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1. Introduction

Our main goal is to study well-posedness and asymptotic dynamics of second order in time equations
with delay of the form

a(t) + ka(t) + Au(t) + F(u(t)) + M(u) =0, t>0, (1)
in some Hilbert space H. Here the dot over an element means time derivative, A is linear and F(-) is
nonlinear operators, M (u;) represents (nonlinear) delay effect in the dynamics. All these objects will be

specified later.
The main model we keep in mind is a nonlinear plate equation of the form

Onu(t, ) + kOu(t, x) + A%u(t,z) + F(u(t,z)) + au(t — [u(t)],z) =0, z€ 2, t>0, (2)
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in a smooth bounded domain 2 C R? with some boundary conditions on 2. Here 7 is a mapping defined
on solutions with values in some interval [0, k], k& and a are constants. We assume that the plate is placed on
some foundation; the term au(t — 7[u(t)], ) models effect of the Winkler type foundation (see [40,44]) with
delay response. The nonlinear force F' can be Kirchhoff, Berger, or von Karman type (see Section 6.1). Our
abstract model covers also wave equation with state-dependent delay (see the discussion in Section 6.2).

We note that plate equations with linear delay terms were studied before mainly in Hilbert Lo-type spaces
on delay interval (see, e.g., [2,3,10,11] and the references therein). However this Lo-type situation does not
cover satisfactory the case of a state-dependent delay of the form described above. The point is that in this
case the delay term in (2) is not even locally Lipschitz and thus difficulties related to uniqueness may arise.
The desire to have Lipschitz property for this type of delay terms leads naturally to C-type spaces which
are not even reflexive. This provides us with additional difficulties in contrast with the general theory well-
developed for second order in time equations in the Hilbert space setting, see, e.g., [7] and also the literature
cited there. In particular, in contrast with the non-delayed case (see [7-9]), in order to prove asymptotic
smoothness of the flow (it is required for the existence of a global attractor) we are enforced to assume that
the nonlinearity F' is either subcritical (in the sense of [7]) or else the damping coefficient k in (1) is large
enough. The main reason for this is that we are not able to apply Khanmamedov’s or Ball’s methods (see a
discussion of both methods and more references in [9]). The point is that we cannot guarantee uniform in ¢
weak continuity in the phase space of the corresponding functionals. Another reason is that the delay term
destroys the gradient structure of the model in the case of potential nonlinearities F'.

The studies of state-dependent delay models have a long history. As it is mentioned in [23] early discussion
of differential equations with such a delay goes back to 1806 when Poisson studied a geometrical problem.’
Since that time many problems, initially described by differential equations without delay or with constant
delay, have been reformulated as equations with state-dependent delay. It seems rather natural because many
models describing real world phenomena depend on the past states of the system. Moreover, it appears that
in many problems the constancy of the time delay is just an extra assumption which makes the study
easier. The waiver of this assumption is naturally lead to more realistic models and simultaneously makes
analysis more difficult. The general theory of (ordinary) differential equations with state-dependent delay
has been developed only recently (see, e.g., [25,31,45] and also the survey [23] and the references therein).
This theory essentially differs from that of constant or time-dependent delays (see the references above and
also Remark 2.1).

As for partial differential equations (PDEs) with delay their investigation requires the combination of
both theories, methods and machineries (PDEs and delayed ODEs). The general theory of delayed PDEs was
started with [19,43] at the abstract level and was developed in last decades mainly for parabolic type models
with constant and time-dependent delays (see, e.g., the monographs [47] and the survey [39]). Abstract
approaches for C-type [19,43] and L,-type [26] phase spaces are available. We also mention a recent strong
activity on dissipative PDEs with infinite delay which has the form of convolution in time with the proper
kernel (see, e.g., [13,15,33] and the references therein).

Partial differential equations with state-dependent delay are essentially less investigated, see the discussion
in the papers [12,34,35] devoted to the parabolic case. Some results (mainly, the existence and uniqueness)
for the second order in time PDEs with delay are available. Most of them are based on a reformulation
of the problem as a first order system and application of the theory of such systems (see, e.g., [19]). We
also use this idea to get a local existence and uniqueness for problem (1). It is also worth mentioning the
papers [20,24] which involve the theory of m-accretive (see [41], for instance) operators. However to the best
of our knowledge, global and asymptotic dynamics of second order in time partial differential equations with
state-dependent delay have not been studied before.

1 We refer to [46] for a modern and detailed discussion of Poisson’s example with state-dependent damping.
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In our approach we employ the special structure of second order in time systems to get a globally
well-posed initial value problem for mild solutions. As a phase space we choose some space of Cl-type
functions. The solutions we deal with are also C' functions. To construct them we rewrite the second
order in time equation (for unknown u(t)) as a first order system (for unknown vector (u(t),(t))) and
look for continuous (mild) solutions to the system. However in contrast with approaches based on the
general theory (see, e.g., [19] and also [45, Section 3] and [23, Section 2]) we take into account natural
“displacement—velocity” compatibility from the very beginning at the level of the phase space. The solutions
constructed have the desired Lipschitz (even C* in time) property for the first coordinate u(t). In a sense it
is an intermediate case between two standard classes of merely continuous (mild) and C! (classical) solutions
(u(t),v(t)), t € [=h,T), T > 0 for a general first order in time system with delay:

U(t) = f(ut,vt),
’U(t) = g(ut,vt).

We emphasize that due to the structure of our problem we do not need any nonlinear compatibility type
relations involving the right hand sides of equations which usually arise for general first order (even, finite-
dimensional) systems when C! solutions are studied (see [45] and also the survey [23]). We also refer to
Section 6.3 for a discussion of other features of our approach.

Our main result states that the dynamical system generated by (1) in the space W (see (3)) of C*
functions on the delay time interval possesses a compact global attractor of finite fractal dimension. To
achieve this result we involve the method of quasi-stability estimates suggested in [6] and developed in
[7,8], see also the surveys in [9,5]. However owing to the structure of the phase space we cannot apply
directly the results known for abstract quasi-stable systems and thus we are enforced to reconstruct and
develop the corresponding argument in our state-dependent delay case.

The paper is organized as follows. In Section 2 we introduce our basic hypotheses and prove a well-
posedness result. Further sections are devoted to long-time dynamics. We first prove that the system is
dissipative (see Section 3). In Section 4 we show that the system satisfies some kind of quasi-stability
estimate on an invariant bounded absorbing set. This allows us to establish the existence of compact finite-
dimensional global and exponential attractors in Section 5. The concluding Section 6 illustrates main results
by applications to plate and wave models.

2. Well-posedness and generation of a dynamical system

The main outcome of this section is the fact that problem (1) generates dynamical system in an appropriate
linear phase space of C! functions.
In our study we assume that:

(Al) In (1), A is a positive operator with a discrete spectrum in a separable Hilbert space H with domain
D(A) C H. Hence there exists an orthonormal basis {ex} of H such that

Aey, = preg, with 0 < pg <ps <..., klim [ = OO.
— 00

We can define the spaces D(A*) for o > 0 (see, e.g., [28]). For b > 0, we denote for short C, =
C([—h,0]; D(A%)) which is a Banach space with the following norm:

[v|e, = sup{||A%v(0)]| : 6 € [—h,0]}.

