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On-line Model Structure Selection for Estimation of

Plasma Boundary in a Tokamak

Vít �kvára1, Václav �mídl1, Jakub Urban2

1Institute of Information Theory and Automation, Prague, Czech Republic,
2Institute of Plasma Physics, Prague, Czech Republic,

Abstract. Control of the plasma �eld in the tokamak requires reliable estimation of the plasma
boundary. The plasma boundary is given by a complex mathematical model and the only
available measurements are responses of induction coils around the plasma. For the purpose
of boundary estimation the model can be reduced to simple linear regression with potentially
in�nitely many elements. The number of elements must be selected manually and this choice
signi�cantly in�uences the resulting shape. In this paper, we investigate the use of formal
model structure estimation techniques for the problem. Speci�cally, we formulate a sparse least
squares estimator using the automatic relevance principle. The resulting algorithm is a repetitive
evaluation of the least squares problem which could be computed in real time. Performance of
the resulting algorithm is illustrated on simulated data and evaluated with respect to a more
detailed and computationally costly model FREEBIE.

1. Introduction
Tokamak is one the most promising concepts for future thermonuclear fusion reactors. In a
tokamak, hot plasma is con�ned by a combination of strong toroidal and poloidal magnetic
�elds. The almost negligible weight of the plasma dictates that magnetohydrodynamic (MHD)
equilibrium, i.e. a force-free state, describes its macroscopic evolution. MHD decsription includes
also the plasma boundary (the so-called last closed �ux surface), which must be controlled during
a tokamak discharge because of performance and safety reasons. Real-time feedback control is
necessary since the plasma behaviour cannot be reliably predicted, particularly because the
equilibrium is unstable. Such a feedback control requires the plasma boundary as an input in
real-time. See e.g. [1] or [2] for more details.

One of the possibilities for real-time plasma shape reconstruction is o�ered by magnetic sensors
near the plasma boundary. However, full reconstruction of the equilibrium magnetic �eld (which
includes the plasma shape) is a complex task due to non-linear behavior of the plasma. In [3],
it was shown that the plasma boundary can be modeled by a linear combination of its base
functions. Since the base functions are known, the estimation problem can be formulated as a
simple linear regression with unknown number of regressors. Our task is to select the relevant
subset of base functions of the model.

Selection of the structure of the linear model is a well studied problem in statistics and strong
point of the Bayesian hypothesis testing. The conventional least squares problem is equivalent to
maximum likelihood estimation of the linear Gaussian model. Selection of structure of this model
is a conventional problem requiring to formalize two steps: i) to choose prior distribution of the
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Figure 1. Tokamak section schema with measuring and shaping coils. B probe measures local
magnetic �eld size, �ux loop is a coil measuring magnetic �ux ψ and ΩCk

is a plasma shaping
coil. Di�erent contours important for plasma boundary reconstruction are denoted. Limiter is
the inner surface of tokamak chamber, Ωp is the plasma itself, delimited by dashed line. In the
bottom of plasma we can observe an x-point, which is crucial for ensuring plasma stability. From
[3].

parameters, and ii) to evaluate likelihoods corresponding to structures consisting of all signi�cant
combinations of regressors whose supply grows exponentially with the number of candidates.

A range of techniques arise by combination of di�erent options for each step. This step is very
important since the choice of a non-informative prior is inappropriate as it yields posterior Bayes
factors dependent on an arbitrary multiplicative constant [4]. Many possibilities, including ridge
regression, mixture priors, or g priors were tried, see review in [5] . Once the prior is chosen,
many algorithms searching the space of solution are available using e.g. stochastic search [6],
dynamic programming [7], MCMC approach [8] or variational approaches [9, 10].

In this paper, we are interested in estimation of the structure in real time for the purpose
of tokamak control. Therefore, we seek an approach with simple implementation. One such
possibility is the automatic relevance determination principle [11] which uses a hierarchical
prior to suppress the regressors that are redundant. This technique uses the Variational Bayes
approximation [12] which can be easily extended to dynamical systems [13].

The paper is organized as follows. In the second Section we introduce model of the plasma
boundary is introduced in the form of linear regression. A model of Bayesian regularization of
the linear regression model is introduced in the third Section and its Variational Bayes solution
is presented. Experimental validation of the approach on simulated data from a real tokamak
are presented in the fourth Section.

