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STUDIA MATHEMATICA

DYNAMIC PARAMETER ESTIMATION BASED

ON MINIMUM CROSS-ENTROPY METHOD

FOR COMBINING INFORMATION SOURCES*

Vladimı́ra Sečkárová

When combining information sources, e.g. measuring devices or experts, we
deal with two problems: which combining method to choose (linear combina-
tion, geometric mean) and how to measure the reliability of the sources, i.e.
how to assign the weights to them. Inspired by [5] we introduce a method
which overcomes such shortcomings. Proposed method, based on minimiza-
tion of the Kullback-Leibler divergence with specific constraints, directly
combines data, i.e. probability vectors, thus no additional step to obtain
the weights is needed. The detailed description of the proposed method
and a comparison with recently introduced dynamic diffusion estimation [2],
which heavily depends on the determination of the weights, form the core
of this contribution.

1. Introduction

Statisticians, who would like to use methods for combining information sources
providing data about a biological process for example, face several issues: which
method to use; how do I know which source is reliable. To solve these issues and
to improve the performance of combining methods, especially in the dynamic
scenarios, the observations are treated as random variables. Unfortunately, the
underlying probability distribution is often fixed and we might get misleading
results if the probability distribution does not fit the data well. In this paper, we
simply assume each source provides a probability vector, assigning each possible
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outcome of random variable a probability (number of outcomes is considered to
be finite).

Inspired by the work [5] we will search for the combination of given probability
vectors as the minimizer of the expected loss function [1], where the loss function
should reflect our demand on working with probability vectors. The Kullback-
Leibler (KL) divergence [4], a non-symmetric function measuring the ‘distance’
of one probability vector from another, is a reasonable choice.

The form of the minimizer, based on minimum cross-entropy principle with
constraints, then lets us combine given probability vectors without additional
determination of weights. Detailed description of the proposed method is given
in Section 2.

The proposed method is then compared to the recently introduced dynamic
diffusion estimation (DDE). Although DDE assumes each source computes its
estimate based on data from cooperating sources, this approach can be viewed
from the centralized point of view – all data are combined by combining element
not included in the set of sources. In Section 3. we show that the proposed method
and DDE coincide if the random variables in DDE are categorically distributed.
Since the weights in DDE are not specified, the proposed method can be exploited
as an estimation method for the parameter of the categorical distribution. The
differences between results given by considered methods are demonstrated on the
example in Section 4.. The basics of DDE and useful formulas for the proposed
method can be found in Section 6. – Appendix.

2. Minimum cross-entropy based method for combining sources

Let us consider the following scenario (see [5]): let us have s sources, each pro-
viding observations as n-dimensional probability vectors. Thus from jth source

we obtain a probability vector pj = (pj1, . . . , pjn), where

n
∑

i=1

pji = 1 and pji ≥ 0

for i = 1, . . . , n. The advantage of this approach is that no particular probability
distribution is assumed.

We denote the combination of p1, . . . , ps, an unknown probability vector,
by q, treat it as a random vector and search for its optimal (explained later)
estimate q̂. To obtain q̂ we minimize the conditional expected value of the KL-
divergence (KLD) [4] with respect to the conditional pdf π(q|p1, . . . , ps) condi-
tioned on p1, . . . , ps

Eπ(q|p1,...,ps)KLD(q||q̂).

The minimizing element of this expected loss [1] is the conditional expected value
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of q with respect to the conditional pdf π(q|p1, . . . , ps) conditioned on p1, . . . , ps

(1) q̂ = Eπ(q|p1,...,ps)[q|p1, . . . , ps].

Since the estimate (1) heavily depends on the form of the unknown conditional
pdf π(q|p1, . . . , ps) we dedicate the next section to the search of this pdf.

2.1. Search for the conditional pdf π(q|p1, . . . , ps)
In this section we determine the conditional pdf π(q|p1, . . . , ps). We specify what
the appropriate conditional pdf has to satisfy and how to choose one pdf among
all appropriate pdfs.

2.1.1. Constraints on the conditional pdf π(q|p1, . . . , ps)
We again exploit work [5], where the constraints were represented by the expected
KL-divergences from pj to q with respect to the conditional pdf π(q, p1, . . . , ps).
These expectations were bounded, unfortunately the bounds were not determined
exactly. Thus the resulting combination was dependent on their values. To
overcome this shortcoming we consider the equalities among the expected values
of the KL-divergence which no longer allow any freedom in constraints:

Eπ(q|p1,...,ps)[KLD(ps||q)|p1, . . . , ps] = Eπ(q|p1,...,ps)[KLD(pj||q)|p1, . . . , ps]

j = 1, . . . , s− 1.(2)

Pdfs satisfying these constraints control the relation between provided probability
vectors and the unknown vector q simultaneously among all sources.

