}
(30)

is forward invariant with respect to St. Thus ϕ 7→ Stϕ is a 1
2 -Hölder continuous

mapping for each t ≥ 0 on the Banach space CL0 endowed with the norm |ϕ|CL0
=

|ϕ|CL+ |ϕ̇|L2(−r,0;H). Hence the dynamical (in the classical sense, see, e.g., [1, 4, 36])
system (CL0, St) arises. However we prefer to avoid property ϕ̇ ∈ L2(−r, 0;H) in the
description of the phase space. The point is that our goal is long-time dynamics and
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it is well-known (see, e.g., [1, 4, 36]) that the existence of limiting objects requires
some compactness properties. Unfortunately we cannot guarantee these properties
in the space CL0 without serious restrictions concerning the delay term. This is
why we prefer to use the observation made in [28] concerning long-time dynamics
of closed evolutions.

Remark 4. A similar problem as above we have with time continuity of evolution
operator St. It is clear from (12) and (16) that t 7→ Stϕ is continuous for every
ϕ ∈ CL when t > r. To guarantee the continuity t 7→ Stϕ for all t ≥ 0 we need
to make further restriction3 on initial data. The main restriction is a compatibility
condition at time t = 0. To describe this condition we introduce the following
(complete) metric space

X≡
{
ϕ ∈ C1([−r, 0];H−1/2) ∩ C([−r, 0];H)

∣∣∣∣ ϕ(0) ∈ H1/2;
ϕ̇(0)+Aϕ(0)+F (ϕ)+G(ϕ(0)) = h

}
(31)

Here the compatibility condition ϕ̇(0) +Aϕ(0) +F (ϕ) +G(ϕ(0)) = h is understood
as an equality in H−1/2. The distance in X is given by the relation

distX(ϕ,ψ) = max
[−r,0]

‖ϕ(θ)−ψ(θ)‖+Lip[−r,0]‖A−1/2(ϕ−ψ)‖+‖A1/2(ϕ(0)−ψ(0))‖.

(32)
One can see that X is a closed subset in the Banach space CL and the topology

generated by the metric distX coincides with the induced topology of CL, see (9).

In the following assertion we collect several dynamical properties of the evolution
semigroup St which are direct consequences of Theorem 3.2 and Proposition 1 and
Remark 4.

Proposition 2. Under the conditions of Theorem 3.2 problem (1) generates an
evolution semigroup St of closed mappings on CL such that

(a) StCL ⊂ X for every t ≥ r and the set StB is bounded in X for each t ≥ r
when B is bounded in the space CL;

(b) the set X is forward invariant: StX ⊂ X;
(c) the mapping ϕ 7→ Stϕ is a 1

2 -Hölder continuous on CL (and hence on X) for
all t > r;

(d) the trajectories t 7→ Stϕ are continuous for t > r and ϕ ∈ CL. If ϕ ∈ X, then
these trajectories are continuous for all t ≥ 0.

4. Long-time dynamics. This section is central for the whole paper. Here we
study long-time dynamics of the delay model generated by (1) and (7). The main
result stated below in Theorem 4.2 deals with finite-dimensional global and expo-
nential attractors. We refer to the Appendix for the corresponding definitions and
the auxiliary facts which we use in our argument.

We first impose the standard hypotheses (see, e.g., [36]) concerning the nonlinear
(non-delayed) sink/source term G.

Assumption 4.1. The nonlinear mapping G : H1/2 → H has the form G(u) =
Π′(u). Here Π(u) = Π0(u) + Π1(u), where Π0(u) ≥ 0 is bounded on bounded sets
in H1/2 and Π1(u) satisfies the property

∀ η > 0 ∃Cη > 0 : |Π1(u)| ≤ η
(
‖A1/2u‖2 + Π0(u)

)
+ Cη, u ∈ H1/2. (33)

3We refer to some discussion in [31, 33] for the related PDE models.
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Moreover, we assume that
(a) there are constants η ∈ [0, 1), c4, c5 > 0 such that

− 〈u,G(u)〉 ≤ η‖A1/2u‖2 − c4Π0(u) + c5, u ∈ H1/2; (34)

(b) for every η̃ > 0 there exists Cη̃ > 0 such that

‖u‖2 ≤ Cη̃ + η̃
(
‖A1/2u‖2 + Π0(u)

)
, u ∈ H1/2. (35)

In the case of parabolic models like (6) examples of functions g(u) such that
the corresponding Nemytskii operator satisfies Assumptions 2.1(G) and 4.1 can be
found in [1] and [36]. The simplest one is g(u) = u3 + a1u

2 + a2u with arbitrary
a1, a2 ∈ R in the case when Ω is a 3D domain.