2. Model of plasma Boundary
Feedback control of plasma in a tokamak requires on-line reconstruction of the plasma boundary.
The quality of the reconstruction is highly signi�cant for tokamak operation safety and
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performance. Two di�erent kinds of measurements, which are typically available on a tokamak,
are considered here to determine the shape: magnetic coils measuring local magnetic �eld B and
�ux loops measuring the poloidal magnetic �ux ψ.

Following [3], we will formulate the model in the standard cylindric coordinates (r, φ, z) that
are used in tokamak geometry description. Using the assumption of symmetry of plasma in
toroidal direction of plasma chamber, we omit φ. Then, we carry out a transformation from
(r, z) to toroidal coordinates (ζ, η) ∈ R+ × 〈0, 2π) around a pole F0 = (r0, z0), given by [14]

r =
r0 sinh ζ

cosh ζ − cos η
, (1)

z = z0 +
r0 sin η

cosh ζ − cos η
. (2)

Now let us assume that we have three sets of measurements available:

(i) Nf measurements of magnetic �ux in coordinates xfi = (rfi , z
f
i ), ψmeasi ≈ ψ(xfi ),

(ii) Ns measurements of magnetic �ux gradient between two points x1i , x
2
i , δiψ

meas = ψ(x1i ) −
ψ(x2i ),

(iii) NB measurements of magnetic �eld in points xBi and directions di, B
meas
i ≈ B(xBi )di.

Next, we utilize the following decomposition of the �ux estimate ψ̂(ζ, η) into a system of toroidal
harmonics

ψ̂ = ψ̂ext + ψ̂int, (3)

ψ̂ext(ζ, η) =
r0 sinh ζ√

cosh ζ − cos η
×{

Mea∑
n=0

aenQ
1
n−1/2(cosh ζ) cos(nη) +

Meb∑
n=1

benQ
1
n−1/2(cosh ζ) sin(nη)

}
,

(4)

ψ̂int(ζ, η) =
r0 sinh ζ√

cosh ζ − cos η
×{

Mia∑
n=0

ainP
1
n−1/2(cosh ζ) cos(nη) +

Mib∑
n=1

binP
1
n−1/2(cosh ζ) sin(nη)

}
.

(5)

Functions P 1
n−1/2 andQ

1
n−1/2are the associated Legendre functions of the �rst and second kind,

of degree one and half integer order [14], that are called toroidal harmonics when evaluated at
cosh ζ. To carry out the decomposition, one must choose the basis functions degrees appropriately
by de�ning integers Mia,Mib,Mea,Meb. Numerical stability of the �nal solution is highly
dependent on this setting. Furthermore, complete decomposition is solved by determining a
vector u of unknown decomposition coe�cients in (4), (5), given by

θ = (ae0, . . . , a
e
Mea

, be1, . . . , b
e
Meb

, ai0, . . . , a
i
Mia

, bi1, . . . , b
i
Mib

). (6)

This is done by minimizing cost function

J(θ) =

Nf∑
i=1

(ψ̂i(θ)− ψ̃measi )2

σ2f
+

Ns∑
i=1

(δiψ̂(θ)− δiψ̃meas)2
σ2s

+

NB∑
i=1

(B̂i(θ)− B̃meas
i )2

σ2B
. (7)

Here, B̂ is determined fromψ̂ using

B =
1

r
(−∂zψ, ∂rψ) , (8)
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where σ2f , σ
2
s and σ

2
B are known variances of the measurement errors on the corresponding coils.

Quantities ψ̃measi , δiψ̃
meas and B̃meas

i are computed from the measurements described above
by subtracting the contribution of individual poloidal �eld coils. Vector θ can be utilized to
reconstruct ψ in every point of coordinate system (r, z). Plasma boundary is identi�ed as largest
closed isoline of ψ (see Fig. 1).

Minimalization of (7) translates into equation

diag(w)ỹ(ψ̃meas, B̃meas)T = diag(w)Ã(ψ̂, B̂)θ + e, (9)

where ỹ(ψ̃meas, B̃meas)T ∈ RN , (N = Nf +Ns+NB) are measurements extracted from individual
coils,

w = (σ−1f , · · · , σ−1f︸ ︷︷ ︸
Nf

, σ−1s , · · · , σ−1s︸ ︷︷ ︸
Ns

, σ−1B , · · · , σ−1B︸ ︷︷ ︸
NB

) (10)

is a vector of precisions of coils and diag(.) is a diagonal matrix with its argument on the main

diagonal. Design matrix Ã(ψ̂, B̂) ∈ RN×M , (M = Mea+Meb+Mia+Mib) comprises of evaluation
of toroidal harmonics (4) and (5) in coordinates given by position of the measurement coils in
chosen coordinate system, e ∈ RN is the white noise with precision equal to β−1. For further
use, we rewrite equation (9) into a concise form

y = Aθ + e. (11)