Here and below, || - || is the norm of H, and (-,-) is the corresponding Hermitian product. We also write
C = Cy.
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(F1) The nonlinear (non-delayed) mapping F : D(A2) — H is locally Lipschitz, i.e., for any R > 0 there is
Lpr > 0 such that for any u!, u? with |A2u’|| < R, one has

|F @) = F@)| < Lrn |43 @' =)

To describe the delay term M we need the following standard notations from the theory of delay differential
equations. In (1) and below, if z is a continuous function from R into a metric space Y, then as in [21,47]
2zt = z¢(0) = z(t + 0), 6 € [—h,0], denotes the element of C([—h,0];Y), while & > 0 presents the (maximal)
retardation time.

In our considerations an important role is played by the choice of a phase space (see Remark 2.1). We
use the following one:

ch([—h,o];D(A%)) N CY([~h,0); H), (3)

endowed with the norm [p|w = |¢[c, , + |@lcy-
We accept the following (basic) hypothesis concerning the delay term.

(M1) The nonlinear delay term M : W +— H is locally Lipschitz in the sense that

1M (") = M) < Cp [lo" = @Pley e + 10" = &Plcy]

for every ¢!, > € W, |of|w < o, j=1,2.

Remark 2.1. The main (benchmark) example® of a state-dependent delay term is

M(p) = (=7(¢)), ¢e€C, (4)

where 7 maps C' into some interval [0, h]. We notice that this (discrete time) delay term M is not locally
Lipschitz in the classical space of continuous functions C' = C([—h, 0]; H), no matter how smooth the delay
function 7 : C' — [0, k] is. This may lead to the non-uniqueness of solutions (see a discussion in the survey [23]
and the references therein). This makes the study of differential equations with state-dependent delays quite
different from the one of equations with constant or time-dependent delays [16,21]. In such a situation
the proof of the well-posedness of a system requires additional efforts. For instance, the main approach to
C-solutions of general delay equations is the so-called “solution manifold method” [23,45] (see also [38] for
a parabolic PDE case) which assumes some type of compatibility condition. It should be also noted that
there is an alternative approach avoiding (nonlinear) compatibility hypotheses. However it is based on an
additional hypotheses concerning the delay mechanism [35,37]. Thus it is important to deal with spaces in
which we can guarantee a Lipschitz property for the mapping in (4). This is why to cover the case we are
enforced to avoid the space C for the description of initial data. For the same reason we cannot also use the
idea applied in [26] and also in the papers [2,3,10,11] which deal with Lo-type spaces over the time delay
interval. In contrast, as we can see below the choice of a Banach space of the form (3) as a phase space
allows us to guarantee local Lipschitz property for the term in (4). Moreover, this phase space takes into
account the natural “displacement—velocity” relation from the very beginning.

Thus bearing in mind the discussion above we consider Eq. (1) with the following initial data

uo = ug(f) = u(f) = ¢(0), for @ €[—h,0], o € W. (5)

2 A more general situation is described in hypothesis (M3) and Remark 3.1.
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We can rewrite Eq. (1) as the following first order differential equation

d

dt

in the space Y = D(A'/?) x H, where U(t) = (u(t);u(t)). Here the operator A and the map N are defined
by

Ut) + AU(t) = N(Uy), t>0, (6)

AU = (—v; Au+ kv), for U = (u;v) € D(A) = D(A) x D(AY?)
N(2) = —(0; F(p(0)) + M(p)) for & = (p;¢), ¢ € W. (7)

One can show (see, e.g., [4]) that the operator A generates exponentially stable Cp-semigroup e~* in Y.
The representation in (6) motivates the following definition.

Definition 2.2. A mild solution of (1) and (5) on an interval [0,T] is defined as a function
u € C([_h> T]a D(Al/Q)) n Cl([_h7 T]7 H)7
such that u(0) = ¢(0), 6 € [—h,0] and U(t) = (u(t);u(t))” satisfies

U(t) = e AU(0) + /Ote_(t_s)AN(Us)ds, te0,T]. (8)

Similarly we can also define a mild solution on the semi-interval [0, 7).

We can easily prove the following local result.

Proposition 2.3. Let (A1), (F1) and (M1) be valid. Then for any ¢ € W there exist T, > 0 and a unique mild
solution U(t) = (u(t);u(t)) of (1), (5) on the semi-interval interval [0,T,). Solution continuously depends
on initial function ¢ € W.

Proof. The argument for the local existence, uniqueness and continuous dependence of a mild solution is
standard (see, e.g., [43, Proposition 2.1 and Corollary 2.2], [19]) and uses the Banach fixed point theorem
for a contraction mapping in the space C([—h,T]; D(A'?)) N CY([~h,T]; H) with appropriately small T
We use here that F' and M are locally Lipschitz by assumptions (F1) and (M1). O

To obtain a global well-posedness result we need additional hypotheses concerning F' and M. As in the case
of the second order models without delay (see [7,8]) we use the following set of assumptions concerning F.

(F2) The nonlinear mapping F : D(A%) — H has the form
F(u) = II'(u) + F*(u),

where II'(u) denotes Fréchet derivative® of a C'-functional II(u) : D(A2) — R and the mapping
F*: D(A?) — H is globally Lipschitz, i.e.

N 2
[ (uh) = F*()][* < co| A (0! — )]

, ul,UQED(A%>. (9)

Moreover, we assume that IT(u) = Iy(u) + IT; (u), with IIy(u) > 0, IIh(u) is bounded on bounded sets
in D(A%) and I, (u) satisfies the property

1 2
¥ >03C, >0: n1<u)gn(HA2uH +H0(u))+c,,, u e D(AY?), (10)

3 Below U(t) is also occasionally called a mild solution.
4 This means that IT’(u) is an element in D(A%)’ such that |II(u + v) — II(u) — (II'(u), v)| = o(||AY/2v]|) for every v € D(A%).
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As it is well-documented in [7,8] the second order models with nonlinearities satisfying (F2) arise in many
applications (see also the discussion in Section 6).

We assume also

(M2) The nonlinear delay term M : W — H satisfies the linear growth condition:

M < Mg+ M AY25(0 5(0 11
M ()] < Mo+ 1{9€rf1§;:o]ll o( )||+eé?f‘i‘fm”“0( e, YeeW, (11)

for some M; >0, j =0, 1.

The examples of F' and M will be given in Section 6.

The main result of this section is the following assertion.

Theorem 2.4 (Well-Posedness). Let (A1), (F1), (F2), (M1), and (M2) be valid. Then for any ¢ € W there
exists a unique global mild solution U(t) = (u(t);u(t)) of (1), (5) on the interval [0,+00). Solutions satisfy
an energy equality of the form

E(ult).i(0) + [ i) Pds = E@O).500) ~ [ (P (u(s)) i) ds = [ (). i) ds. (12
Here we denote
1 1|2
E(u,v) = B(uv) + M(w),  Elu,v) =3 (||v||2 n HAauH ) + ITo(w). (13)
Moreover, for any o0 > 0 and T > 0 there exists Cp 1 such that
1AV (@l (t) = (@) + |6} (8) = @ (D) < Corle’ = @*lw, ¢ €[0,T], (14)

for any couple u'(t) and u®(t) of mild solutions with initial data ©* and ©* such that |¢?|w < o.

Proof. The local existence and uniqueness of mild solutions are given by Proposition 2.3. Let U = (u;u) be
a mild solution of (1) and (5) on the (maximal) semi-interval [—h, T,,) and

fUt) = Fu(t) + M(u) € C([0,T,); H).
It is clear that we can consider (u(t);(t)) as a mild solution of the linear non-delayed problem
8(t) + Av(t) + ko(t) + (1) =0, t€[0,Ty),  (v(0);0(0)) = (¢(0);¢(0)) € Y. (15)

Here Y = D(A'Y?) x H. Therefore (see, e.g., [4]) one can see that u(t) satisfies the energy relation of the
form
¢ ¢
Bofu(t) t) + & [ i(s)|Pds = Bo(u(0).a(0) = [ (F(s)vite))ds. ¢ <7, (16)

where Eo(u,v) = % (||[AY2u||? + ||v||?). Using the structure of f* after some calculations (firstly performed
on smooth functions) we can show that

/0 (F*(s), a(s)) ds = TT(u(t)) — IT(u(0)) + / (F* (u(s)) + M (), i(s)) ds.