Our main result is the following assertion.

Theorem 4.2. Let Assumptions 2.1 and 4.1 be in force. Suppose that St is the
evolution semigroup generated in CL by (1) and (7). Then there exists `0 > 0
such that this semigroup possesses a compact connected global attractor A provided
mF r < `0, where r is the delay time and mF is the linear growth constant for F0

in H defined by the relation

mF = lim sup
‖u‖→+∞

‖F0(u)‖
‖u‖

. (36)

Moreover, for every 0 < β ≤ 1 and α < min{β, 1/2} this attractor belongs to the
set

DR
α,β =

ϕ ∈ X
∣∣∣∣∣∣∣
|A1−βϕ|C + |A−βϕ̇|C + Holdα(A1−βϕ) + Holdα(A−βϕ̇)

+

[∫ 0

−r

(
‖Aϕ(θ)‖2 + ‖ϕ̇(θ)‖2

)
dθ

]1/2
≤ R


(37)

for some R = R(α, β), where the Hölder seminorm Holdα(ψ) is given by

Holdα(ψ) = sup

{
‖ψ(t1)− ψ(t2)‖
|t1 − t2|α

: t1 6= t2, t1, t2 ∈ [−r, 0]

}
.

Assume in addition that there exist γ, δ ∈ (0, 1/2] such that (a) the mapping F0 is
globally Lipschitz from H−γ into H−1/2+δ, i.e.,

‖F0(u)− F0(v)‖−1/2+δ ≤ c‖u− v‖−γ , u, v ∈ H−γ ; (38)

and (b) the mapping G is almost locally Lipschitz from H1/2−γ into H−1/2+δ in the
sense that

‖G(u)−G(v)‖−1/2+δ ≤ c(R)‖u− v‖1/2−γ , u, v ∈ H1/2, ‖u‖1/2, ‖v‖1/2 ≤ R. (39)

Then

(A) The global attractor A has finite fractal dimension.
(B) There exists a fractal exponential attractor Aexp.

We devote the remaining subsections to the proof of Theorem 4.2.
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4.1. Existence of a global attractor. To prove the existence of a global attractor
it is sufficient to show that the evolution operator possesses a compact absorbing
set. In this case we can apply the standard existence result in the form given in [28]
for closed semigroups (see the Appendix for more details).

We start with the existence of a bounded absorbing set.

Proposition 3 (Bounded dissipativity). Assume that u(t) solves (1) and (7) with
ϕ ∈ CL. Then one can find `0 > 0 such that for every delay time r such that
mF r < `0 the following property holds: there exists R∗ such that for every bounded
set B in CL there is tB such that

‖A−1/2u̇(t)‖2 + ‖A1/2u(t)‖2 +

∫ t+1

t

[
‖u̇(τ)‖2 + ‖Au(τ)‖2

]
dτ ≤ R2

∗ (40)

for all t ≥ tB and for all initial data ϕ ∈ B. This means that the evolution semigroup
St is dissipative on both CL and X provided mF r < `0.

Proof. We use the Lyapunov method to get the result. For this we consider the
following functional

Ṽ (t) ≡ 1

2

[
‖u(t)‖2 + ‖A1/2u(t)‖2

]
+ Π(u(t)) +

µ

r

∫ r

0

{∫ t

t−s
‖u̇(ξ)‖2d ξ

}
ds.

defined on strong solutions u(t) for t ≥ r. The positive parameter µ will be chosen
later. We note that the main idea behind inclusion of an additional delay term

in Ṽ is to find a compensator for the delay term in (1). This idea was already
applied in [12] for second order in time models with state-dependent term, see also
[8, p.480] and [10] for the case of a flow-plate interaction model which contains a
linear constant delay term with the critical spatial regularity. The corresponding
compensator is model-dependent.