Because it was shown that precision of �t measured by MSE criterion does not translate
directly into quality of �nal plasma boundary estimate, we shall use a di�erent metric to
assess it. We choose the Hausdor� distance with L2 norm [15], which is for O = {o1, ..., ok},
P = {p1, ..., pl}, oi, pi ∈ Rm, ∀i de�ned as

DH(O,P ) = max

(
max
o ∈O

min
p∈P
‖o− p‖2,max

p∈P
min
o ∈O

‖o− p‖2
)
, (12)

where ‖.‖2 is L2 norm de�ned on Rm. Further in the text, this metric is used to evaluate and
compare output of the classical and regularized solution of the boundary reconstruction problem
and a simulation.

It has been shown that the order of decomposition into toroidal harmonics signi�cantly
in�uences the quality of plasma boundary reconstruction. Furthermore, tested data showed that
the best approach may not always be to estimate as many coe�cients of the toroidal harmonics
decomposition as possible. Also, the results of estimation are sensitive to the number of external
and internal toroidal harmonics in a di�erent way. We seek an optimal selection of the relevant
elements of the model (11).

3. Bayesian Model Structure Identi�cation
In this chapter, we will introduce theoretical principles of regularization, used to solve least
square problem outlined in previous chapter. The conventional least squares formulation 11
corresponds to maximum likelihood estimation of likelihood function

p(y|A, θ, β) = N (y|Aθ, β−1I). (13)

where β is a precision parameter of the model error. The likelihood model alone cannot decide
which structure of the model is relevant. This can be achieved by Bayesian treatment with
carefully chosen prior distribution on unknown parameters [16].
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3.1. Hierarchical prior - unknown prior variance
Hierarchical priors are a commonly used tool to achieve model structure selection. In this text,
we use the automatic relevance determination mechanism [11] which is based on hierarchical
prior of zero mean Gaussian with unknown variance. Speci�cally, we assume that the elements
of vector θ are apriori independent with each vector having its own prior variance. Formally, we
de�ne

p(θ|α) = N (0, α−1), (14)

α = diag(α1, α2, · · · , αM ), (15)

p(αi) = G(a0, b0), (16)

p(β) = G(c0, d0), (17)

where diag(.) is a diagonal matrix with elements of the argument vector on its diagonal.
Joint distribution of the likelihood (13) and the prior (14)�(16) is

p(y, θ, α, β|A) = p(y|A, θ, β)p(θ|α)

M∏
i=1

p(αi)p(β). (18)

The aim is to obtain posterior distribution of all unknown parameters, i.e. θ, α, β using the
Bayes rule

p(θ, α, β|y,A) =
p(y, θ, α, β|A)´

p(y, θ, α, β|A)dθdαdβ
. (19)

Evaluation of the exact formula (19) is analytically intractable, therefore, we seek only aproximate
marginals of the posterior distribution using Varitional Bayes. In further text, we drop A from
all the conditional probabilities, as it is known and not a subject of estimation.

3.2. Variational Bayes Posterior
The Variational Bayes approximation is a speci�c form of the general divergence minimization
framework [12]. It is based on the following theorem that provides conditions for analytical
solution of a speci�c form of approximation.

Theorem 1. Let f (θ|y) be the posterior distribution of multivariate parameter, θ = [θT1 , θ
T
2 ]T ,

and p̆ (θ|y) be an approximate distribution restricted to the set of conditionally independent
distributions:

p̆ (θ|y) = p̆ (θ1, θ2|y) = p̆ (θ1|y) p̆ (θ2|y) . (20)

Any minimum of the Kullback-Leibler divergence from p̆ (·) to exact solution p (·)

KL(p̆ (θ|y) ||p (θ|y)) =

ˆ
p̆ (θ|y) ln

p̆ (θ|y)

f (θ|y)
dθ, (21)

is achieved when p̆ (·) = p̃ (·) where

p̃ (θi|y) ∝ exp
(
Ep̃(θ/i|y) {ln (p (θ, y))}

)
, i = 1, 2. (22)

Here θ/i denotes the complement of θi in θ. We will refer to p̃ (θi|y) (22) as the VB-marginals.
Here, Ef(θ) {g(θ)} denotes expected value of function g(θ) with respect to distribution p(θ).
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Theorem 1 provides a powerful tool for approximation of joint pdfs in separable form [12]. A
solution satisfying conditions (22) is typically found using an iterative algorithm.