Therefore (16) yields (12) for every ¢t < T,.
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By (9) we have that ||F*(u)|| < \/col|A*?ul| + ||F*(0)||. Therefore using (12) and (11) we obtain that
k t t . 2
5(u(t),zl(t))+§/ la(s)|2ds < E(U(O),u(()))+c1/ <1+ |43uis)| ) ds
0 0
t . 2
—|—02/ [ max HAiu(s—i—G)H + max ||u(s+9)||2] ds. (17)
0 ] 0€[—h,0]

0c[—h,0

One can see that

2
Az +0H+ (s +0))2 <|olE +2 E 0 18
plnax H u(s +0) plax la(s +0)]° < lelw Jnax, (u(o), (o)) (18)

for every s € [0,T,,). It follows from (10) that there exists a constant ¢ > 0 such that

%E(u, V) — ¢ < E(u,v) < 2E(u,v) +¢, ueD (A%) ,veH. (19)

Therefore we use (19) and (18) to continue (see (17)) as follows

Urg[%?i] E(u(o),u(0)) <c (1 +t 4+ E(u(0),(0)) +t - |pl5 + ; Urg[%?i] E(u(o),(0)) ds> .

The application of Gronwall’s lemma (to the function p(t) = max,¢jo4 £(u(o),u(c))) yields the following
(a priori) estimate

max B(u(0),i(0)) < C (1+ B(u(0),4(0)) + [eliy) -, a>0, t< T,
oc|0,t

which allows us in the standard way to extend the solution on the semi-axis R .
To prove (14) we use the fact that the difference u(t) = u'(t) — u2(t) solves the problem in (15) with
Frt) = Fu' (1) + M(up) — F(u?(t) — M(uf).

Lipschitz properties (F1), (M1) and standard estimates [43, Corollary 2.2]. This completes the proof of
Theorem 2.4. [

Using Theorem 2.4 we can define an evolution operator S; : W — W for all ¢ > 0 by the formula
St = uy, where u(t) is the mild solution of (1), (5), satisfying ug = . This operator satisfies the semigroup
property and generates a dynamical system (S;; W) with the phase space W defined in (3) (for the definition
and more on dynamical systems see, e.g., [1,4,42]).

Remark 2.5. We can equivalently define the dynamical system on the linear space of vector-functions
W ={d=(p;¢)| p € W} CC(|—h,0]; D(A%) x H). In this notations evolution operator reads S; & = U,
and we have W 5 ¢ N (p;9) € W satisfying GS; = S,G. In fact we already have used this observation in
Definition 2.2 and Proposition 2.3.

We conclude this section with a discussion of the existence of smooth solutions to problem (1) and (5).

In the following assertion we show that under additional hypotheses mild solutions become strong.

Corollary 2.6 (Smoothness). Let the hypotheses of Theorem 2.4 be in force with assumption (M1) in the
following (stronger) form

M (") = M(£?)]| < Cole! = ¢%|c, (20)
for every o, ©*> € W, |/ |lw < 0, j = 1,2. If the initial function ©(0) possesses the property
p(0) € D(A),  ¢(0) € D(A?), (21)
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then the solution u(t) satisfies the relations
u(t) € Loo(0,T; D(A)),  ilt) € Loo(0, T5 D(AVZ)),i(t) € Loo(0, T H) (22)
for every T > 0. If in addition F(u) is Fréchet differentiable and ||F'(u)v| < C,||AY?v]| for every u € D(A)

with ||Aul| < r, then we have

u(t) € C(Ry; D(4)),  a(t) € C(Ry; D(AY?)),  i(t) € C(Ry; H). (23)

Proof. Let u(t) be a solution. By Theorem 2.4 we have that

1/2 2 4 la@®)))?) <
max. ([[4"2u(0)|P + 1)) < Rr

for some Rp. Now we note that under condition (20) the function ¢t — f(¢) = M (u;) is Lipschitz on any
interval [0, 7] with values in H. Indeed, by (20) we have that

M (ur,) = M(ui,)| < Coy e

t1+6
/ u(f)dSH < CryRrlt: — ta].
[7}7‘)0] t

2+6

Thus the derivative f(t) (in the sense of distributions) is bounded in H. This allows us to apply Theorem
2.3.8 [8, p. 63] (see also [41, Chapter 4]) to obtain the conclusion in (22).

Property (23) follows from [8, Proposition 2.4.37]. O

Remark 2.7. The property in (20) means that M is Lipschitz on subsets in C' = C([—h,0]; H) which are
bounded in W. Following [31, Definition 1.1, p. 106] we call this property as “locally almost Lipschitz” on C.
It is also remarkable that in order to obtain strong solutions we need to assume an additional smoothness of
initial data in the right end point of the interval [—h, 0] only (see (21)). A similar effect was observed earlier
in [36,38] in the context of parabolic PDEs with discrete state-dependent delay.

We also note that under conditions of Corollary 2.6 with differentiable F' we have that solutions are C? on
the semi-axis Ry with values in H, and in C! on the extended semi-axis [—h, +00). Assuming the smoothness
of the initial data ¢ and some compatibility conditions we can show that the solutions are C?-smooth on
[—h, +00). More precisely, if we assume that

p e WS’H’L = 02([_h7 0]7 H) n 01([_}7" 0]7 D(Al/Q)) N O([_h7 0]7 D(A))7 (24)

then the solution u possesses the property in (23) with [—h, +00) instead of R if and only if this smoothness
property holds at time 0. The later property is obviously valid if and only if we have the following
compatibility condition

¢(0) + kp(0) + Ap(0) + F((0)) + M(¢) = 0. (25)
Moreover, one can see that the set
L= {p € Wy : psatisfies (25)} C W (26)

is forward invariant with respect to the flow Sy, i.e., Sy£ C L for all ¢ > 0. Thus the dynamics is defined in
a smother space. The set £ is an analog to the solution manifold used in [45] for the ODE case and in [38]
for the parabolic PDE case as a well-posedness class.

3. Asymptotic properties: dissipativity

Now we start to study the long-time dynamics of the system (S¢, W) generated by mild solutions to
problem (1). For this we need to impose additional hypotheses. In analogy with [7] and [8, Chapter 8]
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concerning the nonlinear (non-delayed) term F' we assume

(F3) The nonlinear term F : D(Az) — H (see (F2) above for notations) satisfies
(a) there are constants n € [0,1), ¢4, ¢5 > 0 such that

—(u, F(u)) <n HA%uH2 —cglly(u) +¢5, ueD (A%) ; (27)

(b) for every 77 > 0 there exists C5 > 0 such that

|2 gc;+ﬁ<HA%uH2+no(u)>, ueD(A%); (28)

(c) the non-conservative term F™ satisfies the subcritical linear growth condition, i.e., there exist
6> 0, cg, c7 > 0 such that

L2
| E*(u)||* < c6 + 7 HA%_(;UH for any u € D (A%) . (29)

More examples of F' will be given in Section 6.
As for the delay term, we concentrate on the case of discrete state-dependent delay and impose the
following hypothesis.