One can see from (33) that there are 0 < c0 < 1 and c, c1 > 0 such that

c0

[
‖A1/2u(t)‖2 + Π0(u(t))

]
− c ≤ Ṽ (t)

≤ c1
[
‖A1/2u(t)‖2 + Π0(u(t))

]
+ µ

∫ r

0

‖u̇(t− ξ)‖2d ξ + c. (41)

We consider the time derivative of Ṽ along a solution. One can easily check that

d

dt
Ṽ (t) =〈u(t), u̇(t)〉+ 〈Au(t), u̇(t)〉+ 〈G(u(t)), u̇(t)〉

+
µ

r

∫ r

0

{
‖u̇(t)‖2 − ‖u̇(t− s)‖2

}
d s

=〈u̇(t) +Au(t) +G(u(t)), u̇(t)〉 − 〈u̇(t), u̇(t)〉+ 〈u(t), u̇(t)〉+ µ‖u̇(t)‖2

− µ

r

∫ r

0

‖u̇(t− ξ)‖2d ξ

=− 〈F (ut)− h, u̇(t)〉 − (1− µ)‖u̇(t)‖2 − µ

r

∫ r

0

‖u̇(t− ξ)‖2d ξ

− ‖A1/2u(t)‖2 − 〈F (ut) +G(u(t))− h, u(t)〉.

The last terms are due to (1):

〈u(t), u̇(t)〉 = −〈Au(t), u(t)〉 − 〈F (ut) +G(u(t))− h, u(t)〉.
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By the definition of mF in (36) for any number MF greater than mF we can find
C(MF ) such that

‖F (ut)‖ = ‖F0(u(t− η(ut)))‖ ≤MF ‖u(t− η(ut))‖+ C(MF ).

Therefore

‖F (ut)‖ ≤MF ‖u(t− η(ut))− u(t)‖+MF ‖u(t)‖+ C(MF )

=MF

∥∥∥∥∥
∫ t

t−η(ut)
u̇(θ)d θ

∥∥∥∥∥+MF ‖u(t)‖+ C(MF ),

and thus

‖F (ut)‖ ≤MF ·
[
‖u(t)‖+

∫ r

0

‖u̇(t− ξ)‖d ξ
]

+ C(MF ), t ≥ r.

Since ∫ r

0

‖u̇(t− ξ)‖d ξ ≤ r1/2
(∫ r

0

‖u̇(t− ξ)‖2d ξ
)1/2

,

we have that

|〈F (ut)− h, u̇(t)〉| ≤1

2
‖u̇(t)‖2 + c0‖h‖2 + c1M

2
F ‖u(t)‖2

+ c2M
2
F r

∫ r

0

‖u̇(t− ξ)‖2d ξ + C(MF ), t ≥ r.

In a similar way we also have that

|〈F (ut)− h, u(t)〉)| ≤ c1M2
F r

∫ r

0

‖u̇(t− ξ)‖2d ξ + C(MF )(1 + ‖u(t)‖2).

Thus

|〈F (ut)− h, u̇(t)〉|+ |〈F (ut)− h, u(t)〉)|

≤ 1

2
‖u̇(t)‖2 + c0M

2
F r

∫ r

0

‖u̇(t− ξ)‖2d ξ + c1(MF )(1 + ‖u(t)‖2).

The relations in (34) and (35) with small enough η̃ > 0 (and η ∈ [0, 1)) yield

c1(MF )(1 + ‖u‖2)− ‖A1/2u‖2 − 〈u,G(u)〉 ≤ −a0
[
‖A1/2u‖2 + Π0(u)

]
+ a1(MF )

for some ai > 0 with a0 independent of MF . Thus it follows from the relations
above that

d

dt
Ṽ (t) ≤−

(
1

2
− µ

)
‖u̇(t)‖2

− a0
[
‖A1/2u‖2 + Π0(u)

]
+ a1(MF ) +

[
−µ
r

+ a2M
2
F r
] ∫ r

0

‖u̇(t− ξ)‖2d ξ

for some ai. Thus using the right inequality in (41) we arrive at the relation

d

dt
Ṽ (t) + γṼ (t) ≤−

(
1

2
− µ

)
‖u̇(t)‖2 − (a0 − γc1)

[
‖A1/2u‖2 + Π0(u)

]
+
[
−µ
r

+ µγ + a2M
2
F r
] ∫ r

0

‖u̇(t− ξ)‖2d ξ + a1(MF ). (42)

Therefore taking µ = 1/4 and fixing γ ≤ a0c−11 we obtain that

d

dt
Ṽ (t) + γṼ (t) +

1

4
‖u̇(t)‖2 ≤ C, t ≥ r, (43)
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provided γr+4a2M
2
F r