The Variational Bayes method will be applied for the following conditional independence
condition:

p(θ, α, β|y) = p(θ|y)p(α|y)p(β|y),

yileding conditions of optimality (22) in the form

p(θ|y) ∝ exp
(
Ep̃(α|y)p̃(β|y) {ln (p (θ, α, β, y))}

)
, (23)

and equivalently for p̃(α|y) and p̃(β|y). The functional forms of (23) are recognized to be of well
known types

p̃(αi|y) = G(aαi, bαi),

p̃(β|y) = G(c, d),

p̃(θ|y) = N (θ̂, S),

with shaping parameters

aαi = a0i +
1

2
, bαi = b0i +

1

2
θ̂2i . (24)

c = c0 +
N

2
, d = d0 +

1

2
yT y − yTAθ̂ +

1

2
θ̂TATAθ̂ (25)

θ̂ = β̂SAT y, S = (α̂+ βATA)−1 (26)

The required moments of these distributions are:

α̂i =
aαi
bαi

, β̂ =
c

d

θ̂2i = Sii + θ̂i
2
, θ̂θT = θ̂θ̂T + S

The �nal estimation algorithm is described in Algorithm 1.

Algorithm 1 Iterative algorithm for structure selection of least squares model.

O�-line:

• select prior parameters a0i, b0i, c0, d0.

• select the number of iterations imax, set iteration counter i = 0.

On-line:

• Initiate p(θ|y, x) by ordinary least squares solution: θ̂(0) = (ATA)−1AT y, S(0) =
(y−Aθ̂(0))T (y−Aθ̂(0))T

M−(N+1) (ATA)−1

• For i from 1 to imax

� update shaping parameters of α, using (24),
� update shaping parameters of β, using (25),
� update shaping parameters of θ,using (26),

• Report �nal estimate θ̂(imax) and compute plasma reconstruction
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4. Experimental Validation
4.1. Tokamak COMPASS and data from a validated numerical model
Tokamak COMPASS is in operation in IPP CAS CR in Prague. On COMPASS, the process of
plasma reconstruction through decomposition into a series of toroidal harmonics is implemented
in VacTH code [17]. VacTH uses data measured on di�erent types of magnetic coils to extrapolate
plasma characteristics into the domain of the tokamak chamber [3].

In this paper, the performance of VacTH is evaluated on simulated data, for which the real
shape of plasma boundary is known. These data are generated by the FREEBIE code [18]
in inverse mode. To obtain such data, the geometry of the measuring coils and shape of the
plasma boundary is chosen by the operator. Following that, appropriate feedback of every coil is
computed and the corresponding set of magnetic measurements is generated. It is then used to
recompute the plasma boundary via VacTH. The approach implemented in the VacTH to solve
11 is the ordinary least squares (OLS) without regularization. Among other characteristics,
plasma boundary shape is obtained and can be directly compared with the original FREEBIE
input (e.g. using Hausdor� distance 12).

For the purpose of this paper, all data were simulated with con�guration of 16 magnetic

coils and 4 saddle loops with parameters σB = 10−3, σf = 10−1

2π , which agrees with the real
con�guration of the tokamak.

4.2. Results
Based on analysis of a training data set from the COMPASS tokamak, prior parameters of the
VB approximation were determined as in table 1. This was done by substituting the OLS by
LSARD (least squares automatic relevance determination) algorithm in VacTH, which produced

di�erent value of θ̂. With this new value, VacTH reconstructed a di�erent shape of the plasma
boundary. To asses performance of LSARD , Hausdor� distance between FREEBIE boundary
and this reconstruction was computed. All boundaries were numerically interpolated into a large
(∼ 103) number of points to assure more precise evaluation of similarity.

parameter a0 b0 c0 d0 α0 β0
value 10−10 10−10 100 100 100 104

Table 1. Prior parameter settings for VB regularization.

Using prior parameters setting from table 1, performance of the LSARD algorithm was
assessed on a test data set. On every tested equilibrium, plasma boundary was reconstructed
using OLS, LSARD and RLS (regularized least squares) approximations. This was done for
model of sizeM = Mea+Meb+Mia+Mib (M is order of the toroidal harmonics decomposition),
where M ∈ {5, ..., 22} as the individual sums in (4) a (5) were extended with varying values of
Mea ∈ {0, ..., 6},Meb ∈ {1, ..., 6},Mia ∈ {0, ..., 4},Mib ∈ {1, ..., 4}. A comparison of methods is
in Figure 4.2 for a number of di�erent equilibria.