(M3) The nonlinear delay term M : W +— H has the form M (u;) = G(u(t — 7(u;))), where 7 maps W into
the interval [0, k] and G is a globally Lipschitz mapping from H into itself.

Remark 3.1. (1) Since the term M (u;) satisfying (M3) can be written in the form

M(up) = G(u(t — 7(ur))) = G (u(t) - /t u(s) ds) (30)

—7(ut)

for uy € W, we have that

I3l < 16O + Lo o] + [ ats)las).

where L¢ is the Lipschitz constant of the mapping G. This yields that

1M (ue)lI* < g0 + g1llu(®)]* + ga2(h) /HL ()] ds (31)

with go = 4||G(0)||%, g1 = 4L% and g2(h) = 2LZh. Thus (M3) implies (M2). To guarantee (M1) we need
to assume that 7 is locally Lipschitz on W:
(") = (") < Co 0! = #*lcy o + 19" — &Pl
for every o', 02 € W, |p’/lw < o, j = 1,2. Indeed, from (30) we have that
1M (ug) = M(u3)|| < Lellut (s = 7(uy)) = ul(s = 7(u))l| + Lellu' (s — 7(u3)) — u?(s — 7(u))|

< oLglr(ul) — T(u?)| + Le , IFaico] |ut(s 4 0) —u*(s + 0)]
cl—h,

VANRVAN

IN

(14 0Cy)La|ul — ullw

for all ul,u?2 € W, |[ullw <o, j=1,2.
(2) Instead of the structure presented in (M3) we can take a delay term of the form

M(ug) = Gr(u(t — mi(w))),
k=1
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or even consider an integral version of this sum. Moreover, instead of (M3) we can postulate the property
in (31) with the constants gg, g1 independent of h and go(h) — 0 as h — 0. In particular, we can include
into consideration velocity terms with a (distributed) state-dependent delay of the form

/ ' (0, u)u(t + 0) do,
—h

where 7 : [—h,0] x W — H is measurable in the first variable and globally Lipschitz with respect to the
second variable and satisfies appropriate properties. However, for the sake of transparency we do not
pursue these generalizations.

Our first step in the study of qualitative behavior of the system (S, W) is the following (ultimate)
dissipativity property.

Proposition 3.2. Let assumptions (Al), (F1), (F2), (F3), (M1) and (M3) be valid. Then for any ko there
exists ho = h(ko) > 0 such that for every (k,h) € [ko,+00) X (0, ho] the system (S¢, W) is dissipative,
i.e., there exists R > 0 such that for every o > 0 we can find t, > 0 such that

|Sielw < R for all ¢ € W, lolw <o, t>t,.

Moreover for every fized kg > 0 the dissipativity radius R is independent of k > ko and the delay time
h € (0, ho)]. Thus the dynamical system (S, W) is dissipative (uniformly for k > ko and h < hg).

Remark 3.3. (1) The dissipativity property can be written in the form
) 2
la(t)|2 + HAiu(t)H <R? forallt>t,

provided the initial function ¢ € W possesses the property |p|w < 0. We can also show in the standard
way (see, e.g., [4] or [42]) that there exists a bounded forward invariant absorbing set B in W which
belongs to the ball {¢ € W : |o|w < R} with the radius R independent of k € [ko, +00) and h € [0, ho].

(2) As we see in the proof below the restriction on the delay time h has the form h < Sko for some 8 > 0.
Thus increasing the low bound kg for the damping interval we can increase the corresponding admissible
interval for h. This fact is compatible with observation that large time lag may destabilize the system.
For instance, it is known from [14] that for the delayed 1D ODE

i(t) + ku(t) + au(t) +u(t —7) =0

with @ > 1 and 2a > k2 there exist 0 < 7. < 7* such that the zero solution is stable for all 7 < 7.
and unstable when 7 > 7*. This example also demonstrates the role of the large damping. Indeed, if
k? > 2a > 2, then (see [14]) the zero solution is stable for all 7 > 0. Thus large time delay requires large
damping coefficient to stabilize the system.

Proof. We use the Lyapunov method to get the result. The presence of the delay term M requires some
modifications of the standard functional V' usually used for second order systems (see, e.g., the proof of
Theorem 3.10 [7, pp. 43-46]).

We use the following functional

~ h t
V() = i, i)+, aw) + 5 [ [ ja@lrah ds

—S

Here £ is defined in (13) and the positive parameters v and p will be chosen later.

The main idea behind inclusion of an additional delay term in V is to find a compensator for M (u;). The
compensator is determined by the structure of the mapping M (see (30) and (31)). This idea was already
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applied in [8, p. 480] and [10] in the study of a flow-plate interaction model which contains a linear constant
delay term with the critical spatial regularity. The corresponding compensator has a different form in the
latter case and thus it is model-dependent.

One can see from (10) that there is 0 < 79 < 1 such that

1 , ~ . b
3 B(u(t),at)) — e < V(t) < 2E(u(t), a(t)) + u/ la(t — €)|Pde +c (32)
0
for every 0 < v < 79, where ¢ does not depend on k.

Let us consider the time derivative of V along a solution. One can easily check that

d . . . 1 2
(u(t), a(t) = a(®)|2 — k(u(t), a(t) - || A2u(®)|| = (u, F) = (u, M(u,)). (33)
Combining (33) with the energy relation in (12) and using the estimate k(u, @) < k2||a[|> + 3 |ul|? we get

d -~

dtV( ) < —(k =1+ k) —wla®)?* — (F*(ult) + M (ur), u(t))

. (iHUW +atuo)|| + P + <u,M<ut>>) -5 / " Jate - € Pae.

Using (29) we get
(= (o), 5] < GHIAEI + 2 IF* I < Skl + 228 + 27 a2 u ()2

Hence using the inequality |(M (u;),u(t))| < £k[a(t)]|* + 2|/ M (us)||* and also estimate (31) we obtain that

* C _ 29
—(F* (u(t)) + M (ur), u(t)) < kIIU( )1+ f [1 + (| A2 0u(t) | + [lu(t))| ; / la(t — €)|1%d¢,
where ¢y = 2max{cr; g + go,91} > 0 does not depend on k.

In a similar way (see (31)) we also have that
1 "
I + 1(u(t), M(u))| < gz(h)/o la(t — €)IPd € + Clgo, g1) (1 + [[u(®)]?).
The relations in (27) and (28) with small enough 77 > 0 yield
2
Clgo g) (1 + [lul®) = |Abu|” = (u, F(w) < =300 E(u, @) + [}l + o
for some a; > 0. Thus it follows from the relations above that

G700 < = (Gh=a@ ) =) O + § [1+ 14720l + o]

h
(BBt a(0) + o)+ |4+ (£ 49) a0 [t - 1P
As in [7, p. 45] using (28) we can conclude
2 1A 2=0u)|2 + u(t)]2] < yaoE(u(b), i(t)) + %b(%),

where b(s) is a non-decreasing function. Thus using (32) we arrive at the relation

L5 @) + a0V () < — (Zk (24 k%) — M) la(t)]|? + ~ [a + b(vk)}

dt
t [t (3+a) )] [ hie-oras (34)
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Take p = % and v = 4;’#, where 0 < o < 1 is chosen such that v < v for all ¥ > 0 (the bound ~, arises
n (32)). Assume also that h is such that

k vk 2
B i z <0.
yTShs 4ao+(k+7)gz(h)_0 (35)
Then (34) implies that
d . 1,1
— < a+ —bl — .
ZV(t) +yaoV (1) < v {a—&- 7kb(vk)} (36)

One can see there is o9 = og(kg) such that op < vk < /2 for all k > kg. Therefore from (36) we obtain
that

~ ~ 1 1-/1
V(1) < V(0)e 10! 4 — (1 — e71%0") {a + b()] , (37)
ao oo oo
provided
ko 1 2 1
- 24 Z4+2)<o.
4h+8ao+g2(h)<ko +2> <0 (38)

Here we used (35) and properties vk < %, v < % which follow from the choice of 4. One can see that there
exists f > 0 such that (38) holds when h < Sko. Under this condition relation (37) implies the desired
(uniform in k) dissipativity property’ and completes the proof of Proposition 3.2. O

4. Asymptotic properties: quasi-stability

In this section we show that the system (S;, W) generated by the delay equation in (1) possesses some
asymptotic compactness property which is called “quasi-stability” (see e.g., [8,9]) and means that any two
trajectories of the system are convergent modulo compact term. As it was already seen at the level of non-
delayed systems (see, e.g., [7-9] and the references therein) this property usually leads to several important
conclusions concerning global long-time dynamics of the system.