2 ≤ 1. Thus under the condition 4a2m
2
F r

2 < 1 we can choose

γ ∈ (0, a0c
−1
1 ] and MF > mF such that (43) holds. In particular we have that

d

dt
Ṽ (t) + γṼ (t) ≤ C, t ≥ r,

which implies

Ṽ (t) ≤ Ṽ (r)e−γ(t−r) +
C

γ
(1− e−γ(t−r)), t ≥ r, (44)

when mF r < `0. Using (41) and (17) we can conclude that |Ṽ (r)| ≤ CB for all
initial data from a bounded set B in CL. Hence (see (1)) there exists R such that
for every initial data from a bounded set B in CL we have that

‖A1/2u(t)‖+ ‖A−1/2u̇(t)‖+ ‖u̇(t) +Au(t)‖ ≤ R for all t ≥ tB .

Moreover, it follows from (43) that∫ t+1

t

‖u̇(τ)‖2dτ ≤ CR for all t ≥ tB .

To get this one should multiply (43) by eγt, integrate over [t, t+ 1] and multiply by

e−γt. Then ultimate boundedness of Ṽ (t) (see (44)) and the relation 1 ≤ eγ(τ−t)

for τ ≥ t give the last estimate.
These relations imply (40) and allow us to complete the proof of Proposition 3.

Remark 5. If the mapping F0 has sublinear growth in H, i.e., there exists β < 1
such that

‖F0(u)‖ ≤ c1 + c2‖u‖β , u ∈ H,

then the linear growth parameter mF given by (36) is zero. Thus in this case we
have no restrictions concerning r in the statement of Proposition 3. In particular,
this is true in the case of bounded mappings F0. Moreover, in the latter case the
argument can be simplified substantially (we can use a Lyapunov type function
without delay terms). For more details in the bounded case we refer to [31, 33].

We use Proposition 3 to obtain the following assertion which means that the
evolution semigroup St is (ultimately) compact.

Proposition 4 (Compact dissipativity). As in Proposition 3 we assume that mF r <
`0. Then the evolution operator St possesses a compact absorbing set. More pre-
cisely, for every 0 < β ≤ 1 and α < min{β, 1/2} the set DR

α,β given by (37) is

absorbing for some R. This set DR
α,β is compact in X provided 0 < α < β < 1/2.

Proof. We first note that the compactness of DR
α,β in X ⊂ CL for 0 < α < β < 1/2

follows from Arzelà-Ascoli theorem in Banach spaces (see, e.g., [34]).
Now we show that DR

α,β is absorbing.

Using the mild form of the problem and also the bound in (10) one can show
that

‖A1−δu(t)‖+ ‖A−δu̇(t)‖ ≤ CR∗(δ) for all t ≥ tB , (45)

for every δ > 0, where u(t) is a solution possessing property (40).
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Now we consider the difference u(t1) − u(t2) with t1 > t2. Namely, using the
mild form we obtain

‖A1−β(u(t1)− u(t2))‖ ≤‖A1−β(e−A(t1−t2) − 1)u(t2)‖

+

∫ t1

t2

‖A1−βe−A(t1−τ)‖ · (‖F (uτ )‖+ ‖G(u(τ))− h‖) dτ.

Since (see [21, Theorem 1.4.3, p.26] for related facts)

‖A−α(1− e−At)‖ ≤ tα and ‖Aαe−At‖ ≤
(α
t

)α
e−α

for all t > 0 and 0 ≤ α ≤ 1, we obtain

‖A1−β(u(t1)− u(t2))‖ ≤|t1 − t2|α‖A1−β+αu(t2)‖

+ cβ

∫ t1

t2

1

|t1 − τ |1−β
[
CR∗ + c|uτ |C

]
dτ.

for t1 > t2 ≥ tB . Thus for every 0 < α < β ≤ 1 we have

‖A1−β(u(t1)− u(t2))‖ ≤ CR∗ |t1 − t2|α for all ti ≥ tB , |t1 − t2| ≤ 1. (46)

Similarly to (27) using (46) with β = 1 and α = 1/2 we have that

‖F (ut1)− F (ut2)‖ ≤ LF

∣∣∣∣∣
∫ t2−η(ut2 )

t1−η(ut1 )
‖u̇(ξ)‖dξ

∣∣∣∣∣
≤ CR∗

[
|t1 − t2|+ |ut1 − ut2 |2C

]1/2 ≤ CR∗ |t1 − t2|1/2
for every t1, t2 ≥ tB ≥ r. Thus from (1) and (46) we obtain

‖A−β(u̇(t1)− u̇(t2))‖ ≤ CR∗ |t1 − t2|α for all ti ≥ tB , |t1 − t2| ≤ 1,

for every 0 < α < 1/2. This and also Proposition 3 imply that the set DR
α,β given

by (37) is absorbing for some R provided 0 < β ≤ 1 and α < min{β, 1/2}.

