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Abstract

In this contribution we focus on the finite collection of sources, pro-
viding their opinions about a hidden (stochastic) phenomenon, that is
not directly observable. The assumption on obtaining opinions yields a
decision making process commonly referred to as opinion pooling. Due to
the complexity of the space of possible decisions we consider the probabil-
ity distributions over this set rather than single values, exploited before,
e.g., in [2]. The final decision (result of pooling) is then a combination
of probability distributions provided by sources. Here, we in particular
exploit the combination introduced in [4], assuming each source is coop-
erating and willing to share its opinion with others, but selfishly requires
the combination to be close to its opinion. The summary of basic steps is
given below.

Kullback-Leibler divergence based combination of sources’ opin-
ions

Let us have s <∞ sources providing discrete probability distributions
represented by probability mass functions (pmf) p1, . . . ,ps:

pj = (pj1, . . . , pjn) : pji > 0,

n∑
i=1

pji = 1, n <∞, j = 1, . . . , s. (1)

By exploiting theory of the Bayesian decision making [3] we search for
their combination as the estimator q̂ of an unknown pmf q minimizing
the expected Kullback-Leibler divergence [1]:

Eπ(q|p1,...,ps)KLD(q||q̂). (2)

The minimizer of (2) is

q̂ = Eπ(q|p1,...,ps)[q|p1, . . . ,ps]. (3)

To obtain the conditional expectation in (3) the conditional probabil-
ity density function (pdf) π(q|p1, . . . ,ps) has to be specified. We formal-
ize the notion of selfishness among sources by considering the following
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equality constraints:

Eπ(q|p1,...,ps)[KLD(pj ||q)|p1, . . . ,ps] = Eπ(q|p1,...,ps)[KLD(ps||q)|p1, . . . ,ps],
(4)

j = 1, . . . , s−1. Let S denote the set of all pdfs π(q|p1, . . . ,ps) satisfying
(4). We now exploit the minimum cross-entropy principle [5] and choose
the conditional pdf π(q|p1, . . . ,ps) ∈ S that solves:

min
π(q|p1,...,ps)∈S

KLD(π(q|p1, . . . ,ps)||π0(q)), (5)

where π0(q) denotes the prior guess on the conditional pdf π(q|p1, . . . ,ps).

We choose the pdf of the Dirichlet distribution with parameters
ν01, . . . , ν0n as the prior guess π0(q) for its computationally advantageous
properties. Then, the conditional pdf π̂(q|p1, . . . ,ps) minimizing (5) is
also the pdf of the Dirichlet distribution Dir(ν̂1, . . . , ν̂n). The values of
its parameters ν̂1, . . . , ν̂n are expressed by the following formula:

ν̂i = ν0i +

s∑
j=1

λj(pji − psi), i = 1, . . . , n, (6)

where λj are the Lagrange multipliers resulting from minimization of (5)
with respect to (s− 1) equations in (4), and the combination (3) is

q̂i =
ν0i∑n

k=1
ν0k

+

s∑
j=1

λj∑n

k=1
ν0k

(pji − psi), i = 1, . . . , n. (7)

Although the combination has been introduced earlier in [4], its prop-
erties have not received much attention. We next discuss the choice of
prior parameters ν01, . . . , ν0n and the changes in the value of the combi-
nation when we deal with duplicate opinions.

Properties of the combination

It is somewhat surprising that the equation (6) combines simultane-
ously both, the parameters of the Dirichlet distribution and pmfs p1, . . . ,ps.
Pmfs provided by sources can be viewed as individual guess for ν1, . . . , νn
when

∑n

k=1
νk =

∑n

k=1
ν0k = 1. By plugging this relation into (7) we

obtain

q̂i = p0i +

s−1∑
j=1

λjpji +

(
−
s−1∑
j=1

λj

)
psi, (8)

where prior pmf (p01, . . . , p0n), generally p0i = ν0i∑n

k=1
ν0k

, coincides with

(ν01, . . . , ν0n), a part of q̂ induced by prior pdf prior pdf π0(q).

Remind that we focus on combining sources’ (experts’) opinions, where
the prior information about the studied problem may not be available. For
the prior guess on (p01, . . . , p0n) one should then exploit provided pmfs
p1, . . . ,ps. Based on the additive nature of the derived optimal estimator
q̂ and the considered relation between (ν01, . . . , ν0n) and (p01, . . . , p0n) in
(8), we focus on the weighted linear combination of p1, . . . ,ps, e.g., arith-
metic mean. Preferences can be assigned by delegated person or depend



on other available information, e.g., sources’ prior information about pa-
rameters of the Dirichlet distribution. The constraints (equality of the
expected KL-divergences) should then be modified accordingly.

We next study how the value of the combination (7) changes with
the duplicate data. Let us now have s + 1 pmfs p1, . . . ,ps,ps+1 and for
simplicity assume that ps+1,i = ps,i, i = 1, . . . , n. Let λ1, . . . , λs be the
Lagrange multipliers related to s equality constraints in (4). Then, for
a fixed prior pmf p0, the combination of p1, . . . ,ps,ps+1 coincides with
combination evaluated with omission of ps+1 and unchanged p0:

q̂i = p0i +

s−1∑
j=1

λj(pji − psi) + λs(psi − psi). (9)

The additivity property of combination (7) implies that if other s1 sources
gave the same pmf pk, then the coefficient of each source equals λk

s1
.

It may seem strange that repeated sources’ opinion are not taken more
“seriously”, with a higher weight. This is consequence of the fact that in-
dividual sources are not qualified by a weight reflecting their reliability.
When such a weighting will be introduced, the coincidence of opinions can
be taken into account and distinguished from cheating by repetitions of
the same opinion.

Conclusion and future work

In this contribution we focused on approach to combining sources’
opinions described in [4]. This combination is of a conservative type
and qualifies all repetitions as “cheating”, prevents overweighing of such
source. The analogue of (7), where the prior guess p0 as well as the con-
straints (4) are influenced by preferences among sources, is of interest in
the future.
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