Quasi-stability requires additional hypotheses concerning the system. We assume

(M4) There exists § > 0 such that the delay term M satisfies subcritical local Lipschitz property i.e. for any
0 > 0 there exists L(p) > 0 such that for any ¢?, i = 1,2 such that ||¢|lw < o, one has

1M (") = M(*)]| < Lo) plnax 1AY272(01(8) = *(0))I- (39)

As in Remark 3.1 one can see that (39) holds for M given by (30) if we assume that

(") = 7(¢*)] < L (0) plnax 1AY272(01(8) — *(O))]I- (40)

Below we also distinguish the cases of critical and subcritical (non-delayed) nonlinearities F'. We introduce
the following hypothesis.

(F4) We assume that the nonlinear (non-delayed) mapping F : D(A%) — H satisfies one of the following
conditions:

5In fact for this property we only need that g2(h) — 0 as h — 0 in estimate (31).
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(a) either it is subcritical, i.e., there is positive 7 such that for any R > 0 there exists Lg(R) > 0 such
that

IF@!) = F(u?)]| < Le(R) || 427! - u?) <R ()

‘, Vul,u? € D (A%) , HA%M

(b) or else it is critical, i.e., (41) holds with n = 0, and the damping parameter k is large enough.

Theorem 4.1 (Quasi-Stability). Let assumptions (A1), (F1), (F2), (F4), (M1), (M2) and (M4) be in force.
Then there exist positive constants C1(R),\ and Co(R) such that for any two solutions u'(t) with initial
data ' and possessing the properties

. . 2
i ()| + HA%ul(t)H <R® forallt>—h, i=1,2, (42)
the following quasi-stability estimate holds:
2
it (6) = a2 + || 4% @' (6) - w20)
< Ci(R)e|p" — &3 + Co(R) [nax, |AM270 (ul () — u? (€)1 (43)

with some § > 0. In the critical case k > ko(R) for some ko(R) > 0.

We emphasize that Theorem 4.1 does not assume (F3) and (M3) and deals only with a pair of uniformly
bounded solutions. However, if the conditions in (F3) and (M3) are valid, then by Proposition 3.2 and
Remark 3.3(1) there exists a bounded forward invariant absorbing set. Thus under the conditions of
Proposition 3.2 we can apply Theorem 4.1 on this set. Namely, we have the following assertion.

Corollary 4.2. Let conditions (A1), (F1)—(F4) and (M3) with (40) be in force. Let By be a forward invariant
absorbing set for (S, W) such that By C {¢ € W : [olw < R}. Then there exist C;(R) >0 and A > 0 such
that (43) holds for any pair of solutions u'(t) and u?(t) starting from By.

Remark 4.3. Taking in (43) maximum over the interval [t — h, t] yields

50" = Su®lw < Cu(R)hee™1p" — oPlw + Co(R)h max. pw (u; —w3), 12 h (44)

s€|0,t
where uw () = {maxee[,h’o] ||A%_‘5g0(9)||} is a compact semi-norm®on W. The quasi-stability property in
(44) has the structure which is different from the standard form (see, e.g., [7-9]) of quasi-stability inequalities
for (non-delayed) second order in time equations. However as we will see below the consequences in our case
are the same as in the case of standard quasi-stable systems. We also note that quasi-stability properties in

different forms were important in many situations in the long-time dynamics studies (see, e.g., the discussion
in [8, Remark 7.9.3]).

We split the proof of Theorem 4.1 in two cases and start with the simplest one.

Proof of Theorem 4.1 in the subcritical case

We rely on the mild solutions form (8) of the problem and follow the line of argument given in
[8, pp. 479-480] with modifications necessary for the case of state-dependent delay force M. We note that

6 We recall that a semi-norm fr\l/(z) on a Banach space X is said to be compact iff for any bounded set B C X there exists a

m

sequence {z"} C B such that n(z™ — z*) — 0 as m, k — oco.
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similar to [7, pp. 58-62] we can also use here the multipliers method. However for the completeness we
demonstrate here the constant variation method. The multipliers method is presented below in the case of
the critical force F'.

Let us consider two solutions U! = (u!,4') and U? = (u?,4?) of (1), (5) possessing (42). Using (8) and
exponential stability of the semigroup e~ in the space Y = D(Al/ 2) x H we have that

~ ¢~
U (1) = U2(O)lly < e MU (0) = U*(0)]ly +/ MWL) = N(U2) |y ds, ¢ >0, (45)
0
with X > 0, where N is given by (7). Since
IN(U;) = NUly < IF(u(8)) = F(u®@0)] + 1M (ug) = M(u7)],
using properties (39) and (41) we obtain
INW =Ny < OR) max 41w (s +0) — (s +0))
for some 0 > 0. Thus (45) yields
Ut (1) = U(O)lly < e MU (0) = U(0)]ly + C(R)I(t,u" —u®), t>0, (46)
where
t o~
I(t,2z) = / e M=) max HAéf‘sz(s —|—€)H ds with z(s) = u'(s) — u?(s).
0 Le[—h,0]
Now we split I(t,2) as I(t,z) = I'(t, z) + I*(t, 2), where
oo ) b~
I'(t,2) = / e M=) max HA5_5z(s—|—Z)H ds < CR’h|z0|W/ e =9 s
0 £e[—h,0] 0

ZO|W . 6_/\t(e>\h - 1)}\'—1

= CRrn

and

t -
I*(t,2) = / e M) max HAéiJZ(S—‘rf)H ds
h Le[—h,0]

t o~
< / e M79) max
0 £€[0,t]

Thus (46) yields the desired estimate in (43) for the subcritical nonlinearity F'.

Aéf‘;z({)H ds=(1- eth)Xfl - max
€€[0,¢]

A%*%(g)H :

Proof of Theorem 4.1 in the critical case with large damping

We follow the line of the arguments of [7, p. 85, Theorem 3.58].

I — 4?2 solves the equation

Let u! and u? be solutions satisfying (42). Then z = u
E(t) + Az(t) + k2(t) = —F1 2(t) — My 2(t) (47)

with
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We multiply the last equation by £(¢) and integrate over [t, T:

T T T
E.(T) — E.(t) + k / J4(s)|2 ds = — / (Fya(s), 2(s)) ds — / (M, 5(s), 2(s)) ds. (48)

Here we denote E.(t) = 3(||2(t)]? + | A% 2(t)]2).
One can check that there is constant Cr > 0 such that

1 2 Cgr,.
(Fia(®),2(0)] < e[| Atz + =Rl ve>o.
Similarly, using assumption (M4), we have

0120, 2(0)] < e [[43-7(e+.0)[ + Calao).