Proposition 4 allows us to apply the result from [28] (see Theorem 5.4 in the
Appendix below) to guarantee the existence of a compact connected global attractor.

Remark 6. Using Proposition 4 we can show that there exists a forward invari-
ant compact absorbing set which belongs to DR

α,β for an appropriate choice of the

parameters. More precisely, for every 0 < α < β < 1/2 we can find R(α, β) such
that DR

α,β is a compact absorbing set in X and CL. Thus there exists T = T (α, β)

such that StD
R
α,β ⊂ DR

α,β for all t ≥ T . Hence ∪t≥TStDR
α,β is a forward invariant

absorbing set lying in DR
α,β . Since DR

α,β is compact, the set

Dα,β
0 = Closure

⋃
t≥T

StD
R
α,β

 (47)

is a compact absorbing set as well. Due to the closedness of St and the compact-

ness of Dα,β
0 this set Dα,β

0 is also forward invariant. Moreover, it follows from

Remark 3 that the restriction of St on Dα,β
0 is continuous in both t and initial data

in the topology induced by CL (see (9)). Thus a dynamical system (St, D
α,β
0 ) in the

classical (see [1, 4, 19, 36]) sense arises. In particular, this allows us to suggest an
argument for the existence of a global attractor which avoids Theorem 5.4 on closed
evolutions. For this we need to apply the standard existence result (see [1] or [36])

to the system (St, D
α,β
0 ) and then to show that the attractor does not depend on α
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and β. However, the approach to the existence based on Theorem 5.4 is more nat-
ural because it embeds the case in a general framework. At any case we emphasize

that the observation concerning continuity of St on Dα,β
0 is important. Below we

use this property in the proof of the existence of a fractal exponential attractor.

4.2. Dimension and exponential attractor. Our further arguments are based
on the notion of quasi-stability which says that the semigroup is asymptotically con-
tracted up to a homogeneous compact additive term. For the convenience we remind
the corresponding abstract result in the Appendix. The quasi-stability method was
developed earlier in [5, 6, 7, 8, 9] for continuous evolution models. By Remark 6

we can apply this method to the system (St, D
α,β
0 ) with Dα,β

0 given by (47).

Proposition 5 (Quasi-stability). Let Assumptions 2.1 and 4.1 be in force. Assume

that (38) and (39) are valid for some γ, δ ∈ (0, 1/2]. Let D0 = Dα,β
0 with 0 < α <

β < γ. Then

|Stϕ1 − Stϕ2|CL ≤CRe−λ1t
[
‖ϕ1(0)− ϕ2(0)‖1/2 + |ϕ1 − ϕ2|C

]
+ CR max

s∈[0,t]
‖A1/2−γ(u1(s)− u2(s))‖, t ≥ r, (48)

for every ϕi ∈ D0, where ui(t) = (Stϕ
i)(θ)

∣∣
θ=0

.

Proof. Using the mild form presentation for ui(t) and (39) we have that

‖A1/2(u1(t)− u2(t))‖ ≤ e−λ1t‖A1/2(u1(0)− u2(0))‖

+

∫ t

0

‖A1−δe−A(t−τ)‖·
(
C‖A−1/2+δ

[
F (u1τ )−F (u2τ )

]
‖+CR‖u1(τ)−u2(τ)‖1/2−γ

)
dτ.

As in (27) we also have that

‖A−1/2+δ
[
F (u2t )− F (u1t )

]
‖ ≤ C

∣∣∣∣∣
∫ t−η(u2

t )

t−η(u1
t )

‖A−β u̇2(ξ)‖dξ

∣∣∣∣∣+ C|u2t − u1t |C

≤ C(R) max
θ∈[−r,0]

‖u2(t+ θ)− u1(t+ θ)‖

for every t ≥ 0 with β ∈ (0, γ]. Therefore

‖A1/2(u1(t)− u2(t))‖ ≤ c1e−λ1t
[
‖A1/2(ϕ1(0)− ϕ2(0))‖+ |ϕ1 − ϕ2|C

]
+ c2(R) max

s∈[0,t]
‖A1/2−γ(u1(s)− u2(s))‖.

