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Abstract. In this work we focus on opinion pooling in the finite group
of sources introduced in [1]. This approach, heavily exploiting Kullback-
Leibler divergence (also known as cross-entropy), allows us to combine
sources’ opinions given in probabilistic form, i.e. represented by the prob-
ability mass function (pmf). However, this approach assumes that sources
are equally reliable with no preferences on, e.g., importance of a par-
ticular source. The discussion about the influence of the combination
by preferences among sources (represented by weights) and numerical
demonstration of the derived theory on an illustrative example form the
core of this contribution.
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1 Introduction

In this work we focus on decision making in the finite group (set) of sources,
providing their opinions about the underlying (studied) problem to each other.
The problem relates to a hidden (stochastic) phenomenon, that is not directly
observable, but about which an opinion can be formulated. Examples of such phe-
nomena are anticipated elections results, companies contracts and many others.
The assumption on obtaining opinions yields a specific decision making process
commonly known as opinion pooling. Due to the complexity of the space of
possible decisions we consider the probability distributions over this set rather
than single values. The final decision (result of pooling) is then a combination
of probability distributions provided by sources.

Combining probabilistic information within a group of sources has been of
interest for a long time, see, e.g., [2]. Different approaches consider different lev-
els of cooperation among sources and different exploitations of their proposed
combination. One can assume the sources are represented as a group of individ-
uals “who must act together as a team and reach consensus” [3]. Or, one can
consider that sources are “perfectly coherent, rational as decision makers and
cooperate in agreeing to adopt a group utility function” [4].

Many probability combining approaches exploit information theory, namely,
information divergences such as the Kullback-Leibler (KL) divergence [5] (the
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term cross-entropy is also used). Based on the order of its arguments we arrive
at two basic classes - linear pools and log-linear pools, see, e.g., [6].

Linear pools consider, e.g., in [7], where “expert opinion is represented as a
probability and associated with a confidence level that expresses the conviction
of the corresponding expert on its own judgement”.

The examples of KL-divergence based log-linear pools include, e.g., estima-
tion [8], or determination of weights for prior distributions pooling [9].

Here, we follow the idea of combination derived under certain assumptions on
cooperation between sources [10]. In particular, we focus on approach recently
introduced in [1], which heavily exploits cross-entropy and yields a linear combi-
nation of discrete probability distribution. The formula for this combination was
derived under the wise-selfish cooperation scenario assumption. Wise source is
willing to cooperate and share its information with other sources in the group,
but selfishly requires the result of combining to be “close” in the sense of bounded
KL-divergence. There were no assumptions on preferences among sources reflect-
ing their reliability or importance.

In this contribution we study how the values of this opinion pool changes
when preferences about sources reliability or importance are known prior to
combining. First, we briefly summarize the combining introduced in [1]. Then,
we discuss the results when weights are included. To demonstrate the proposed
idea we give an illustrative example.

2 Opinion Pooling of Discrete Probability Distributions
Based on Cross-Entropy

As considered in [1], let us have a finite number of sources, j = 1, . . . , s < ∞.
Assume also that each source provides its opinion in the probabilistic form: as a
probability mass function (pmf) assigning probability to each of n < ∞ outcomes
of stochastic phenomenon:

pj = (pj1, . . . , pjn) : pji > 0,
n∑

i=1

pji = 1, j = 1, . . . , s. (1)

Let q represent the combination of p1, . . . ,ps. To obtain q̂ , the estimator of
q , we search for the minimizer of the expected loss [11]. In particular, we search
for the minimizer of the conditional expected value of the KL-divergence (KLD)
with respect to the conditional probability density function (pdf) π(q |p1, . . . ,ps)
conditioned on p1, . . . ,ps

Eπ(q |p1,...,ps)
KLD(q ||q̂) = Eπ(q |p1,...,ps)

n∑

i=1

qi ln
qi

q̂i
. (2)

The minimizer is the conditional expected value of q with respect to
π(q |p1, . . . ,ps)

q̂ = Eπ(q |p1,...,ps)
[q |p1, . . . ,ps]. (3)
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The estimator (3) heavily depends on the form of the unknown conditional
pdf π(q |p1, . . . ,ps). To obtain this pdf we introduce the notion of the source’s
selfishness represented by the constraints on the expected KL-divergences from
pj to q with respect to the conditional pdf π(q |p1, . . . ,ps). Moreover, we assume
the sources consider the following equalities among the expected values of the
KL-divergence:

Eπ(q |p1,...,ps)
[KLD(ps||q)|p1, . . . ,ps] = Eπ(q |p1,...,ps)

[KLD(pj ||q)|p1, . . . ,ps],
(4)

j = 1, . . . , s − 1.
We exploit the minimum cross-entropy principle [12] and choose the condi-

tional pdf π(q |p1, . . . ,ps) that solves:

min
π(q |p1,...,ps)

KLD(π(q |p1, . . . ,ps)||π0(q)), (5)

where π0(q) is the prior guess on the conditional pdf π(q |p1, . . . ,ps).
The prior pdf is chosen as the pdf of the Dirichlet distribution for its compu-

tationally advantageous properties. The KL-divergence in (5) and the constraints
in (4) can be then rewritten as follows

ln
Γ (

∑n
i=1 ν0i)

Γ (
∑n

i=1 ν0i)
+

n∑

i=1

ln
Γ (ν0i)
Γ (νi)

+
n∑

k=1

(νk − ν0k)

(
ψ(νk) − ψ(

n∑

l=1

νl)

)
(6)

and

−H(pj)+H(ps) =
n∑

i=1

(pji−psi)

(
ψ(νi) − ψ

(
n∑

i=1

νi

))
, j = 1, . . . , s−1, (7)

where Γ (.) is the Gamma function, ψ(.) is the digamma function [13] and
ν01, . . . , ν0n is the prior guess on parameters of the Dirichlet distribution. It
can be shown that the conditional pdf π(q |p1, . . . ,ps) minimizing (5) is also the
pdf of the Dirichlet distribution. Thus, it is satisfactory to perform the minimiza-
tion in the set of possible values of parameters ν1, . . . , νn instead of searching
in the set of all possible probability distributions. The values of parameters, for
which the value (5) is minimal, are denoted by ν̂1, . . . , ν̂n.

The values of the parameters ν̂1, . . . , ν̂n are theoretically expressed by the
following formula:

ν̂i = ν0i +
s∑

j=1

λj(pji − psi), i = 1, . . . , n, (8)

where λj are the Lagrange multipliers resulting from minimization of (5) with
respect to (s − 1) equations in (4).

The final weighted combination of p1, . . . ,ps, represented by q̂ in (3), has
then the following form:

q̂i =
ν̂i∑n

k=1 ν̂k
=

ν0i∑n
k=1 ν0k

+

∑s
j=1 λj(pji − psi)∑n

k=1 ν0k
, i = 1, . . . , n, (9)
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since, based on (8), it holds that
∑n

k=1 ν̂k =
∑n

k=1 ν0k.
To perform the numerical part of the optimization we exploited Matlab.

3 Cross-Entropy Based Opinion Pooling Influenced
by Preferences Among Sources

The opinion pooling of sources’ p1, . . . ,ps described above assumed no prefer-
ences among sources. If the preferences, represented by the weights w1, . . . , ws

about sources 1, . . . , s, are available, they can influence the prior information
about (ν01, . . . , ν0n) and selfishness restrictions in (4). Both cases are discussed
below.

For the guess on values of (ν01, . . . , ν0n) it is optional to exploit the infor-
mation known prior to combining. Since we focus on combining opinions about
hidden (stochastic) phenomena with unavailable prior knowledge, we suggest to
use the weighted arithmetic mean of p1, . . . ,ps as the prior guess:

ν0i =
s∑

j=1

wjpji. (10)

Since
n∑

i=1

ν0i =
n∑

i=1

s∑

j=1

wjpji =
s∑

j=1

wj , (11)

we obtain that the part of combination (9) representing the part induced by the
prior π0(q) is

p0i =
ν0i∑n

k=1 ν0k
=

s∑

j=1

wj∑s
l=1 wl

pji. (12)

It is somewhat surprising that the Eq. (9) combines simultaneously both, the
parameters of the Dirichlet distribution and pmfs p1, . . . ,ps. Provided pmfs can
be viewed as individual guess for (ν01, . . . , ν0n) when

∑n
i=1 ν0i = 1 (yielding∑s

j=1 wj = 1).
Besides the prior values ν01, . . . , ν0n, it is also desirable that the constraints