Hence, we get from (48)

T

T T 9 9
EZ(T)—EZ(t)—Hc/ Hz(s)||2ds‘§5/ HAaz(s)H ds+ [ max HAz s+9)” ds
t t t 0€[=h,0]

en <1+ 1) / s ds (49)

for every € > 0. Below we choose (assume that) k is big enough to satisfy (see the last term in (49))
1 k
Crll+-|< 57 for all k& > kg. (50)
€

This choice is made for the simplification of the estimates only (the final choice of kg to be done after the
choice of €). Now we multiply (47) by z(¢) and integrate over [0, 7], using integration by parts. This yields

(z(T),z<T))—(2(0),z(o))—/0T5(s)||2ds+/0THA%z(s)H2 ds—f—k/OT(é(s),z(s))ds

Sy

Hence, using the definition of E, after (48) and the relation

k/0T<z<s> 2(s))ds < = /n )2 ds+—/ ()12 ds,

é/oT HA%Z(S>H2 ds < 2/; I12(s)]1” ds + C(E-(0) + E=(T))

2 — (T — (T 2
derC'R/ ||z(s)||2ds+C’R/ max HAZ 3+9)H ds.
0 0 0€[—h,0]

we obtain that

— T 2
+C’R(k)/0 0611[1?}30]”142 s—|—9)H ds. (51)

From (49) with ¢ = 0 and using (50) we get
3k T T, 9 T
E.(0) SEZ(T)—F—/ ||Z(s)||2ds—|—5/ HA?Z(S)H ds+/ max HA? s—&—@)H ds.  (52)
2 0 0 0 0€[—h,0]

It follows from (49) with help of integration over [0, 7] (we use (50) again) that

T T N 2 T 2
TEZ(T)S/O Ez(s)ds—i—eT/O HAzz(s)H ds—l—T/O een[lfmifo]HAz s+9)H ds. (53)
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Another consequence of (49) for ¢ = 0, using (50), is

g (T T, | 2 T 2
5/ |2(s)||* ds < E.(0) +5/ HAEZ(S)H ds—l—/ max HA2 8+9)H ds. (54)
0 0 0

0e[—h,0]

Considering the sum of (54) and (51) and assuming that & > 8 we can get

k:/OT |,é(s)||2ds—|—/OT E.(s)ds < C(E.(0) + E.(T)) +4E/OT HA%Z(S)HZ ds

+Chi /OT ema})fo] HA2 (s +9)H2 ds. (55)

Now we add to the both sides of (55) the value 3TE.(T) and use (53)
T 1 /T 1 T 2
k/ ||,é(s)||2ds+§/ E.(s)ds + 5TE.(T) < 45(1+T)/ Hmz(s)” ds + C(E.(0) + E.(T))
0 0 0

T 2
+CR,k(1+T)/0 s HAz s+0)H ds. (56)

Now we evaluate E.(0) + E.(T). Using (52) we have that

B0+ B0 <2800+ % [ oPas e [ |atzo) ast [ s 45520 40| s

Substituting this into (56) we get that

1 (T 1 T LT 2
5/ E.(s) ds + (2T—20> B.(T) < cok/ Hz’(s)||2ds+cle(1+T)/ |a%z(s)|| as
0 0

— T 2
+CR(k)(1+T)/O eemax HA2 s+9)H ds.

Assuming that

1
5T —20>1, (57)

we get

1 T T . 2
EZ(T)+§/ E.(s)ds < 015(1+T)/ | A2zs)] " as
0 0
— T 2 T
+ (1+T)OR(I<:)/ max HAz s+9)H ds+¢56k/ 12(s)||? ds. (58)
0 06[*]7,70] 0

To estimate the last term in (58) we use (49) with ¢ = 0 (remind (50)) to get

E [T T 9 T

7/ ||z'(s)\|2dsSEZ(O)fEZ(T)Jrs/ HAEZ(S)H ds+ [ max HAz +9)H ds.

2 0 0 0€[—h,0]

So, we can rewrite (58

/ E.(s)ds < 2¢0(E.(0) — Eo(T)) + Cye (1+T) /OTHAéz(s)HQ ds

— T 2
+(1+T)C’R(k)/0 i HA2 s+9)H ds. (59)

Since ||AZz(s)||2 < 2E.(s), the choice of small £ > 0 to satisfy

Cie(147T) < i (60)
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simplifies (59) as follows

N T
PT) < G(E-(0) = B(T) + 1+ T) Calh) [ ma |43 55(s +0)] " as.

The last step is

o —

< .

E.(T) < 1+C~0Ez(0)+CR(T, k)/o gema}zio]HAz s+9)H ds
Since v = 1%3
0

T 2
E.(T)<e ™TE,(0) + C’R,T’k/ max HA2 (s + 9)” ds. (61)
0 0€[—h,0]

We mention that the parameters were chosen in the following order. First we choose T' > h to satisfy (57),
next we choose small € > 0 to satisfy (60) and finally we choose k big enough to satisfy (50).

Now using the same step by step procedure (mT — (m + 1)T) as in the Remark 3.30 [7] we can derive
the conclusion in (43) from the relation in (61) written on the interval [mT, (m + 1)T]. Thus the proof of
Theorem 4.1 is complete.

5. Global and exponential attractor

In this section relying on Proposition 3.2 and Theorem 4.1 we establish the existence of a global attractor
and study its properties. We recall (see, e.g., [1,4,42]) that a global attractor of the dynamical system (S, W)
is defined as a bounded closed set 2 C W which is invariant (S;2 = 2 for all ¢ > 0) and uniformly attracts
all other bounded sets:

tlim sup{disty (Siy,A): y € B} =0 for any bounded set B in W.

We note (see, e.g., [42]) that the global attractor consists of bounded full trajectories. In the case of the delay
system (S;, W) a full trajectory can be described as a function u from C(R, D(A'/?))NC*(R, H) possessing
the property Sius = usys for all s € R, > 0.

The main consequence of dissipativity and quasi-stability given by Proposition 3.2 and Theorem 4.1 is
the following theorem.

Theorem 5.1 (Global Attractor). Let assumptions (Al) and (F1)—(F4) be in force. Assume that the term
M (uy) has form (30) with 7 : W+ [0, h] possessing property (40). Then the dynamical system (Sg, W) gener-
ated by (1) possesses the compact global attractor 2 of finite fractal dimension.” Moreover, for any full trajec-
tory {u(t) : t € R} such that u, € A for all t € R we have that

i€ Loo(R,H), @€ Loo(R,D(AY?)  we Lo(R,D(A)) (62)

and
()| + [|AY2a(t)| + || Au(t)|| < R., YteR. (63)
Under the hypotheses of Corollary 2.6 we also have that A is a bounded set in Wy, and lies in L, where

Wem and L are given by (24) and (26).

7 For the definition and some properties of the fractal dimension, see, e.g., [4] or [42].
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Proof. Since the system (S, W) is dissipative (see Proposition 3.2), for the existence of a compact global
attractor we need to prove that (S;, W) is asymptotically smooth.®For this we can use the Ceron-Lopes
type criteria (see, e.g., [22] or [7]) which in fact states (see [7, p. 19, Corollary 2.7]) that the quasi-stability
estimate in (44) implies that (S, W) is an asymptotically smooth dynamical system. Thus the existence of
a compact global attractor is established.