Using (1), (4) and (11) we also have that

‖A−1/2(u̇1(t)− u̇2(t))‖ ≤ C(R)
[
‖A1/2(u1(t)− u2(t))‖+ |u2t − u1t |C

]
Thus

‖A−1/2(u̇1(t)− u̇2(t))‖ ≤ c1e−λ1t
[
‖A1/2(ϕ1(0)− ϕ2(0))‖+ |ϕ1 − ϕ2|C

]
+ c2(R) max

s∈[0,t]
‖A1/2−γ(u1(s)− u2(s))‖, t ≥ r.

This completes the proof of Proposition 5.
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Completion of the proof of Theorem 4.2. Since the global attractor belongs
to an exponential one (see [15]), it is sufficient to prove the existence of a fractal
exponential attractor only. For this we apply Theorem 5.6 on the set D0 (see
Proposition 5) with an appropriate choice of operators and spaces. Indeed, let
T > 0 be chosen such that q ≡ CRe

−λ1T < 1 where CR is the constant from (48).
We define the Lipschitz mapping

K : D0 7→ Z[0,T ] ≡ C1([0, T ];D(A−1/2)) ∩ C([0, T ];D(A1/2))

by the rule Kϕ = u(t), t ∈ [0, T ], with u be the unique solution of (1) and (7)
with initial function ϕ ∈ D0. The seminorm nZ(u) ≡ maxs∈[0,T ] ‖A1/2−γu(s)‖ is
compact on Z[0,T ] due to the compact imbedding of Z[0,T ] into C([0, T ];D(Aα)) for
every α < 1/2 by the Arzelà-Ascoli theorem (see, e.g.,[34]). If we take

Y ≡
{
ϕ ∈ C1([−r, 0];H−1/2) ∩ C([−r, 0];H) : ϕ(0) ∈ H1/2

}
equipped with the norm (32) and suppose V = ST , then the (discrete) quasi-stability
inequality in (50) is valid on D0. Hence we can apply Theorem 5.6 with V = ST on
D0 to show that there exists a finite-dimensional set Aθ ⊂ D0 such that (51) holds.
Then as in the standard construction (see, e.g., [15] or [27]) we suppose

Aexp = Closure

 ⋃
t∈[0,T ]

StAθ

 .

Since V = ST , it is easy to see that Aexp is exponentially attracting, see (49) in the
Appendix.

Since D0 is included in the set DR
α,β given by (37), we have that t 7→ Stϕ is

α-Hölder on D0:

|St1ϕ− St2ϕ|Y ≤ CD0
|t1 − t2|α, t1, t2 ∈ [0, T ], ϕ ∈ D0.

Therefore in the standard way (see, e.g., [15] or [27]) we can conclude that Aexp has
finite fractal dimension in Y .

This completes the proof of Theorem 4.2.

5. Appendix. Here, for the convenience of the reader, we remind some results
used in our work. For more details we refer to the cited sources.

First we collect some definitions and properties, connected to (closed) evolution
semigroups. We start with the following notion which was introduced in [28].

Definition 5.1 (Closed semigroup). Let X be a complete metric space. A closed

semigroup on X is a one-parameter family of (nonlinear) operators St : X → X (t ∈
R+) (or t ∈ N) satisfying the conditions

(S.1) S0 = IdX - identical operator;
(S.2) St+τ = StSτ for all t, τ ∈ R+;
(S.3) for every t ∈ R+ the relations xn → x and Stxn → y imply that Stx = y.

Assumptions (S.1) and (S.2) are the semigroup properties, while (S.3) says that
St is a closed (nonlinear) map. We note the operator closedness is a well-known
concept in the theory of linear (unbounded) operators. To our best knowledge in the
context of evolution operators this notion was appeared in [1] as a (weak) closedness
of an evolution (strongly continuous) semigroup (see also [4]).

The following notions are standard in the theory of infinite-dimensional evolution
semigroups and dynamical systems (see, e.g., [1, 4, 19, 23, 36]).