2.1.2. Choice of the prior distribution
Choice of the prior pdf π0(q) is based on the fact that we would like to model
the probability vector q. Thus the prior pdf π0(q) will be the pdf of the Dirichlet
distribution.

2.1.3. Form of the conditional pdf π(q|p1, . . . , ps)
To obtain π(q|p1, . . . , ps) we exploit minimum cross-entropy principle [6] (instead
of maximum entropy principle, [5]). We choose conditional pdf π(q|p1, . . . , ps)
that solves the following problem:

min
π(q|p1,...,ps)

KLD(π(q|p1, . . . , ps)||π0(q))(3)

with respect to the constraints (2),

where π0(q) is the pdf of the Dirichlet distribution with parameters ν01, . . . , ν0n.
Minimizing conditional pdf is the pdf of the Dirichlet distribution for any

Dirichlet prior pdf, see (12). Thus it is satisfactory to perform the minimization
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over the set of all admissible νi (generally: νi > 0, i = 1, . . . , n). Values of
the parameters ν1, . . . , νn for nonlinear optimization task (3) can be determined
numerically using e.g. Matlab.

Unlike in [5], where the maximum entropy principle was considered, minimum
cross-entropy allows us to change the prior values ν01, . . . , ν0n with each time step,
which makes the proposed method useful for dynamic scenarios.

The relation to the prior value of the parameters ν01, . . . , ν0n is expressed by
the following formula (see (12)):

(4) νi = ν0i +

s
∑

j=1

λj(pji − psi), i = 1, . . . , n,

where the Lagrange multipliers λj , see Section 6.2., can be also obtained numer-
ically.

2.2. The combination of p1, . . . , ps represented by the estimate q̂

The estimate q̂ in (1) representing the final weighted combination of p1, . . . , ps has,
based on the results of Section 2.1. and properties of the Dirichlet distribution,
the following form:

(5) q̂i =
νi

∑n
i=1 νi

=
ν0i +

∑s
j=1 λj(pji − psi)
∑n

i=1 ν0i
, i = 1, . . . , n,

because
n
∑

i=1

νi =
n
∑

i=1

ν0i, see (4).

Obtained estimate q̂ of q is optimal in the sense that the conditional pdf
leading to q̂ solves (3).

3. Dynamic diffusion estimation for categorical distribution

Setup considered in Section 2. coincides with dynamic diffusion estimation (DDE)
(see [2] and Section 6.1.) when the underlying probability distribution of the
random variable Y is categorical with n possible categories. In such case the
parameter θ is an n-dimensional vector of probabilities P (X = i) = qi, i =
1, . . . , n. Conjugate prior distribution is the Dirichlet distribution. Thus the
prior and the posterior pdf are both pdfs of the Dirichlet distribution, prior
pdf with hyperparameters ν01, . . . , ν0n and posterior pdf with hyperparameters
ν1, . . . , νn.

Suppose we obtain from each node the point estimate (Pj(X = 1), . . . , Pj(X =
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n)) = (pj1, . . . , pjn) of q, j = 1, . . . , s. Then the estimate q̂ of q has the form (11):

(6) q̂∗ =
s

∑

j=1

ajpj ,

where the weights aj are unspecified, often chosen as uniform: aj = 1/s, j =
1, . . . , s.

Our suggestion is to exploit the setup in Section 2. and the combination (5),
since it can be easily transformed into the form (6):

(7) p̂i =

s
∑

j=1

ν0i
spji

+ λj

(

1− psi
pji

)

∑n
i=1 ν0i

pji,

when pji 6= 0, i = 1, . . . , n, j = 1, . . . , s.
In both Sections 2. and 3. the time index can be easily added to (5) and (6).

4. Example – Proposed method vs. DDE in combining proba-

bility vectors

This example compares two previously described methods, the proposed method
for combining probability vectors (see Section 2.) and the method for combining
point estimates (see Sections 6.1. and 3.).

Suppose we have 3 sources/nodes (s = 3) providing 3-dimensional probability
vectors (n = 3). Values of probability vectors/point estimates at time instant
t = 1, . . . , 50 were obtained from the ‘true’ probability vector (q1 = 0.56, q2 =
0.22, q3 = 0.22) by adding small noise ǫ (|ǫ| < 0.1) to the probabilities q1 and
q2. Resulting combinations (5) and (6) (with time independent uniform weights:
aj = 1/s, j = 1, . . . , s) are shown in the Fig.1 on the left.