Because there are 20 measurements, we observe a clear deterioration of reconstruction with
OLS as the problem of solving (11) becomes ill-conditioned for higher order M . On the
other hand, reconstruction with LSARD or RLS is not a�ected by this fact. Although the
performance of LSARD is worse in terms of the MSE statistic, plasma boundary reconstruction
is more precise. This hints us that some sort of regularization is important for plasma boundary
reconstruction problem, as some terms in the decomposition become obsolete with higher order
of the problem. LSARD regularization clearly addresses this problem by iteratively minimizing
the size of redundant terms of θ̂. Another important fact is that the quality of reconstruction
using LSARD does not vary rapidly with changing value of M . This is important for actual
implementation in VacTH code, as for computation in real time the exact choice of estimated
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Figure 2. Results of plasma boundary reconstruction for varying order of toroidal harmonics
decomposistion M for di�erent plasma equilibria. Straight line is for OLS solution, dashed line
for LSARD algorithm. Dotted line marks solution obtained with regularized least squares (RLS)
with parameter λ = 10. Crossed line marks solution obtained with LASSO algorithm with
parameter α = 1. Besides MSE of �t, Hausdor� distance DH between ground truth and solution
obtained with respective solver is shown. Although the �t of LSARD method is worse than that
of OLS, RLS or LASSO in terms of MSE, precision of boundary reconstruction is consistently
better.

terms must be made in advance. Thus for LSARD we can simply choose M to be as large as
possible to estimate with largest amount of information.

When analyzing more spherical shapes of plasma, prior parameter settings from 1 did not lead
to signi�cant improvement. It was shown that setting a0 = b0 = 102, which does not penalize
large values of θ̂ as strictly, leads to improved results. These were still only slightly better than
results obtained with OLS.

Finally, a comparison of plasma boundaries reconstructed using OLS, LSARD, LASSO
regularization[19] and the original FREEBIE boundary is shown in Figure 3.

4.3. O�ine model selection
Computational complexity of the current implementation of LSARD is too high and does not
allow to replace OLS as the internal solver for real-time application in plasma reconstruction.
Therefore, an attempt to determine an optimal model for which OLS is computed was made.
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Figure 3. Comparison of plasma boundary reconstruction for three di�erent equilibria for
OLS implemented in VacTH (dotted line), LSARD (full line) and LASSO regularization with
parameter α = 1 (crossed line) using the same order of decomposition M . Ground truth,
generated by FREEBIE algorithm, is denoted by dashed line.

Using sparsity property of ARD on a training data set, an optimal model was sequentially
estimated by leaving out those terms of the model whose absolute value was smaller than a given
constant δ ≈ 10−4, until there were no more terms to omit in the estimation. Through this
e�ort, a set of indices for sums (4) and (5) was obtained. This set is in Table 2. It holds that
n ∈ eafor the �rst sum in (4) etc. The ARD selected model is indeed very sparse when compared
with the full model.

The three models were validated against each other on a distinct set of equilibria. OLS
implemented in VacTH were used to compute θ̂ for each respective model structure. Then, plasma
boundary was reconstructed. Graphical evaluation is in Figure 4. No distinct improvement from
the full model to ARD selected model can be observed, although the results of ARD selected
model are much more consistent.

full model model selected using ARD control model
ea (0, 1, 2, 3, 4, 5) - (0, 1, 2)
eb (1, 2, 3, 4, 5) - (1, 2)
ia (0, 1, 2, 3) (0, 1, 2) (0, 1, 2, 3)
ib (1, 2, 3) (1) (1, 2, 3)

Table 2. Sets of indices, determining structure of estimated model.

5. Conclusion
The presented method of model selection has been shown to provide consistently better results
on the problem of plasma boundary estimation compared to the conventional approach. It has
been shown that a model with fewer carefully selected parameters avoids the over�tting problem
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Figure 4. Comparison of full model (denoted by dots), control model (triangles) and model
selected via the ARD principle (crosses) performance on di�erent equilibria. DH is the Hausdor�
distance between the original FREEBIE boundary and the reconstruction. Notably more
consistent performance of the sparse model structure selected by the ARD principle can be
observed in comparison to full and control model as de�ned in 2.

and thus achieves better reconstruction of the overall shape of the plasma boundary. This has
been achieved on simulated data from a detailed model. The complexity of the computation is
intentionally kept low so that the algorithm can be run in real time on existing hardware.
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