1702 IGOR CHUESHOV AND ALEXANDER REZOUNENKO

Definition 5.2 (Dissipativity and compactness). A semigroup St is dissipative

if there is a bounded absorbing set Babs ⊂ X . That means for any bounded set
B ⊂ X , there exists t0 = t0(B) (the entering time) such that StB ⊂ Babs for all
t ≥ t0. A semigroup St is compact if there is a compact absorbing set.

Definition 5.3 (Global attractor). A global attractor of an evolution semigroup
St acting on a complete metric space X is defined as a bounded closed set A ⊂ X
which is invariant (StA = A for all t > 0) and attracting.

We recall ([1, 36]) that a set K ⊂ X is called attracting for St if, for any
bounded set B ⊂ X ,

lim
t→+∞

dX {StB,K} = 0,

where dX {A,B} ≡ supx∈A distX (x,B) is the Hausdorff semi-distance between
bounded sets A,B ⊂ X .

The following assertion is a reformulation of Corollary 6 [28] which also takes
into account the statement of [28, Theorem 2]).

Theorem 5.4 (Existence of a global attractor). Assume that St : X → X is a
closed semigroup possessing a compact connected absorbing set Kabs ⊂ X . Then
there exists a compact global attractor A for St. This attractor is a connected set
and A = ω(Kabs) =

⋂
t∈R+

⋃
τ≥t SτKabs.

One of the desired qualitative properties of an attractor is its finite-dimensionality.
We remind the following definition (see, e.g., [4, 36]).

Definition 5.5. LetM ⊂ X be a compact set. Then the fractal (box-counting)

dimension dimfM of M is defined by

dimfM = lim sup
ε→0

lnn(M, ε)

ln(1/ε)
,

where n(M, ε) is the minimal number of closed balls of the radius ε which cover the
set M .

We also recall (see [15]) that a compact set Aexp ⊂ CL is said to be fractal

exponential attractor for St iff Aexp is a positively invariant set whose fractal
dimension is finite and for every bounded set D there exist positive constants tD,
CD and γD such that

sup
ϕ∈D

dist CL(Stϕ, Aexp) ≤ CD · e−γD(t−tD), t ≥ tD. (49)

For details concerning fractal exponential attractors in the case of continuous semi-
groups we refer to [15] and also to the recent survey [27]. We only mention that (i)
a global attractor can be non-exponential and (ii) an exponential attractor is not
unique and contains the global attractor.

To prove the existence of exponential attractors we need the following assertion
which was established in [5] and is a version of the result proved in [7] for metric
spaces (some particular forms of Theorem 5.6 are also known from [6, 8]).

Theorem 5.6. Let M be a bounded closed set in some Banach space Y and V :
M →M be a continuous mapping. Assume there exist a Lipschitz mapping K from
M into some Banach space Z and a compact seminorm nZ(x) on Z such that

‖V v1 − V v2‖ ≤ q‖v1 − v2‖+ nZ(Kv1 −Kv2) (50)
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for any v1, v2 ∈ M , where 0 < q < 1 is a constant. Then for every θ ∈ (q, 1)
there exists a positively invariant compact set Aθ ⊂ M of finite fractal dimension
satisfying

sup
{

dist(V ku,Aθ) : u ∈M
}
≤ rθk, k = 1, 2, . . . , (51)

for some constant r > 0. Moreover,

dimf Aθ ≤ lnmZ

(
2LK
θ − q

)
.

[
ln

1

θ

]−1
,

where LK > 0 is the Lipschitz constant for K:

‖Kv1 −Kv2‖Z ≤ LK‖v1 − v2‖, v1, v2 ∈M,

and mZ(R) is the maximal number of elements zi in the ball {z ∈ Z : ‖zi‖Z ≤ R}
possessing the property nZ(zi − zj) > 1 when i 6= j.
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Paris, 1968.

[26] J. Mallet-Paret, R. D. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-

differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear
Anal., 3 (1994), 101–162.

[27] A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded

and unbounded domains, In Handbook of Differential Equations: Evolutionary Equations (C.
M. Dafermos and M. Pokorny eds.), vol. 4, Elsevier, Amsterdam, 2008, pp.103–200.

[28] V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed

operators, Commun. Pure. Appl. Anal., 6 (2007), 481–486.
[29] A. V. Rezounenko, Partial differential equations with discrete and distributed state-dependent

delays, Journal of Mathematical Analysis and Applications, 326 (2007), 1031–1045.