To get the finite dimensionality of the attractor we apply the same idea as in [7,8] which is originated
from the Mélek—Necas method of “short” trajectories (see [29] and also [30] where it was later developed as
the method of I-trajectories). However we use a different choice of the space of “short” (or I-) trajectories
which is motivated by the delay structure of the model and the choice of the phase space.

As in [7,8] we rely on the abstract result [7, Theorem 2.15, p. 23] on finite dimensionality of bounded
closed sets in a Banach space which are invariant with respect to a Lipschitz mapping possessing some
squeezing property. We consider the auxiliary space

W(—h,T)=C ([—h,T};D (A%)) NCY[~h,T);H), T >0,
endowed with the norm

_ frd A1/2 ? *
lelw (—n,1) Serfn_ah%ﬂll @(S)II+S€I[{ah>§T]I\¢(S)II

We note that in the case T'= 0 we have W(—h,0) = W. Thus W(—h,T) is the space of extensions with the

same smoothness of functions from W on the interval [—h,T].

Let B be a set in the phase space W. We denote by B the set of functions u € W(—h,T) which solve
(1) with initial data wye(—p,0) = 1 € B. We interpret Br as a set of “pieces” of trajectories starting from B.
We also define the shift (along solutions to (1)) operator Ry : By +— W(—h,T) by the formula

(Rrw)(t) =uw(T +1t), te[-hT), (64)
where u is the solution to (1) with initial data from B.

The following lemma states that the mapping Ry satisfies some contractive property modulo compact
terms.

Lemma 5.2. Let B be a forward invariant set for the dynamical system (Sy, W) such that B € {¢ : |plw < R}
for some R. Let T > h. Then Br is forward invariant with respect to the shift operator Ry and

|Rre' = Re@?lw—nr) < et(R)e M Mol — 2|y ) + c2(R) [n(9" — %) + n(Rrp' — Rpe?)] (65)

for every ', 0* € By, where n(p) = sup,c(o 1y |A2=0p(s)|| is a compact seminorm (see the footnote
in Remark 4.3 for the definition) on the space W (—h,T).

Proof. The invariance of B is obvious due to the construction. The relation in (65) follows from Theorem 4.1.
The compactness of the seminorm 7 is implied by the infinite dimensional version of Arzela—Ascoli theorem,
see the Appendix in [8], for instance. [

We choose T > h such that ny = c1(R)e =" < 1 and take B = A, where 2 is the global attractor.
It is clear that the set 2y is strictly invariant. Therefore we can apply [7, Theorem 2.15, p. 23] to get the
finite dimensionality of the set 27 in W (—h,T). The final step is to consider the restriction mapping

rn {u(t), te [=h,T]Y — {u(t), t € [—h,0]}

8According to [22] this means that for any bounded forward invariant set B in W there exists a compact set K in W which
attracts uniformly S;B as t — +o0.
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which is obviously Lipschitz continuous from W (—h,T) into W. Since 7,2 = 2 and Lipschitz mappings
do not increase fractal dimension of a set, we conclude that

dim} 2 < dim} " A < o0,

To prove the regularity properties in (62) and (63) we can use Theorem 4.1 and the same idea as in [7,8],
see also [9]. Indeed, let v = {u(t) : ¢t € R} be a full trajectory of the system, i.e., (Sius)(0) = u(t+s+40) for
6 € [—h,0]. Assume that u; € A for all ¢ € R. Consider the difference of this trajectory and its small shift
ve ={u(t +¢): t € R} and apply the inequality in (43) with starting point at s € R:

L 2
et +2) = al®)]2 + || A% (u(t + 2) - u(t))|
< iR Vusye = usliy + Co(R) max 427 (u(€ + ) — u(©)
€ls,

Since us € A for all s € R, in the limit s — —oo we obtain that

it +2) — () + || A it +2) — (o) < CalR)_swp AVl +€) = )

Now in the same way as in [7, pp. 102, 103] or in [8, pp. 386, 387] we can conclude that

6% [u(t o) —alt)|P + | A} u(t +e) - u(t))HQ]
is uniformly bounded in € € (0, 1]. This implies (passing with the limit € — 0) that
lia)|* + [ a¥a)|* < g

Now using Eq. (1) we conclude that ||Au(t)||> < Cr. This gives (62) and (63).

The final statement follows from Corollary 2.6 and Remark 2.7.

This completes the proof of Theorem 5.1. O

Now we present a result on the existence of exponential attractors. We recall the following definition.
Definition 5.3 (Cf. [17]). A compact set e, C W is said to be (generalized) exponential attractor for the
dynamical system (S, W) iff Uexp is a positively invariant set whose fractal dimension is finite (in some

extended space W D W) and for every bounded set D C W there exist positive constants Cp = C(|D|w)
and v such that

dw {S:D | Nexp} = sup distw (S, Aexp) < Cp -7, ¢ >0. (66)
zeD

This concept has been introduced in [17] in the case when W and W are the same. For details concerning
exponential attractors we refer to [17] and also to recent survey [32]. We only mention that (i) a global
attractor can be non-exponential and (ii) an exponential attractor is not unique and contains the global
attractor.

Using the quasi-stability estimate and ideas presented in [7,8] we can construct exponential attractors for
the system considered.

Theorem 5.4. Let the hypotheses of Theorem 5.1 be in force. Then the dynamical system (S¢, W) possesses
a (generalized) exponential attractor whose dimension is finite in the space

W = C([~h,0]; D(AZ°)) N C ([~h,0): H_s), V& >0,

where H_g, s > 0, denotes the closure of H with respect to the norm ||[A7° -||.
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Proof. Let B be a forward invariant bounded absorbing set for (S, W) which exists due to Proposition 3.2
and Remark 3.3(1). Then we apply Lemma 5.2 to obtain (discrete) quasi-stability property for the shift
mapping Ry defined in (64) on Br. We choose T > h in (65) such that np = ¢;(R)e T ~") < 1 and
apply [7, Corollary 2.23] which gives us that the mapping Ry possesses an exponential attractor Ap. Next,
using (1) we can see that ||i(t)]|—2 < Cgr for all ¢ € Ry. This allows us to show that S;p is a Holder
continuous in ¢ in the space W, i.e.,

|St, 0 — Syl < Cplty —t2|7,  ti,ta €Ry, y € B, (67)

for some positive v > 0. Now we consider the restriction map 7, (see above) and the sets r, Ar = A C
W, Aexp = U{StA : t € [0,T]} C W. It is clear that Ay, is forward invariant. Since r, is Lipschitz from
W (—h,T) into W, A is finite-dimensional. Therefore the property in (67) implies that ex, has a finite fractal
dimension in W. As in [7, p. 123] we can see that ey, is an exponentially attracting set for (S, W). This
completes the proof of Theorem 5.4. [

We note that there is a technology which allows to prove the existence of an exponential attractor which has
finite dimension in the pivot space W. This is the so-called method of transitivity of exponential attraction
suggested in [18], see also the survey [32]. However it seems an application of this method in our situation
requires additional hypotheses related with smoothness and subcriticality of the nonlinear terms. We do not
pursue these issues here and postpone the corresponding analysis for future.

In conclusion of this section we note that using quasi-stability property (43) we can also establish some
other asymptotic properties of the system (S;, W). For instance, in the same way as it is done in [7,8] we
can suggest criteria which guarantee the existence of finite number of determining functionals. We also note
that at this moment we do not know how to avoid the assumption of large damping in the case of critical
nonlinearities F' in Theorem 5.4.