The results in case when the third source was corrupted, meaning his ‘true’
probability vector was (q1 = 0.04, q2 = 0.35, q3 = 0.61), are shown in the Fig.1
on the right.

5. Conclusion and future work

The presented method based on minimum cross-entropy principle and specific
constraints brings a simplification into combining information sources. A lot of
combining methods, treating data as random variables, consider particular proba-
bility distribution. We work with probability vectors (discrete case, finite number
of outcomes) with no assumption on the underlying probability distribution. An-
other positive contribution of the proposed method is that the final combination
is obtained without additional step to compute weights for the sources within dy-
namic setting. Our suggestion is to use the proposed method in the combine step



186 V. Sečkárová

Figure 1: Combinations obtained by the proposed method and by DDE with
uniform weights. On the left: no corrupted sources. On the right: the third
source is corrupted.

of the recently introduced dynamic diffusion estimation in distributed networks
[2].

In future work we would like to inspect the relation between p̂ and ν in (5)
for possible exact form of the weights after the values of ν will be determined
numerically.

6. Appendix

6.1. Dynamic diffusion estimation (DDE)
Here we list basic ideas and formulas for the dynamic diffusion estimation in
distributed networks. For more details see [2].

Let y be an observed variable, θ be an unknown fixed parameter. DDE
considers pdfs of probability distributions belonging to the exponential family:

(8) f(y|θ) = h(y)g(θ) exp[η(θ)T (y)],

where h(y) is known function, g(θ) is known normalizing function, η(θ) is natural
parameter and T (y) is the sufficient statistic.

To easily incorporate data obtained at each time step the sequential Bayes
rule is exploited. A prior pdf, conjugate to (8), is

(9) π(θ|ξ, ω) = q(ξ, ω)g(θ)ω exp[η(θ)ξ],

where ξ and ω are the hyperparameters.
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Then, the following steps, forming the base of DDE, are performed: adapt
step and/or combine step. In adapt step the hyperparameters of jth source are
updated by new set of data {yk}, where k ∈ Nj and Nj is the set of indices of
other nodes cooperating with j including j. In combine step the nodes’ updated
hyperparameters and/or point estimates θ̂k are combined.

6.1.1. Combine step when point estimates of θ̂ are given

DDE assumes decentralized scenario, where jth node updates its point estimate
using point estimates of its neighbours (see [3]):

(10) θ̂∗j =
∑

k∈Nj

ajkθ̂k,

where ajk are weights assigned by jth source to its neighbours.

Since the method proposed in Section 2. assumes centralized scenario, we
assume a collecting element (a device or another expert - not included in the
original set of nodes) collects all point estimates and combines them. In case we
have s nodes the formula (10) looks as follows

(11) θ̂∗j =

s
∑

k=1

akθ̂k,

where aj,t are weights assigned by the collecting element to the nodes j = 1, . . . , s.

6.2. Minimizer of the constrained minimum cross-entropy

The Lagrangian of the optimization task (3) is
∫

Q

π(q|p1, . . . , ps) ln
π(q|p1, . . . , ps)

1
B(ν01,...,ν0n)

∏n
i=1 q

ν0i−1
i

∏n
i=1 q

∑s
j=1

λj(pji−psi)

i

dq

+

s
∑

j=1

λj (H(pj)−H(ps))

± ln
1

B(ν01 +
∑

j λj(pji − psi), . . . , ν0n +
∑

j λj(pji − psi))

=

∫

Q

π(q|p1, . . . , ps)

× ln
π(q|p1, . . . , ps)

1
B(ν01+

∑
j λj(pji−psi),...,ν0n+

∑
j λj(pji−psi))

∏n
i=1 q

ν0i+
∑s

j=1
λj(pji−psi)−1

i

dq
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+ ln

1
B(ν01+

∑
j λj(pji−psi),...,ν0n+

∑
j λj(pji−psi))

1
B(ν01,...,ν0n)

+
s

∑

j=1

λj (H(pj)−H(ps))

where λj, j = 1 . . . , s, are the Lagrange multipliers and H(.) is the entropy.
Its minimizer

π̂(q|p1, . . . , ps) =
1

B(ν01 +
∑

j λj(pji − psi), . . . , ν0n +
∑

j λj(pji − psi))

×
n
∏

i=1

q
ν0i+

∑s
j=1

λj(pji−psi)−1

i(12)

is the pdf of the Dirichlet distribution with parameters (4).

REFERENCES

[1] J. M. Bernardo. Expected information as expected utility. Ann. Stat., 7
(1979), 686–690.
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