[30] A. V. Rezounenko, Differential equations with discrete state-dependent delay: uniqueness and
well-posedness in the space of continuous functions, Nonlinear Analysis: Theory, Methods and

Applications, 70 (2009), 3978–3986.
[31] A. V. Rezounenko, Non-linear partial differential equations with discrete state-dependent

delays in a metric space, Nonlinear Analysis: Theory, Methods and Applications, 73 (2010),

1707–1714.
[32] A. V. Rezounenko, A condition on delay for differential equations with discrete state-

dependent delay, Journal of Mathematical Analysis and Applications, 385 (2012), 506–516.
[33] A. V. Rezounenko and P. Zagalak, Non-local PDEs with discrete state-dependent delays:

well-posedness in a metric space, Discrete and Continuous Dynamical Systems - Series A,

33 (2013), 819–835.

[34] J. Simon, Compact sets in the space Lp(0, T ;B), Annali di Mat. Pura ed Appl., 146 (1987),
65–96.

[35] R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential
Equations, AMS, Mathematical Surveys and Monographs: vol. 49, 1997.

[36] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer,

Berlin-Heidelberg-New York, 1988.

[37] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equa-
tions, Transactions of AMS , 200 (1974), 395–418.

[38] H.-O. Walther, The solution manifold and C1-smoothness for differential equations with state-
dependent delay, Journal of Differential Equations, 195 (2003), 46–65.

[39] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag,

New York, 1996.

Received October 2014; revised February 2015.

E-mail address: chueshov@karazin.ua

E-mail address: rezounenko@yahoo.com

http://www.ams.org/mathscinet-getitem?mr=MR2129130&return=pdf
http://dx.doi.org/10.1023/B:JOTH.0000047249.39572.6d
http://dx.doi.org/10.1023/B:JOTH.0000047249.39572.6d
http://www.ams.org/mathscinet-getitem?mr=MR0508721&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0941371&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2457636&return=pdf
http://dx.doi.org/10.1016/S1874-5725(06)80009-X
http://dx.doi.org/10.1016/S1874-5725(06)80009-X
http://www.ams.org/mathscinet-getitem?mr=MR0610244&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1845093&return=pdf
http://dx.doi.org/10.1023/A:1016635223074
http://dx.doi.org/10.1023/A:1016635223074
http://www.ams.org/mathscinet-getitem?mr=MR1133627&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR259693&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0247244&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1272890&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2508165&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2289833&return=pdf
http://dx.doi.org/10.3934/cpaa.2007.6.481
http://dx.doi.org/10.3934/cpaa.2007.6.481
http://www.ams.org/mathscinet-getitem?mr=MR2280961&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2006.03.049
http://dx.doi.org/10.1016/j.jmaa.2006.03.049
http://www.ams.org/mathscinet-getitem?mr=MR2515314&return=pdf
http://dx.doi.org/10.1016/j.na.2008.08.006
http://dx.doi.org/10.1016/j.na.2008.08.006
http://www.ams.org/mathscinet-getitem?mr=MR2661353&return=pdf
http://dx.doi.org/10.1016/j.na.2010.05.005
http://dx.doi.org/10.1016/j.na.2010.05.005
http://www.ams.org/mathscinet-getitem?mr=MR2834276&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2011.06.070
http://dx.doi.org/10.1016/j.jmaa.2011.06.070
http://www.ams.org/mathscinet-getitem?mr=MR2975136&return=pdf
http://dx.doi.org/10.3934/dcds.2013.33.819
http://dx.doi.org/10.3934/dcds.2013.33.819
http://www.ams.org/mathscinet-getitem?mr=MR0916688&return=pdf
http://dx.doi.org/10.1007/BF01762360
http://www.ams.org/mathscinet-getitem?mr=MR1422252&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR953967&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR382808&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1974-0382808-3
http://dx.doi.org/10.1090/S0002-9947-1974-0382808-3
http://www.ams.org/mathscinet-getitem?mr=MR2019242&return=pdf
http://dx.doi.org/10.1016/j.jde.2003.07.001
http://dx.doi.org/10.1016/j.jde.2003.07.001
http://www.ams.org/mathscinet-getitem?mr=MR1415838&return=pdf
mailto:chueshov@karazin.ua
mailto:rezounenko@yahoo.com

	1. Introduction
	2. Model description
	3. Well-posedness
	4. Long-time dynamics
	4.1. Existence of a global attractor
	4.2. Dimension and exponential attractor

	5. Appendix
	Acknowledgments
	REFERENCES