6. Examples
In this section we discuss several possible applications of the results above.

6.1. Plate models

Our main applications are related to nonlinear plate models.
Let £2 C R? be a bounded smooth domain. In the space H = L({2) we consider the following problem

Oru(t, ) + kOpu(t, ©) + A%u(t,x) + F(u(t,z)) + au(t — 1[ug], x) =0, x€ 2, t >0, (68a)
u = Z—Z =0 on 02, u(f) = (0) for 0 € [—h,0]. (68b)

We assume that 7 is a continuous mapping from C(—h, 0; H2(£2)) NC*(—h,0; Ly(£2)) into the interval [0, h].
As it was already mentioned in Introduction the delay term in (68a) models the reaction of foundation.
The model in (68) can be written in the abstract form (1) with A = A? defined on the domain
D(A) = H* N HZ(£2). Here and below H*({2) is the Sobolev space of the order s and H§(2) is the closure
of C§°(£2) in H*(£2). In this case we have D(A%) = Hg*(02) for 0 < s <1/2, s #1/8,3/8.
As the simplest example of delay terms satisfying all hypotheses in (M1)—(M4) we can consider

7u] = g(Qlu)), (69)

where g is a smooth mapping from R into [0, k] and

N
Qlut] = Z ciu(t — o;,a;).
i=1
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Here ¢; € R,0; € [0,h],a; € {2 are arbitrary elements. We could also consider the term @ with the Stieltjes
integral over delay interval [—h,0] instead of the sum. Another possibility is to consider combination of
averages like

N
Qlui] = ; /Q u(t — o4, )& (x)de, (70)

where o; € [0,h] and {¢;} are arbitrary functions from Lo ({2). We can also consider linear combinations of
these QQ’s and also their powers and products. The corresponding calculations are simple and related to the
fact that for every s > 1/4 the space D(A®) is an algebra belonging to C/(£2).

As for nonlinearities F' satisfying requirements (F1)—(F4) they are the same as in [7,8]. Therefore delay
perturbations of the models considered in these sources in the case of linear damping provides us with a
series of examples. Here we only mention three of them.

Kirchhoff model: In this case F'(u) = f(u) — h(z), where h € Ly(£2), and

f € Lip,,.(R) satisfies liminf f(s)s™! = oc. (71)

|s]—o0
This is a subcritical case (see assumption (F4), (41) with > 0). The growth condition in (71) is needed to
satisfy (28) in (F3).
The following two examples are critical (assumption (F4), (41) with n = 0).
Von Karman model: In this model (see, e.g., [8,27]) F(u) = —[u,v(u) + Fo] — h(x), where Fy € H*(2)
and h € Ly(f2) are given functions,

2 2 2 2
[u,v] = 0z u- Op, v+ 07, u - 03 v — 2+ Op 2yt - Oy 2y,

and the function v(u) satisfies the equations:

ov(u)
on

For details concerning properties (F1)—(F4) we refer to [7, Chapter 6] and [8, Chapters 4,9].

A%v(u) + [u,u] =0 in £, =v(u) =0 on 9.

Berger model: In this case F(u) = II’(u), where

II(u) = g [/ﬂ |Vu2dac]2 - %/ﬂ \Vu|?dx — /Qu(x)h(x)dx,

where k > 0 and p € R are parameters, h € L2(§2). The analysis presented in [4, Chapter 4] and [7, Chapter 7]
yields the assumptions in (F1)—(F4).

6.2. Wave model

Let 2 C R",n = 2,3, be a bounded domain with a sufficiently smooth boundary I". The exterior normal
on I is denoted by v. We consider the following wave equation
O — Au+ kOpu + f(u) +u(t —7[ug]) =0 in Q =[0,00) x 2
subject to boundary condition either of Dirichlet type
u=0 on X =[0,00)x I, (72)
or else of Robin type
Ou+u=0 onlX. (73)
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The initial conditions are given by u(6) = ¢(0), 0 € [—h,0]. In this case H = Ly(f2) and A is —A with
either the Dirichlet (72) or the Robin (73) boundary conditions. So D(A'Y?) is either H}(£2) or H'(£2) in
this case.

We assume that k is a positive parameter and the function f € C?(R) satisfies the following polynomial
growth condition: there exists a positive constant M > 0 such that

()] < M(1+ |s]77),

where ¢ < 2 when n = 3 and ¢ < co when n = 2. Moreover, we assume the same lower growth condition
s (71). One can see that the hypotheses in (F1)—(F4) are satisfied (see [7, Chapter 5] for the detailed
discussion). Moreover we have the subcritical case if n =2 or n = 3 and ¢ < 2. The case n =3 and ¢ =2 is
critical.
As for the delay term wu(t — 7[us]) we can assume that, as in the plate models above, 7[u;] has the form
(69) with Q[u] given by (70). Moreover, instead of the averaging we can consider an arbitrary family of
linear functionals on H'~%(£2) for some § > 0, i.e., we can take

N
Qlud] = eilifu(t — ov)],
i=1
where ¢; € R,0; € [0,h] and I; € [H'~2(02)]’ are arbitrary elements.
6.3. Ordinary differential equations

The results above can be also applied in the ODE case when H = R", A is a symmetric n X n matrix A
and the nonlinear mappings F' : R — R™ M : C([—h,0];R™) — R" obey appropriate requirements. The
space of initial states becomes W = C1([—h,0];R™) (cf. (3)) and hence possesses a linear structure.

Thus in contrast with the solution manifold method suggested in [45] (see also [23]) our approach does
not assume any nonlinear compatibility conditions and provides us with a well-posedness result in a linear
phase space. In addition, both approaches produce the same class of solutions after some time. To illustrate
this effect we consider the same second order delay ODE as it was used in [45] as a motivating example:

U=, v+ kv = f(cs(u) —w), t>0, (74a)
u(0) = ©°(6), v(0) = ' (0) for 6 € [—h,0]. (74b)
Here k,c and w are positive reals, s is a state-dependent delay (implicitly defined in [45]), f : R — R is
a smooth function (for more details see [45, pp. 61-64]). In the model w is a position of a moving object

and v is its velocity. The result of [45] applied to this system says that if the initial data (¢©%; ') belong to
C([—h,0]; R?) and satisfy the compatibility condition

2°0) =9 (0),  @1(0) +ke' (0) = fles(¢") —w), (75)
then (74) generates (local) C'-semiflow on the solution manifold
M = {(¢%¢") € C*([~h,0];R?) : (75) is satisfied} .

Application of our Theorem 2.4 to the same system (written as a second order equation with respect to u)
says that if the initial data (°; p!) belong to C1([—h,0]; R) x C([—h, 0]; R) and are compatible in the natural
way (as a position and the velocity): ©°(0) = () for all § € [—h,0], then under the same conditions as
in [45] we can avoid the (nonlinear) compatibility in (75) and construct a local semiflow in the space

W= {(@% ") : @°(0) = '(0) for all § € [—h,0], ©° € C*([~h,0];R)}.
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Thus we obtain another well-posedness class for the model in (74). Moreover, by Corollary 2.6 the
corresponding solution (u(t);v(t)) is C! for ¢+ > 0 and satisfies (75) for ¢ > h. Hence after time t > h
solutions arrive at the same solution manifold M as in [45]. Similarly, starting at M after time ¢ > h we
obviously arrive at w (see the first equation in (74a)). Thus both classes of initial functions W and M lead
to exactly the same class of solutions for ¢ > h.

As a bottom line we emphasize that in the case of the second order delay equations, the natural (linear)
“position—velocity” compatibility provides us with an alternative point of view on dynamics and leads to a
simpler well-posedness argument comparing to the method of a solution manifold presented in [45].
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