(4) will be affected by these weights. In particular, we approach the combination
to more important sources by requiring

wjE
[
KLD(pj ||q)|p1, . . . ,ps

]
= wsE [KLD(ps||q)|p1, . . . ,ps] , (13)

j = 1, . . . , s − 1, yielding the following weighted counterpart of constraints (7):

− wjH(pj) + wsH(ps) =
n∑

i=1

(pjiwj − psiws)

[
ψ(νi) − ψ

(
n∑

k=1

νk

)]
. (14)

Then, the final combination q̂ in (9) is

q̂i = p0i +
s−1∑

j=1

λj∑s
l=1 wl

(wjpji − wspsi), i = 1, . . . , n. (15)
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with p0i given in (12).
In the presented discussion, we have assumed that the elements of pmf pro-

vided by source j, j = 1, . . . , s, have the same weights wji = const, i = 1, . . . , n.
If needed, also an element-dependent version wji, i = 1, . . . , n can be developed.

Let us now consider the following two sets of weights
s∑

j=1

wj = d and
s∑

j=1

w∗
j =

s∑

j=1

kwj = d∗. (16)

According to (10), the prior guesses on the parameters of the Dirichlet dis-
tribution look as follows:

for w1, . . . , ws : ν0i =
∑s

j=1 wjpji,

for w∗
1 , . . . , w

∗
s : ν∗

0i =
∑s

j=1 w∗
j pji.

From the combination q̂ derived for weights w∗

q̂i =
s∑

j=1

kwjpji∑s
l=1 kwl

+
s−1∑

j=1

λj∑s
l=1 kwl

(kwjpji − kwspsi), (17)

where k = d∗
d , it might seem that both optimal estimators, based on w and

w∗, coincide. Recall the KL-divergence in (6) leading to q̂ by minimization
with respect to ν1, . . . , νn. Due to non-linearity of this function in prior guess
ν01, . . . , ν0n, we can not expect the combinations based on w1, . . . , ws and w∗

1 =
kw1, . . . , w

∗
s = kws to be equal.

In the following illustrative example we demonstrate the change in values of
q̂ for different set of weights w1, . . . , ws.

4 Illustrative Example

Let us have 2 sources (s = 2) which provided the following pmfs (n = 3)

p1 = [0.75, 0.05, 0.2],
p2 = [0.3, 0.1, 0.6].

Consider the following weights:

– first set of weights: arithmetic mean (equal weights summing to one),
– second set of weights: first source fixed w1 = 0.1, weight of the second source

is rising,
– third set of weights: weights of both sources are rising (w2 = 2 × w1).

Values of the combination q̂ of p1 and p2 in the last instant, see Fig. 1, are
given in Table 1.

In Fig. 1 we see that the resulting combination stabilizes quickly and with
rising values of the weights (second set and third set of weights) the combination
of p1 and p2 based on (15) tends towards the arithmetic mean of p1 and p2.
This might be a consequence of the considered selfish scenario – the equality in
the constraints in (14).
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Table 1. Values of the combination q̂ = (q̂1, q̂2, q̂3) for different sets of weights (value
given for the last considered value of weights).

Arithmetic mean: (0.525, 0.075, 0.4)

First set of weights: (0.403, 0.089, 0.508)

Second set of weights (w1 = 0.1, w2 = 27.2): (0.519, 0.076, 0.405)

Third set of weights (w1 = 13.6, w2 = 27.2): (0.522, 0.075, 0.403)
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Fig. 1. Resulting combination of p1 and p2 for different sets of weights. First set of
weights: equal weights summing to one. Second set of weights: fixed weight of the first
source (w1 = 0.1), weight of the second source rising. Third set of weights: w2 = 2×w1,
both weights rising.

5 Conclusion and Future Work

We focused on combining opinions provided in the probabilistic form based on
the cross-entropy introduced in [1]. We discussed theoretically and numerically
the change in the value of the combination when preferences among sources, rep-
resented by the weights, were included. The results of the illustrative example
showed that, with rising values of the weights, the considered combining app-
roach is stable and tends towards the arithmetic mean. Thus, the properties of
suggested weighted version of the combination have to be properly investigated.

The further research includes development of another way how to involve
preferences among sources, e.g., by allowing inequality in constraints (14).
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